FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System
Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents overhead that often discourages the user. In thi...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 26; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents overhead that often discourages the user. In this work we design FlowSense, a natural language interface for dataflow visualization systems that utilizes state-of-the-art natural language processing techniques to assist dataflow diagram construction. FlowSense employs a semantic parser with special utterance tagging and special utterance placeholders to generalize to different datasets and dataflow diagrams. It explicitly presents recognized dataset and diagram special utterances to the user for dataflow context awareness. With FlowSense the user can expand and adjust dataflow diagrams more conveniently via plain English. We apply FlowSense to the VisFlow subset-flow visualization system to enhance its usability. We evaluate FlowSense by one case study with domain experts on a real-world data analysis problem and a formal user study. |
---|---|
AbstractList | Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents overhead that often discourages the user. In this work we design FlowSense, a natural language interface for dataflow visualization systems that utilizes state-of-the-art natural language processing techniques to assist dataflow diagram construction. FlowSense employs a semantic parser with special utterance tagging and special utterance placeholders to generalize to different datasets and dataflow diagrams. It explicitly presents recognized dataset and diagram special utterances to the user for dataflow context awareness. With FlowSense the user can expand and adjust dataflow diagrams more conveniently via plain English. We apply FlowSense to the VisFlow subset-flow visualization system to enhance its usability. We evaluate FlowSense by one case study with domain experts on a real-world data analysis problem and a formal user study. Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents overhead that often discourages the user. In this work we design FlowSense, a natural language interface for dataflow visualization systems that utilizes state-of-the-art natural language processing techniques to assist dataflow diagram construction. FlowSense employs a semantic parser with special utterance tagging and special utterance placeholders to generalize to different datasets and dataflow diagrams. It explicitly presents recognized dataset and diagram special utterances to the user for dataflow context awareness. With FlowSense the user can expand and adjust dataflow diagrams more conveniently via plain English. We apply FlowSense to the VisFlow subset-flow visualization system to enhance its usability. We evaluate FlowSense by one case study with domain experts on a real-world data analysis problem and a formal user study.Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and visualization modules to specify system functionality. However learning dataflow diagram usage presents overhead that often discourages the user. In this work we design FlowSense, a natural language interface for dataflow visualization systems that utilizes state-of-the-art natural language processing techniques to assist dataflow diagram construction. FlowSense employs a semantic parser with special utterance tagging and special utterance placeholders to generalize to different datasets and dataflow diagrams. It explicitly presents recognized dataset and diagram special utterances to the user for dataflow context awareness. With FlowSense the user can expand and adjust dataflow diagrams more conveniently via plain English. We apply FlowSense to the VisFlow subset-flow visualization system to enhance its usability. We evaluate FlowSense by one case study with domain experts on a real-world data analysis problem and a formal user study. |
Author | Yu, Bowen Silva, Claudio T. |
Author_xml | – sequence: 1 givenname: Bowen surname: Yu fullname: Yu, Bowen email: bowen.yu@nyu.edu organization: New York University – sequence: 2 givenname: Claudio T. surname: Silva fullname: Silva, Claudio T. email: csilva@nyu.edu organization: New York University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31443010$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrHDEQhIVxiF_5ASZgBLnkMhs9RiPJN7PxC5b4YMengNDM9Dgys9JG0uD430frXfvgQ07d0F8VTdUB2vXBA0LHlMwoJfrb3f38csYI1TOmed00agftU13TigjS7JadSFmxhjV76CClR0JoXSv9Ee3xsnBCyT76dTGGp1vwCU7xGf5h8xTtiBfWP0z2AfC1zxAH2wEeQsT3Lk3l-t1mi8__rsYQbXbB4yeXfzuP7ctlKIb49jllWB6hD4MdE3zazkP08-L8bn5VLW4ur-dni6rjtc6VVUKItu0p6UWvtdRDLVsLHBrWN7Rnqu1b1UvOKVWadx0TEjhTnVCtpgNr-SH6uvFdxfBngpTN0qUOxtF6CFMyjCkiBJdaF_TLO_QxTNGX7wzjVEomBVeFOtlSU7uE3qyiW9r4bF5zK4DcAF0MKUUYTOfySxg5WjcaSsy6IbNuyKwbMtuGipK-U76a_0_zeaNxAPDGK0UkawT_B5m7mg8 |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1177_14738716231212568 crossref_primary_10_1109_MCG_2023_3263960 crossref_primary_10_1111_cgf_14032 crossref_primary_10_3390_analytics3030015 crossref_primary_10_1002_sam_11714 crossref_primary_10_1111_cgf_14573 crossref_primary_10_1109_TVCG_2021_3076222 crossref_primary_10_1111_cgf_14035 crossref_primary_10_3390_info13080368 crossref_primary_10_1109_TVCG_2024_3368621 crossref_primary_10_1109_TVCG_2023_3326522 crossref_primary_10_1109_TVCG_2021_3099002 crossref_primary_10_3390_info12040158 crossref_primary_10_1109_TVCG_2021_3114828 crossref_primary_10_11834_jig_230034 crossref_primary_10_1109_TVCG_2022_3209453 crossref_primary_10_1109_TVCG_2022_3209452 crossref_primary_10_1109_ACCESS_2024_3465541 crossref_primary_10_1109_TVCG_2022_3209411 crossref_primary_10_1007_s12650_024_00975_1 crossref_primary_10_1109_TVCG_2021_3114848 crossref_primary_10_1109_TVCG_2022_3209357 crossref_primary_10_1109_TVCG_2023_3240003 crossref_primary_10_1109_TKDE_2024_3400824 crossref_primary_10_1109_MCG_2020_2986902 crossref_primary_10_1109_TVCG_2023_3333356 crossref_primary_10_3390_s21165407 crossref_primary_10_1109_TVCG_2023_3329120 crossref_primary_10_2478_amns_2023_1_00039 crossref_primary_10_1109_TVCG_2020_3023537 crossref_primary_10_1111_cgf_14189 crossref_primary_10_1109_ACCESS_2020_3046623 crossref_primary_10_1109_ACCESS_2023_3274199 crossref_primary_10_1145_3563307 crossref_primary_10_1111_cgf_13976 crossref_primary_10_1016_j_visinf_2024_06_002 crossref_primary_10_1109_TVCG_2020_3030378 crossref_primary_10_1109_TVCG_2021_3106142 crossref_primary_10_1016_j_chemolab_2024_105087 crossref_primary_10_1109_TVCG_2022_3148007 crossref_primary_10_1007_s10479_021_04465_7 crossref_primary_10_3390_app13179709 crossref_primary_10_1016_j_jksuci_2023_01_006 crossref_primary_10_1016_j_cag_2023_07_031 crossref_primary_10_1007_s12650_020_00718_y crossref_primary_10_1109_MCG_2021_3097326 crossref_primary_10_1109_TVCG_2020_2970512 |
Cites_doi | 10.1111/cgf.12628 10.1145/2807442.2807478 10.1111/cgf.12131 10.3115/981732.981751 10.1145/3173574.3174047 10.7551/mitpress/7287.001.0001 10.1109/TVCG.2017.2745219 10.1145/378456.378494 10.1007/11890850_2 10.1109/TVCG.2010.164 10.1117/12.342832 10.1109/VL.1996.545307 10.1109/MCG.2009.130 10.1093/nar/gkt328 10.1145/2984511.2984588 10.1145/224170.224354 10.1145/375360.375365 10.1117/12.309533 10.1017/atsip.2013.9 10.1109/TVCG.2007.70594 10.1017/S135132490000005X 10.3115/v1/P15-1129 10.1146/annurev-linguist-030514-125312 10.1145/1292609.1292620 10.1109/MCI.2018.2840738 10.1109/38.31462 10.18653/v1/W16-3639 10.18653/v1/W16-0105 10.1023/A:1011368926479 10.1109/TVCG.2017.2744684 10.1145/142621.142641 10.3115/v1/P14-5010 10.1145/3025171.3025227 10.1109/TVCG.2016.2598497 10.1109/TSE.1986.6312901 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2019.2934668 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 11 |
ExternalDocumentID | 31443010 10_1109_TVCG_2019_2934668 8807265 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEMEX – fundername: National Aeronautics and Space Administration; NASA funderid: 10.13039/100000104 – fundername: NYU – fundername: NSF grantid: CNS-1229185; CCF-1533564; CNS-1544753; CNS-1730396; CNS-1828576 – fundername: Defense Advanced Research Projects Agency; DARPA funderid: 10.13039/100000185 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-a8555bbd10d5d9979f47bae3e62d61d28bdb8d73311893cc257e328c58b91f2b3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 16:09:11 EDT 2025 Mon Jun 30 02:31:14 EDT 2025 Wed Feb 19 02:31:17 EST 2025 Tue Jul 01 03:58:55 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Wed Aug 27 06:28:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a8555bbd10d5d9979f47bae3e62d61d28bdb8d73311893cc257e328c58b91f2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31443010 |
PQID | 2317727538 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TVCG_2019_2934668 ieee_primary_8807265 proquest_journals_2317727538 pubmed_primary_31443010 proquest_miscellaneous_2280553799 crossref_primary_10_1109_TVCG_2019_2934668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan. 2020-1-00 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref14 ref53 ref52 ref55 ref54 (ref7) 0 ref19 ref18 (ref3) 0 ref51 berant (ref16) 0 sipser (ref46) 2012 ref45 ref47 sun (ref49) 0 ref42 ref41 ref44 ref43 (ref6) 0 (ref2) 0 ref35 ref34 pasupat (ref40) 0 ref37 ref36 ref31 ref30 ref33 goodfellow (ref26) 2016 (ref5) 0 ref39 (ref10) 0 srinivasan (ref48) 0 ref38 (ref9) 0 (ref1) 0 allahyari (ref11) 0 ref24 zhong (ref58) 2017 ref23 clark (ref17) 0 ref25 ref20 ref22 ref21 amar (ref12) 0 (ref8) 0 ref28 ref27 ref29 levenshtein (ref32) 1966; 10 taskar (ref50) 2003 bavoil (ref15) 0 (ref4) 0 |
References_xml | – year: 0 ident: ref2 publication-title: SPSS Modeler – ident: ref41 doi: 10.1111/cgf.12628 – year: 0 ident: ref10 publication-title: Wolfram Alpha – ident: ref25 doi: 10.1145/2807442.2807478 – ident: ref30 doi: 10.1111/cgf.12131 – year: 0 ident: ref11 article-title: A brief survey of text mining: Classification, clustering and extraction techniques publication-title: Proc KDD Bigdas – ident: ref54 doi: 10.3115/981732.981751 – year: 0 ident: ref1 publication-title: D3 Data-driven Documents – year: 0 ident: ref40 article-title: Compositional semantic parsing on semistructured tables publication-title: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) – ident: ref22 doi: 10.1145/3173574.3174047 – year: 0 ident: ref9 publication-title: TLC trip records – ident: ref23 doi: 10.7551/mitpress/7287.001.0001 – start-page: 43 year: 0 ident: ref17 article-title: A knowledge-based approach to question-answering publication-title: Proceedings of the AAAI Fall Symposium on Question Answering Systems – ident: ref47 doi: 10.1109/TVCG.2017.2745219 – year: 2012 ident: ref46 publication-title: Introduction to the Theory of Computation – ident: ref28 doi: 10.1145/378456.378494 – ident: ref24 doi: 10.1007/11890850_2 – year: 2016 ident: ref26 publication-title: Deep Learning – ident: ref27 doi: 10.1109/TVCG.2010.164 – ident: ref43 doi: 10.1117/12.342832 – ident: ref45 doi: 10.1109/VL.1996.545307 – ident: ref37 doi: 10.1109/MCG.2009.130 – start-page: 135 year: 0 ident: ref15 article-title: VisTrails: Enabling interactive multiple-view visualizations publication-title: Proc IEEE Visualization Conference – start-page: 111 year: 0 ident: ref12 article-title: Low-level components of analytic activity in information visualization publication-title: IEEE Symposium on Information Visualization (Infovis'05) – ident: ref53 doi: 10.1093/nar/gkt328 – ident: ref44 doi: 10.1145/2984511.2984588 – ident: ref39 doi: 10.1145/224170.224354 – ident: ref38 doi: 10.1145/375360.375365 – ident: ref42 doi: 10.1117/12.309533 – start-page: 184 year: 0 ident: ref49 article-title: Articulate: A semi-automated model for translating natural language queries into meaningful visualizations publication-title: Proceedings of the 10th International Conference on Smart Graphics – ident: ref20 doi: 10.1017/atsip.2013.9 – volume: 10 start-page: 707 year: 1966 ident: ref32 article-title: Binary codes capable of correcting deletions, insertions and reversals publication-title: Soviet Physics Doklady – ident: ref35 doi: 10.1109/TVCG.2007.70594 – ident: ref13 doi: 10.1017/S135132490000005X – ident: ref52 doi: 10.3115/v1/P15-1129 – ident: ref34 doi: 10.1146/annurev-linguist-030514-125312 – year: 0 ident: ref4 publication-title: KNIME data analysis platform – ident: ref33 doi: 10.1145/1292609.1292620 – ident: ref56 doi: 10.1109/MCI.2018.2840738 – ident: ref51 doi: 10.1109/38.31462 – ident: ref31 doi: 10.18653/v1/W16-3639 – year: 2003 ident: ref50 publication-title: Max-margin Markov Networks – ident: ref55 doi: 10.18653/v1/W16-0105 – year: 0 ident: ref48 article-title: Natural language interfaces for data analysis with visualization: Considering what has and could be asked publication-title: Eurographics Conference on Visualization (EuroVis) - Short Papers – ident: ref19 doi: 10.1023/A:1011368926479 – start-page: 1533 year: 0 ident: ref16 article-title: Semantic parsing on Freebase from question-answer pairs publication-title: Proc Empirical Methods in Natural Language Processing (EMNLP'13) – year: 0 ident: ref6 – year: 0 ident: ref7 – ident: ref29 doi: 10.1109/TVCG.2017.2744684 – year: 0 ident: ref5 publication-title: Microsoft Power BI – year: 0 ident: ref8 publication-title: Thought – year: 0 ident: ref3 publication-title: Watson Analytics – year: 2017 ident: ref58 article-title: Seq2SQL: Generating structured queries from natural language using reinforcement learning publication-title: CoRR – ident: ref18 doi: 10.1145/142621.142641 – ident: ref36 doi: 10.3115/v1/P14-5010 – ident: ref21 doi: 10.1145/3025171.3025227 – ident: ref57 doi: 10.1109/TVCG.2016.2598497 – ident: ref14 doi: 10.1109/TSE.1986.6312901 |
SSID | ssj0014489 |
Score | 2.6075838 |
Snippet | Dataflow visualization systems enable flexible visual data exploration by allowing the user to construct a dataflow diagram that composes query and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Automobiles Data analysis Data visualization dataflow visualization system Datasets Exploration Flow visualization Natural language Natural language interface Natural language processing Semantics Task analysis Usability visual data exploration Visualization |
Title | FlowSense: A Natural Language Interface for Visual Data Exploration within a Dataflow System |
URI | https://ieeexplore.ieee.org/document/8807265 https://www.ncbi.nlm.nih.gov/pubmed/31443010 https://www.proquest.com/docview/2317727538 https://www.proquest.com/docview/2280553799 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS-VAEC7Uk3MYHZ3luQwteBLzTDrpJO1NnHmKqBcXPAyEXqrhMZInmiD4663u5AWRmWFugV6yVHX6-6qqqwB2HW1rwuYmEoRVoyxzJtLWpZHTRIdcbkuuvGng4jI_vcnO7sTdAuwPZ2EQMQSf4dhfBl--nZnWm8oOSNcKnotFWCTi1p3VGjwGRDNkF19YRJxQeu_BTGJ5cH17fOKDuOSY9rYs91lV3-xBoajK3_Fl2GcmK3Axf8IuvOT3uG302Ly8S974v6-wCh97wMmOOg35BAtYr8GHN2kI1-HX5H72fEV8Fg_ZEbtUIRUHO-8tmSwYDZ0yyAjgstvpU0utP1SjWBfAF2TLvEF3WjMVWhxNyLpk6J_hZvLz-vg06qsuRCbNZBOpUgihtU1iK6yUhXRZoRWmmHObJ5aX2urS-lKPCWEdY2jNY8pLI0otE8d1-gWW6lmN34BpKWK0CRqZlRmikoSGiH9Zn_SoIFwygnguh8r0Kcl9ZYz7KlCTWFZedJUXXdWLbgR7w5CHLh_HvzqvewkMHfuPP4KtubCrfsU-VYRziWgQeaNRO0MzrTXvQFE1zlrqw8tYiLSQcgRfOyUZ5k5JA-lnGW_8-Z6bsMw9Uw_Gmy1Yah5b3CY40-jvQY9fAVid7ww |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAegFJatg8wEidEtokTJzG3qmXZwu5e2FY9IEV-jKWKKotoIiR-PWMnG1UIELdIfuQx48z3zYzHAK8dmTVhcxMJwqpRljkTaevSyGmiQy63JVfeNTBf5NOL7OOVuNqAt8NeGEQMyWc49pchlm9XpvWusmPStYLn4h7cJ7svkm631hAzIKIhuwzDIuKE0_sYZhLL4-Xl6QefxiXHZN2y3NdVvWOFwrEqf0eYwdJMHsN8_YxdgsnXcdvosfn5W_nG_32JJ_Coh5zspNORbdjA-ils3SlEuANfJjerH5-J0eI7dsIWKhTjYLPel8mC29Apg4wgLru8vm2p9Uw1inUpfEG6zLt0r2umQoujCVlXDv0ZXEzeL0-nUX_uQmTSTDaRKoUQWtsktsJKWUiXFVphijm3eWJ5qa0urT_sMSG0Ywytekx5aUSpZeK4Tndhs17V-ByYliJGm6CRWZkhKkl4iBiY9WWPCkImI4jXcqhMX5Tcn41xUwVyEsvKi67yoqt60Y3gzTDkW1eR41-dd7wEho79xx_B4VrYVb9mbytCukQ1iL7RqFdDM602H0JRNa5a6sPLWIi0kHIEe52SDHOnpIH0u4z3_3zPl_BgupzPqtn54tMBPOSetwdXziFsNt9bPCJw0-gXQad_AfhV8lU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FlowSense%3A+A+Natural+Language+Interface+for+Visual+Data+Exploration+within+a+Dataflow+System&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Yu%2C+Bowen&rft.au=Silva%2C+Claudio+T&rft.date=2020-01-01&rft.eissn=1941-0506&rft.volume=26&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1109%2FTVCG.2019.2934668&rft_id=info%3Apmid%2F31443010&rft.externalDocID=31443010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |