Low Rank Matrix Approximation for 3D Geometry Filtering
We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix a...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 28; no. 4; pp. 1835 - 1847 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods. |
---|---|
AbstractList | We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods. We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods.We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local isotropic structure for each point and find its similar, non-local structures that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show the applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method generally achieves better results than existing methods. |
Author | Luo, Jun Lu, Xuequan Ma, Lizhuang He, Ying Schaefer, Scott |
Author_xml | – sequence: 1 givenname: Xuequan orcidid: 0000-0003-0959-408X surname: Lu fullname: Lu, Xuequan email: xuequan.lu@deakin.edu.au organization: School of Information Technology, Deakin University, Geelong, Australia – sequence: 2 givenname: Scott orcidid: 0000-0002-0988-1452 surname: Schaefer fullname: Schaefer, Scott email: schaefer@cs.tamu.edu organization: Department of Computer Science, Texas A&M University, College Station, TX, USA – sequence: 3 givenname: Jun orcidid: 0000-0002-7036-5158 surname: Luo fullname: Luo, Jun email: junluo@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Lizhuang orcidid: 0000-0003-1653-4341 surname: Ma fullname: Ma, Lizhuang email: ma-lz@cs.sjtu.edu.cn organization: Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Ying orcidid: 0000-0002-6749-4485 surname: He fullname: He, Ying email: YHe@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33001803$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PwzAQhi0E4vsHICQUiYUl5exL7HhEBQpSERICVstJL8iQxsVJRfn3uLQwMDD5huc93ft4j222viXGjjgMOAd9_vg8HA0ECBggCKmKfIPtcp3xFHKQm3EGpVIhhdxhe133CsCzrNDbbAcxzgXgLlNj_5E82PYtubN9cIvkYjYLfuGmtne-TWofErxMRuSn1IfP5No1PQXXvhywrdo2HR2u3332dH31OLxJx_ej2-HFOK0w031qi4KXGSFJzCeAOZ9UUKO2srIyL0ErPqkrVdSQC4tIVJe8wFJJzasMLWjcZ2ervfGq9zl1vZm6rqKmsS35eWdEbJRx4EpG9PQP-urnoY3XGSFj40wgh0idrKl5OaWJmYXYNXyaHyURUCugCr7rAtWmcv23jT5Y1xgOZinfLOWbpXyzlh-T_E_yZ_l_meNVxhHRL69F_Loc8Qsux4wY |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1007_s00371_023_03161_w crossref_primary_10_1109_TNNLS_2024_3352974 crossref_primary_10_1016_j_cag_2023_08_013 crossref_primary_10_1109_TGRS_2024_3395785 crossref_primary_10_1109_TVCG_2023_3292464 crossref_primary_10_1016_j_cad_2024_103708 crossref_primary_10_1109_TPAMI_2022_3145877 crossref_primary_10_1109_ACCESS_2022_3164714 crossref_primary_10_1016_j_patcog_2024_111228 crossref_primary_10_1111_cgf_14752 crossref_primary_10_1016_j_gmod_2022_101139 crossref_primary_10_1109_TVCG_2023_3263866 crossref_primary_10_1109_TVCG_2020_3027069 crossref_primary_10_1109_ACCESS_2025_3549622 crossref_primary_10_1109_ACCESS_2024_3383536 crossref_primary_10_1016_j_gmod_2024_101230 crossref_primary_10_1007_s41095_022_0278_4 crossref_primary_10_3389_fphy_2022_1115544 crossref_primary_10_1109_TVCG_2021_3088118 crossref_primary_10_1016_j_cad_2024_103812 crossref_primary_10_1109_TPAMI_2024_3349967 crossref_primary_10_1007_s00138_025_01671_2 crossref_primary_10_1088_1361_6501_ac7035 crossref_primary_10_1109_TPAMI_2024_3431221 crossref_primary_10_3390_s23063292 crossref_primary_10_1109_TPAMI_2024_3355988 crossref_primary_10_1109_TVCG_2021_3113463 crossref_primary_10_1007_s00371_023_02921_y crossref_primary_10_1109_TVCG_2023_3287923 crossref_primary_10_1007_s11801_025_4014_z crossref_primary_10_1145_3625098 |
Cites_doi | 10.1145/777792.777840 10.1109/GMAP.2002.1027503 10.1137/080738970 10.1016/j.cag.2015.05.024 10.1109/TVCG.2018.2827998 10.1111/j.1467-8659.2012.03181.x 10.1109/TVCG.2015.2398432 10.1016/j.cagd.2005.06.010 10.1111/cgf.13556 10.1145/2816795.2818068 10.1109/TPAMI.2011.250 10.1145/2421636.2421645 10.1007/s11263-016-0930-5 10.1145/1618452.1618522 10.1109/TVCG.2010.264 10.1016/j.cagd.2017.02.011 10.1111/cgf.13068 10.1016/j.cagd.2007.12.008 10.1007/s10208-009-9045-5 10.1145/2601097.2601172 10.1109/CVPR.2019.00611 10.1109/VISUAL.2002.1183771 10.1145/2461912.2461965 10.1109/TVCG.2004.1272725 10.1109/CVPR.2014.366 10.1007/s11263-012-0515-x 10.1145/2980179.2980232 10.1145/1778765.1778831 10.1109/TVCG.2017.2719024 10.1145/133994.134011 10.1145/1857907.1857911 10.1145/997817.997867 10.1007/978-3-030-01234-2_24 10.1016/j.cagd.2015.03.011 10.1109/TVCG.2007.1065 10.1109/ICCV.1998.710815 10.1109/TVCG.2015.2500222 10.1109/CVPRW.2012.6238917 10.1109/TVCG.2018.2828818 10.1109/VISUAL.2001.964489 10.1109/CGI.2003.1214444 10.1016/j.cag.2018.05.014 10.1016/j.cag.2013.05.008 10.1109/TVCG.2017.2725948 10.1111/j.1467-8659.2009.01388.x 10.1145/882262.882367 10.1109/TPAMI.2012.213 10.1111/cgf.12983 10.1111/cgf.12742 10.1137/090771806 10.1016/j.cag.2010.01.004 10.1109/TVCG.2006.60 10.1109/TPAMI.2017.2754254 10.1145/882262.882368 10.1109/TVCG.2017.2740384 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2020.3026785 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 1847 |
ExternalDocumentID | 33001803 10_1109_TVCG_2020_3026785 9210753 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Australian Cancer Research Foundation; AcRF grantid: 20/20 funderid: 10.13039/501100000947 – fundername: Deakin University grantid: CY01-251301-F003-PJ03906-PG00447; PJ06625 funderid: 10.13039/501100001778 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION 5VS AAYOK AETIX AGSQL AI. AIBXA ALLEH H~9 IFJZH NPM RIG RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-a881b4e3e635d0351dc0f39a6ca65b0971dfc78f052a33eefb183b7691c43a093 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 03:17:00 EDT 2025 Mon Jun 30 02:31:09 EDT 2025 Thu Apr 03 07:03:52 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 03:58:56 EDT 2025 Wed Aug 27 02:49:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a881b4e3e635d0351dc0f39a6ca65b0971dfc78f052a33eefb183b7691c43a093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6749-4485 0000-0003-0959-408X 0000-0003-1653-4341 0000-0002-0988-1452 0000-0002-7036-5158 |
PMID | 33001803 |
PQID | 2633042310 |
PQPubID | 75741 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TVCG_2020_3026785 proquest_journals_2633042310 pubmed_primary_33001803 proquest_miscellaneous_2448410176 crossref_citationtrail_10_1109_TVCG_2020_3026785 ieee_primary_9210753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref52 ref55 ref54 ref10 ref17 ref16 ref19 lee (ref32) 2005 lu (ref11) 2018; 24 ref18 solomon (ref40) 2014 liu (ref51) 2010 ref46 ref45 ref48 ref47 wright (ref50) 2009 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 pan (ref58) 2019; 121 ref35 ref34 alliez (ref26) 2007 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 wu (ref53) 2012; 34 ref60 ref61 |
References_xml | – ident: ref22 doi: 10.1145/777792.777840 – ident: ref36 doi: 10.1109/GMAP.2002.1027503 – ident: ref49 doi: 10.1137/080738970 – ident: ref29 doi: 10.1016/j.cag.2015.05.024 – ident: ref30 doi: 10.1109/TVCG.2018.2827998 – ident: ref17 doi: 10.1111/j.1467-8659.2012.03181.x – ident: ref15 doi: 10.1109/TVCG.2015.2398432 – ident: ref23 doi: 10.1016/j.cagd.2005.06.010 – ident: ref57 doi: 10.1111/cgf.13556 – ident: ref16 doi: 10.1145/2816795.2818068 – volume: 34 start-page: 1482 year: 2012 ident: ref53 article-title: A closed-form solution to tensor voting: Theory and applications publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.250 – ident: ref12 doi: 10.1145/2421636.2421645 – ident: ref4 doi: 10.1007/s11263-016-0930-5 – ident: ref24 doi: 10.1145/1618452.1618522 – ident: ref14 doi: 10.1109/TVCG.2010.264 – ident: ref42 doi: 10.1016/j.cagd.2017.02.011 – ident: ref31 doi: 10.1111/cgf.13068 – ident: ref39 doi: 10.1016/j.cagd.2007.12.008 – ident: ref48 doi: 10.1007/s10208-009-9045-5 – ident: ref55 doi: 10.1145/2601097.2601172 – start-page: 2080 year: 2009 ident: ref50 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization publication-title: Proc Advances Neural Inf Process Syst – ident: ref6 doi: 10.1109/CVPR.2019.00611 – ident: ref21 doi: 10.1109/VISUAL.2002.1183771 – ident: ref60 doi: 10.1145/2461912.2461965 – ident: ref38 doi: 10.1109/TVCG.2004.1272725 – year: 2014 ident: ref40 article-title: A general framework for bilateral and mean shift filtering publication-title: arXiv 1405 4734 – ident: ref3 doi: 10.1109/CVPR.2014.366 – ident: ref52 doi: 10.1007/s11263-012-0515-x – ident: ref44 doi: 10.1145/2980179.2980232 – ident: ref45 doi: 10.1145/1778765.1778831 – ident: ref47 doi: 10.1109/TVCG.2017.2719024 – ident: ref19 doi: 10.1145/133994.134011 – volume: 121 year: 2019 ident: ref58 article-title: HLO: Half-kernel laplacian operator for surface smoothing publication-title: Comput Aided Des – ident: ref9 doi: 10.1145/1857907.1857911 – ident: ref25 doi: 10.1145/997817.997867 – start-page: 663 year: 2010 ident: ref51 article-title: Robust subspace segmentation by low-rank representation publication-title: Proc 27th Int Conf Int Conf Mach Learn – ident: ref7 doi: 10.1007/978-3-030-01234-2_24 – ident: ref10 doi: 10.1016/j.cagd.2015.03.011 – ident: ref8 doi: 10.1109/TVCG.2007.1065 – ident: ref1 doi: 10.1109/ICCV.1998.710815 – ident: ref54 doi: 10.1109/TVCG.2015.2500222 – ident: ref46 doi: 10.1109/CVPRW.2012.6238917 – ident: ref59 doi: 10.1109/TVCG.2018.2828818 – ident: ref20 doi: 10.1109/VISUAL.2001.964489 – ident: ref37 doi: 10.1109/CGI.2003.1214444 – ident: ref56 doi: 10.1016/j.cag.2018.05.014 – ident: ref28 doi: 10.1016/j.cag.2013.05.008 – volume: 24 start-page: 2315 year: 2018 ident: ref11 article-title: GPF: GMM-inspired feature-preserving point set filtering publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2725948 – ident: ref13 doi: 10.1111/j.1467-8659.2009.01388.x – start-page: 39 year: 2007 ident: ref26 article-title: Voronoi-based variational reconstruction of unoriented point sets publication-title: Proc 5th Eurographics Symp Geometry Process – ident: ref34 doi: 10.1145/882262.882367 – ident: ref2 doi: 10.1109/TPAMI.2012.213 – ident: ref18 doi: 10.1111/cgf.12983 – year: 2005 ident: ref32 article-title: Feature-preserving mesh denoising via bilateral normal filtering publication-title: Proc 9th Int Conf Comput Aided Des Comput Graph – ident: ref41 doi: 10.1111/cgf.12742 – ident: ref61 doi: 10.1137/090771806 – ident: ref27 doi: 10.1016/j.cag.2010.01.004 – ident: ref33 doi: 10.1109/TVCG.2006.60 – ident: ref5 doi: 10.1109/TPAMI.2017.2754254 – ident: ref35 doi: 10.1145/882262.882368 – ident: ref43 doi: 10.1109/TVCG.2017.2740384 |
SSID | ssj0014489 |
Score | 2.5683901 |
Snippet | We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1835 |
SubjectTerms | 3D geometry filtering Algorithms Approximation Estimation Faces Filtration geometric texture removal Geometry Mathematical analysis mesh denoising Noise reduction point cloud filtering point upsampling Robustness Shape Surface layers surface reconstruction Three-dimensional displays |
Title | Low Rank Matrix Approximation for 3D Geometry Filtering |
URI | https://ieeexplore.ieee.org/document/9210753 https://www.ncbi.nlm.nih.gov/pubmed/33001803 https://www.proquest.com/docview/2633042310 https://www.proquest.com/docview/2448410176 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZQoLQlBSpX6gk1izd2PnxEwIIQ2wOCilvkOGMJAQmiWZXy65lJslFBLeIWKc6Xx47f88y8AfiWoSPYbl1Iq5sM9TjC0GitQ1vIktBGnBjPCc7TH8nRuT6-iC8W4PuQC4OIbfAZjviw9eWXtZvxVtmOIX5C8HoRFom4dblag8eAaIbp4gvTMCKU3nswx9LsnP3cOyQmGBFB5XpLGVerIRrP0lXqyXLU1lf5P9Rsl5zJMkznL9tFmlyNZk0xcg_PdBxf-zUr8K7HnmK3GyyrsIDVe3j7lyLhGqQn9W9xaqsrMWXt_nuxy5rj95ddgqMghCvUvjjE-gabuz9icsnOdrryA5xPDs72jsK-tkLolDZNaDPCqxoVEuAo2ZtYOumVsYmzSVywsFTpXZp5GUdWKURf0Nwv0sSMnVZWGvURlqq6wnUQLo5Sb2JnDJZ67KXxKiZe7TVmaVk6F4Ccd3HueuFxrn9xnbcERJqcDZSzgfLeQAFsD5fcdqobLzVe484dGvb9GsDm3I55Py9_5VHS7t8Qpg3g63CaZhS7SWyF9Yza0FDS_KdKAvjU2X-493zYfP73MzfgTcTpEW1kzyYsNXcz3CLQ0hRf2tH6CGYh4uM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEKgQJG4oTI1omdh49VYbvAbg9oi3qLHGcsVYUEtVm15dczk2QjQIC4RYrz8owz33hmvgF4laMj2G5dSNZNhjqKMTRa69CWsiK0kaTGc4Hz4iidHesPJ8nJBrwZa2EQsUs-wwkfdrH8qnEr3irbM-SfELy-ATfJ7idRX601xgzI0TB9hmEWxoTThxhmJM3e8vPBIfmCMbmo3HEp53415MgzeZX6xSB1HVb-DjY7ozO9C4v16_a5JmeTVVtO3PffmBz_93vuwdaAPsV-ry73YQPrB3DnJ07CbcjmzaX4ZOszsWD2_iuxz6zjV6d9iaMgjCvUW3GIzVdsz6_F9JTD7XTlQzievlsezMKhu0LolDZtaHNCrBoVEuSoOJ5YOemVsamzaVIytVTlXZZ7mcRWKURf0uovs9RETisrjdqBzbqp8TEIl8SZN4kzBisdeWm8Ssiz9hrzrKqcC0Cup7hwA_U4d8D4UnQuiDQFC6hgARWDgAJ4PV7yrefd-NfgbZ7cceAwrwHsruVYDCvzoojTbgeHUG0AL8fTtKY4UGJrbFY0hlRJ878qDeBRL__x3mu1efLnZ76AW7PlYl7M3x99fAq3Yy6W6PJ8dmGzPV_hM4Iwbfm809wfaMnmLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Rank+Matrix+Approximation+for+3D+Geometry+Filtering&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Lu%2C+Xuequan&rft.au=Schaefer%2C+Scott&rft.au=Luo%2C+Jun&rft.au=Ma%2C+Lizhuang&rft.date=2022-04-01&rft.eissn=1941-0506&rft.volume=28&rft.issue=4&rft.spage=1835&rft_id=info:doi/10.1109%2FTVCG.2020.3026785&rft_id=info%3Apmid%2F33001803&rft.externalDocID=33001803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |