Low Rank Matrix Approximation for 3D Geometry Filtering

We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 28; no. 4; pp. 1835 - 1847
Main Authors Lu, Xuequan, Schaefer, Scott, Luo, Jun, Ma, Lizhuang, He, Ying
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods.
AbstractList We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods.
We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods.We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods.
Author Luo, Jun
Lu, Xuequan
Ma, Lizhuang
He, Ying
Schaefer, Scott
Author_xml – sequence: 1
  givenname: Xuequan
  orcidid: 0000-0003-0959-408X
  surname: Lu
  fullname: Lu, Xuequan
  email: xuequan.lu@deakin.edu.au
  organization: School of Information Technology, Deakin University, Geelong, Australia
– sequence: 2
  givenname: Scott
  orcidid: 0000-0002-0988-1452
  surname: Schaefer
  fullname: Schaefer, Scott
  email: schaefer@cs.tamu.edu
  organization: Department of Computer Science, Texas A&M University, College Station, TX, USA
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-7036-5158
  surname: Luo
  fullname: Luo, Jun
  email: junluo@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Lizhuang
  orcidid: 0000-0003-1653-4341
  surname: Ma
  fullname: Ma, Lizhuang
  email: ma-lz@cs.sjtu.edu.cn
  organization: Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Ying
  orcidid: 0000-0002-6749-4485
  surname: He
  fullname: He, Ying
  email: YHe@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33001803$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0E4vsHICQUiYUl5exL7HhEBQpSERICVstJL8iQxsVJRfn3uLQwMDD5huc93ft4j222viXGjjgMOAd9_vg8HA0ECBggCKmKfIPtcp3xFHKQm3EGpVIhhdxhe133CsCzrNDbbAcxzgXgLlNj_5E82PYtubN9cIvkYjYLfuGmtne-TWofErxMRuSn1IfP5No1PQXXvhywrdo2HR2u3332dH31OLxJx_ej2-HFOK0w031qi4KXGSFJzCeAOZ9UUKO2srIyL0ErPqkrVdSQC4tIVJe8wFJJzasMLWjcZ2ervfGq9zl1vZm6rqKmsS35eWdEbJRx4EpG9PQP-urnoY3XGSFj40wgh0idrKl5OaWJmYXYNXyaHyURUCugCr7rAtWmcv23jT5Y1xgOZinfLOWbpXyzlh-T_E_yZ_l_meNVxhHRL69F_Loc8Qsux4wY
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s00371_023_03161_w
crossref_primary_10_1109_TNNLS_2024_3352974
crossref_primary_10_1016_j_cag_2023_08_013
crossref_primary_10_1109_TGRS_2024_3395785
crossref_primary_10_1109_TVCG_2023_3292464
crossref_primary_10_1016_j_cad_2024_103708
crossref_primary_10_1109_TPAMI_2022_3145877
crossref_primary_10_1109_ACCESS_2022_3164714
crossref_primary_10_1016_j_patcog_2024_111228
crossref_primary_10_1111_cgf_14752
crossref_primary_10_1016_j_gmod_2022_101139
crossref_primary_10_1109_TVCG_2023_3263866
crossref_primary_10_1109_TVCG_2020_3027069
crossref_primary_10_1109_ACCESS_2025_3549622
crossref_primary_10_1109_ACCESS_2024_3383536
crossref_primary_10_1016_j_gmod_2024_101230
crossref_primary_10_1007_s41095_022_0278_4
crossref_primary_10_3389_fphy_2022_1115544
crossref_primary_10_1109_TVCG_2021_3088118
crossref_primary_10_1016_j_cad_2024_103812
crossref_primary_10_1109_TPAMI_2024_3349967
crossref_primary_10_1007_s00138_025_01671_2
crossref_primary_10_1088_1361_6501_ac7035
crossref_primary_10_1109_TPAMI_2024_3431221
crossref_primary_10_3390_s23063292
crossref_primary_10_1109_TPAMI_2024_3355988
crossref_primary_10_1109_TVCG_2021_3113463
crossref_primary_10_1007_s00371_023_02921_y
crossref_primary_10_1109_TVCG_2023_3287923
crossref_primary_10_1007_s11801_025_4014_z
crossref_primary_10_1145_3625098
Cites_doi 10.1145/777792.777840
10.1109/GMAP.2002.1027503
10.1137/080738970
10.1016/j.cag.2015.05.024
10.1109/TVCG.2018.2827998
10.1111/j.1467-8659.2012.03181.x
10.1109/TVCG.2015.2398432
10.1016/j.cagd.2005.06.010
10.1111/cgf.13556
10.1145/2816795.2818068
10.1109/TPAMI.2011.250
10.1145/2421636.2421645
10.1007/s11263-016-0930-5
10.1145/1618452.1618522
10.1109/TVCG.2010.264
10.1016/j.cagd.2017.02.011
10.1111/cgf.13068
10.1016/j.cagd.2007.12.008
10.1007/s10208-009-9045-5
10.1145/2601097.2601172
10.1109/CVPR.2019.00611
10.1109/VISUAL.2002.1183771
10.1145/2461912.2461965
10.1109/TVCG.2004.1272725
10.1109/CVPR.2014.366
10.1007/s11263-012-0515-x
10.1145/2980179.2980232
10.1145/1778765.1778831
10.1109/TVCG.2017.2719024
10.1145/133994.134011
10.1145/1857907.1857911
10.1145/997817.997867
10.1007/978-3-030-01234-2_24
10.1016/j.cagd.2015.03.011
10.1109/TVCG.2007.1065
10.1109/ICCV.1998.710815
10.1109/TVCG.2015.2500222
10.1109/CVPRW.2012.6238917
10.1109/TVCG.2018.2828818
10.1109/VISUAL.2001.964489
10.1109/CGI.2003.1214444
10.1016/j.cag.2018.05.014
10.1016/j.cag.2013.05.008
10.1109/TVCG.2017.2725948
10.1111/j.1467-8659.2009.01388.x
10.1145/882262.882367
10.1109/TPAMI.2012.213
10.1111/cgf.12983
10.1111/cgf.12742
10.1137/090771806
10.1016/j.cag.2010.01.004
10.1109/TVCG.2006.60
10.1109/TPAMI.2017.2754254
10.1145/882262.882368
10.1109/TVCG.2017.2740384
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2020.3026785
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 1847
ExternalDocumentID 33001803
10_1109_TVCG_2020_3026785
9210753
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Cancer Research Foundation; AcRF
  grantid: 20/20
  funderid: 10.13039/501100000947
– fundername: Deakin University
  grantid: CY01-251301-F003-PJ03906-PG00447; PJ06625
  funderid: 10.13039/501100001778
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a881b4e3e635d0351dc0f39a6ca65b0971dfc78f052a33eefb183b7691c43a093
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 03:17:00 EDT 2025
Mon Jun 30 02:31:09 EDT 2025
Thu Apr 03 07:03:52 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 03:58:56 EDT 2025
Wed Aug 27 02:49:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a881b4e3e635d0351dc0f39a6ca65b0971dfc78f052a33eefb183b7691c43a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6749-4485
0000-0003-0959-408X
0000-0003-1653-4341
0000-0002-0988-1452
0000-0002-7036-5158
PMID 33001803
PQID 2633042310
PQPubID 75741
PageCount 13
ParticipantIDs crossref_primary_10_1109_TVCG_2020_3026785
proquest_journals_2633042310
pubmed_primary_33001803
proquest_miscellaneous_2448410176
crossref_citationtrail_10_1109_TVCG_2020_3026785
ieee_primary_9210753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref14
ref52
ref55
ref54
ref10
ref17
ref16
ref19
lee (ref32) 2005
lu (ref11) 2018; 24
ref18
solomon (ref40) 2014
liu (ref51) 2010
ref46
ref45
ref48
ref47
wright (ref50) 2009
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
pan (ref58) 2019; 121
ref35
ref34
alliez (ref26) 2007
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
wu (ref53) 2012; 34
ref60
ref61
References_xml – ident: ref22
  doi: 10.1145/777792.777840
– ident: ref36
  doi: 10.1109/GMAP.2002.1027503
– ident: ref49
  doi: 10.1137/080738970
– ident: ref29
  doi: 10.1016/j.cag.2015.05.024
– ident: ref30
  doi: 10.1109/TVCG.2018.2827998
– ident: ref17
  doi: 10.1111/j.1467-8659.2012.03181.x
– ident: ref15
  doi: 10.1109/TVCG.2015.2398432
– ident: ref23
  doi: 10.1016/j.cagd.2005.06.010
– ident: ref57
  doi: 10.1111/cgf.13556
– ident: ref16
  doi: 10.1145/2816795.2818068
– volume: 34
  start-page: 1482
  year: 2012
  ident: ref53
  article-title: A closed-form solution to tensor voting: Theory and applications
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.250
– ident: ref12
  doi: 10.1145/2421636.2421645
– ident: ref4
  doi: 10.1007/s11263-016-0930-5
– ident: ref24
  doi: 10.1145/1618452.1618522
– ident: ref14
  doi: 10.1109/TVCG.2010.264
– ident: ref42
  doi: 10.1016/j.cagd.2017.02.011
– ident: ref31
  doi: 10.1111/cgf.13068
– ident: ref39
  doi: 10.1016/j.cagd.2007.12.008
– ident: ref48
  doi: 10.1007/s10208-009-9045-5
– ident: ref55
  doi: 10.1145/2601097.2601172
– start-page: 2080
  year: 2009
  ident: ref50
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/CVPR.2019.00611
– ident: ref21
  doi: 10.1109/VISUAL.2002.1183771
– ident: ref60
  doi: 10.1145/2461912.2461965
– ident: ref38
  doi: 10.1109/TVCG.2004.1272725
– year: 2014
  ident: ref40
  article-title: A general framework for bilateral and mean shift filtering
  publication-title: arXiv 1405 4734
– ident: ref3
  doi: 10.1109/CVPR.2014.366
– ident: ref52
  doi: 10.1007/s11263-012-0515-x
– ident: ref44
  doi: 10.1145/2980179.2980232
– ident: ref45
  doi: 10.1145/1778765.1778831
– ident: ref47
  doi: 10.1109/TVCG.2017.2719024
– ident: ref19
  doi: 10.1145/133994.134011
– volume: 121
  year: 2019
  ident: ref58
  article-title: HLO: Half-kernel laplacian operator for surface smoothing
  publication-title: Comput Aided Des
– ident: ref9
  doi: 10.1145/1857907.1857911
– ident: ref25
  doi: 10.1145/997817.997867
– start-page: 663
  year: 2010
  ident: ref51
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc 27th Int Conf Int Conf Mach Learn
– ident: ref7
  doi: 10.1007/978-3-030-01234-2_24
– ident: ref10
  doi: 10.1016/j.cagd.2015.03.011
– ident: ref8
  doi: 10.1109/TVCG.2007.1065
– ident: ref1
  doi: 10.1109/ICCV.1998.710815
– ident: ref54
  doi: 10.1109/TVCG.2015.2500222
– ident: ref46
  doi: 10.1109/CVPRW.2012.6238917
– ident: ref59
  doi: 10.1109/TVCG.2018.2828818
– ident: ref20
  doi: 10.1109/VISUAL.2001.964489
– ident: ref37
  doi: 10.1109/CGI.2003.1214444
– ident: ref56
  doi: 10.1016/j.cag.2018.05.014
– ident: ref28
  doi: 10.1016/j.cag.2013.05.008
– volume: 24
  start-page: 2315
  year: 2018
  ident: ref11
  article-title: GPF: GMM-inspired feature-preserving point set filtering
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2017.2725948
– ident: ref13
  doi: 10.1111/j.1467-8659.2009.01388.x
– start-page: 39
  year: 2007
  ident: ref26
  article-title: Voronoi-based variational reconstruction of unoriented point sets
  publication-title: Proc 5th Eurographics Symp Geometry Process
– ident: ref34
  doi: 10.1145/882262.882367
– ident: ref2
  doi: 10.1109/TPAMI.2012.213
– ident: ref18
  doi: 10.1111/cgf.12983
– year: 2005
  ident: ref32
  article-title: Feature-preserving mesh denoising via bilateral normal filtering
  publication-title: Proc 9th Int Conf Comput Aided Des Comput Graph
– ident: ref41
  doi: 10.1111/cgf.12742
– ident: ref61
  doi: 10.1137/090771806
– ident: ref27
  doi: 10.1016/j.cag.2010.01.004
– ident: ref33
  doi: 10.1109/TVCG.2006.60
– ident: ref5
  doi: 10.1109/TPAMI.2017.2754254
– ident: ref35
  doi: 10.1145/882262.882368
– ident: ref43
  doi: 10.1109/TVCG.2017.2740384
SSID ssj0014489
Score 2.5683901
Snippet We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1835
SubjectTerms 3D geometry filtering
Algorithms
Approximation
Estimation
Faces
Filtration
geometric texture removal
Geometry
Mathematical analysis
mesh denoising
Noise reduction
point cloud filtering
point upsampling
Robustness
Shape
Surface layers
surface reconstruction
Three-dimensional displays
Title Low Rank Matrix Approximation for 3D Geometry Filtering
URI https://ieeexplore.ieee.org/document/9210753
https://www.ncbi.nlm.nih.gov/pubmed/33001803
https://www.proquest.com/docview/2633042310
https://www.proquest.com/docview/2448410176
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQoLQlBSpX6gk1izd2PnxEwIIQ2wOCilvkOGMJAQmiWZXy65lJslFBLeIWKc6Xx47f88y8AfiWoSPYbl1Iq5sM9TjC0GitQ1vIktBGnBjPCc7TH8nRuT6-iC8W4PuQC4OIbfAZjviw9eWXtZvxVtmOIX5C8HoRFom4dblag8eAaIbp4gvTMCKU3nswx9LsnP3cOyQmGBFB5XpLGVerIRrP0lXqyXLU1lf5P9Rsl5zJMkznL9tFmlyNZk0xcg_PdBxf-zUr8K7HnmK3GyyrsIDVe3j7lyLhGqQn9W9xaqsrMWXt_nuxy5rj95ddgqMghCvUvjjE-gabuz9icsnOdrryA5xPDs72jsK-tkLolDZNaDPCqxoVEuAo2ZtYOumVsYmzSVywsFTpXZp5GUdWKURf0Nwv0sSMnVZWGvURlqq6wnUQLo5Sb2JnDJZ67KXxKiZe7TVmaVk6F4Ccd3HueuFxrn9xnbcERJqcDZSzgfLeQAFsD5fcdqobLzVe484dGvb9GsDm3I55Py9_5VHS7t8Qpg3g63CaZhS7SWyF9Yza0FDS_KdKAvjU2X-493zYfP73MzfgTcTpEW1kzyYsNXcz3CLQ0hRf2tH6CGYh4uM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEKgQJG4oTI1omdh49VYbvAbg9oi3qLHGcsVYUEtVm15dczk2QjQIC4RYrz8owz33hmvgF4laMj2G5dSNZNhjqKMTRa69CWsiK0kaTGc4Hz4iidHesPJ8nJBrwZa2EQsUs-wwkfdrH8qnEr3irbM-SfELy-ATfJ7idRX601xgzI0TB9hmEWxoTThxhmJM3e8vPBIfmCMbmo3HEp53415MgzeZX6xSB1HVb-DjY7ozO9C4v16_a5JmeTVVtO3PffmBz_93vuwdaAPsV-ry73YQPrB3DnJ07CbcjmzaX4ZOszsWD2_iuxz6zjV6d9iaMgjCvUW3GIzVdsz6_F9JTD7XTlQzievlsezMKhu0LolDZtaHNCrBoVEuSoOJ5YOemVsamzaVIytVTlXZZ7mcRWKURf0uovs9RETisrjdqBzbqp8TEIl8SZN4kzBisdeWm8Ssiz9hrzrKqcC0Cup7hwA_U4d8D4UnQuiDQFC6hgARWDgAJ4PV7yrefd-NfgbZ7cceAwrwHsruVYDCvzoojTbgeHUG0AL8fTtKY4UGJrbFY0hlRJ878qDeBRL__x3mu1efLnZ76AW7PlYl7M3x99fAq3Yy6W6PJ8dmGzPV_hM4Iwbfm809wfaMnmLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Rank+Matrix+Approximation+for+3D+Geometry+Filtering&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Lu%2C+Xuequan&rft.au=Schaefer%2C+Scott&rft.au=Luo%2C+Jun&rft.au=Ma%2C+Lizhuang&rft.date=2022-04-01&rft.eissn=1941-0506&rft.volume=28&rft.issue=4&rft.spage=1835&rft_id=info:doi/10.1109%2FTVCG.2020.3026785&rft_id=info%3Apmid%2F33001803&rft.externalDocID=33001803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon