Offshore renewable energy site correlated wind-wave statistics
Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 68; p. 103207 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.04.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years.
To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model.
The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set.
In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented. |
---|---|
AbstractList | Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years. To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model. The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set. In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented. Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years. To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model. The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set. In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented. |
ArticleNumber | 103207 |
Author | Wang, Junlei Wang, Fang Wu, Yu Gaidai, Oleg Xing, Yihan Medina, Ausberto Rivera |
Author_xml | – sequence: 1 givenname: Oleg orcidid: 0000-0002-3196-8562 surname: Gaidai fullname: Gaidai, Oleg organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China – sequence: 2 givenname: Fang surname: Wang fullname: Wang, Fang email: wangfang@shou.edu.cn organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China – sequence: 3 givenname: Yu surname: Wu fullname: Wu, Yu organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China – sequence: 4 givenname: Yihan surname: Xing fullname: Xing, Yihan organization: University of Stavanger, Norway – sequence: 5 givenname: Ausberto Rivera surname: Medina fullname: Medina, Ausberto Rivera organization: Federal University of Rio de Janeiro UFRJ, Brazil – sequence: 6 givenname: Junlei surname: Wang fullname: Wang, Junlei email: jlwang@zzu.edu.cn organization: School of Mechanical and Power Engineering, Zhengzhou University, China |
BookMark | eNqNkMtOwzAQRS1UJErhH4JYp_jVONmAUMVLqtQNrC3HmbSOUrvYbqv-Pa7CArHqah6auTP3XKORdRYQuiN4SjApHrrp1rsa7GoDej2lmNLUZxSLCzQmpShzTsVshMaYFkVeVhRfoesQOoyJILwao8dl24a185B5sHBQdQ9ZSvzqmAUTIdPOe-hVhCY7GNvkB7WHLEQVTYhGhxt02ao-wO1vnKCv15fP-Xu-WL59zJ8XuWa8irkSuq5ZM0sF4QpazZWoakxFRdtKtKAoB17zGcVlqjinmrFCl0QAE6QljE3Q_aCb3H7vIETZuZ236aRMxspkklRFmnoaprR3IXhopTanV52NXpleEixP0GQn_0CTJ2hygJYUqn8KW282yh_P2p0Pu5BA7A14GbQBq6ExHnSUjTNnqPwAnC2Qow |
CitedBy_id | crossref_primary_10_1088_2053_1591_acf64e crossref_primary_10_1186_s40712_024_00142_2 crossref_primary_10_1016_j_apples_2025_100209 crossref_primary_10_1016_j_egyr_2024_08_040 crossref_primary_10_1016_j_oceaneng_2023_114652 crossref_primary_10_1016_j_enconman_2023_117880 crossref_primary_10_1016_j_trip_2024_101194 crossref_primary_10_1049_itr2_12613 crossref_primary_10_3390_jmse11061237 crossref_primary_10_1007_s10669_023_09922_1 crossref_primary_10_1186_s41072_023_00159_4 crossref_primary_10_3390_atmos15111357 crossref_primary_10_1115_1_4066410 crossref_primary_10_1007_s44289_024_00030_9 crossref_primary_10_1007_s44289_024_00036_3 crossref_primary_10_1007_s44289_024_00027_4 crossref_primary_10_1016_j_oceaneng_2024_119630 crossref_primary_10_1038_s41598_023_43554_4 crossref_primary_10_1016_j_oceaneng_2022_113318 crossref_primary_10_1093_ijlct_ctad108 crossref_primary_10_1007_s40430_023_04607_x crossref_primary_10_1016_j_istruc_2024_107691 crossref_primary_10_1177_10775463241279993 crossref_primary_10_1007_s40722_024_00316_2 crossref_primary_10_1177_1748006X251323690 crossref_primary_10_1007_s41324_025_00604_5 crossref_primary_10_1002_aesr_202200177 crossref_primary_10_1016_j_rineng_2022_100593 crossref_primary_10_1038_s41598_023_34606_w crossref_primary_10_1002_cai2_47 crossref_primary_10_12688_f1000research_125924_2 crossref_primary_10_12688_f1000research_125924_3 crossref_primary_10_12688_f1000research_125924_1 crossref_primary_10_1016_j_fraope_2024_100075 crossref_primary_10_3389_fenvs_2022_997216 crossref_primary_10_1038_s41598_023_27547_x crossref_primary_10_1080_21650020_2024_2327362 crossref_primary_10_1016_j_ecmx_2025_100946 crossref_primary_10_1038_s41598_023_33699_7 crossref_primary_10_3390_mi14020271 crossref_primary_10_1007_s40868_024_00145_w crossref_primary_10_1038_s41598_023_31533_8 crossref_primary_10_1061_NHREFO_NHENG_2184 crossref_primary_10_1016_j_oceaneng_2024_118834 crossref_primary_10_1016_j_ijnaoe_2023_100540 crossref_primary_10_1016_j_sctalk_2024_100366 crossref_primary_10_1038_s41598_022_25806_x crossref_primary_10_1016_j_probengmech_2024_103676 crossref_primary_10_1016_j_heliyon_2023_e15189 crossref_primary_10_1016_j_apples_2023_100146 crossref_primary_10_1016_j_rineng_2024_102326 crossref_primary_10_1016_j_rineng_2024_102689 crossref_primary_10_1186_s42162_024_00350_2 crossref_primary_10_1177_14613484241275301 crossref_primary_10_1016_j_apor_2023_103708 crossref_primary_10_1016_j_rineng_2022_100828 crossref_primary_10_1007_s00773_024_01001_7 crossref_primary_10_1016_j_renene_2024_121824 crossref_primary_10_1007_s12541_024_00977_x crossref_primary_10_1002_cli2_64 crossref_primary_10_1038_s41598_022_24061_4 crossref_primary_10_1016_j_marstruc_2022_103278 crossref_primary_10_1080_19942060_2024_2305318 crossref_primary_10_1002_qre_3402 crossref_primary_10_1016_j_oceaneng_2022_113016 crossref_primary_10_1016_j_rineng_2024_102796 crossref_primary_10_1080_15397734_2024_2379523 crossref_primary_10_1115_1_4066682 crossref_primary_10_1002_ese3_1485 crossref_primary_10_1038_s41598_023_28136_8 crossref_primary_10_1016_j_cpcardiol_2024_102391 crossref_primary_10_1186_s40807_023_00085_w crossref_primary_10_1016_j_procir_2024_06_011 crossref_primary_10_1038_s41598_023_30704_x crossref_primary_10_1016_j_heliyon_2023_e13533 |
Cites_doi | 10.1093/biomet/75.3.397 10.1016/j.jweia.2015.01.011 10.1115/1.3160652 10.1016/S0422-9894(00)80004-5 10.1017/S1350482799001103 10.1016/j.coastaleng.2016.06.009 10.1115/OMAE2015-41532 10.1016/j.apor.2019.04.015 10.1007/s11069-012-0229-y 10.1016/j.strusafe.2004.01.002 10.1080/01621459.1967.10482930 10.1016/S0378-3839(00)00018-1 10.1016/j.marstruc.2018.11.007 10.1016/j.strusafe.2008.06.021 10.1061/(ASCE)0733-9399(2010)136:3(290) 10.1016/j.renene.2015.01.069 10.1016/j.coastaleng.2010.12.003 10.1175/JCLI-D-11-00132.1 10.1080/17445302.2020.1733315 10.1016/j.apor.2019.04.024 10.1016/j.jweia.2019.02.021 10.1016/S0378-3839(00)00007-7 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier Science Ltd. Apr 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Apr 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.probengmech.2022.103207 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-4275 |
ExternalDocumentID | 10_1016_j_probengmech_2022_103207 S0266892022000066 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c349t-a7cbb3d534914aefc4a79b02792f97fea24e4b452087fe442c336c817e371f133 |
IEDL.DBID | .~1 |
ISSN | 0266-8920 |
IngestDate | Sat Jul 26 02:58:14 EDT 2025 Tue Jul 01 00:54:45 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extreme value statistics Renewable energy environment Wave height statistics Offshore wind speed SEM-REV |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a7cbb3d534914aefc4a79b02792f97fea24e4b452087fe442c336c817e371f133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3196-8562 |
PQID | 2668427196 |
PQPubID | 2047568 |
ParticipantIDs | proquest_journals_2668427196 crossref_citationtrail_10_1016_j_probengmech_2022_103207 crossref_primary_10_1016_j_probengmech_2022_103207 elsevier_sciencedirect_doi_10_1016_j_probengmech_2022_103207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Naess, Gaidai (b12) 2009; 31 Bidlot, Janssen (b19) 2003 Gaidai, Naess, Karpa, Xu, Cheng, Ye (b22) 2019; 88 Battjesa, Groenendijk (b8) 2000; 40 Larsen, Kalogeri, Galanis, Kallos (b4) 2015; 80 Karpa, Naess (b28) 2015; 137 Laface, Malara, Romolo, Arena (b15) 2016; 116 Rugbjerg, Sørensen, Jacobsen (b2) 2006 Gaidai, Storhaug, Naess (b29) 2016 Gudendorf, Segers (b34) 2010 Janssen (b18) 2000; 63 Cook, Harris (b11) 2004; 26 Naess, Gaidai, Batsevych (b13) 2010; 136 Hui, Gaidai, Naess, Storhaug, Xu (b21) 2019; 64 Xu, Gaidai, Naess, Sahoo (b24) 2020 Franck, Luc (b7) 2011; 58 Naess, Karpa (b27) 2015; 139 Xu, Gaidai, Naess, Sahoo (b23) 2019; 88 Kallos (b25) 1997 Coles (b31) 2001 Mesinger (b26) 1984; 44 Ferreira, Guedes (b9) 2000; 40 Mai, Wilhelmi, Barjenbruch (b10) 2010; 1 Aarnes, Breivik, Reistad (b5) 2012; 25 Teena, Sanil Kumar, Sudheesh, Sajeev (b6) 2012; 64 Y. Yu, J. Rij, R. Coe, M. Lawson, Preliminary wave energy converters extreme load analysis, in: Proceedings OMAE, Vol. 9, 2015. Palutikof, Brabson, Lister, Adcock (b16) 1999; 6 Gumbel, Mustafi (b30) 1967; 62 Gaidai, Naess, Xu, Cheng (b20) 2019; 188 Mouslim, Babarit, Jordana (b17) 2008 M. Rugbjerg, O.R. Sørensen, V. Jacobsen, Wave forecasting for offshore wind farms, in: 9th International Workshop on Wave Hindcasting and Forecasting, 2006, pp. 24–29. Nelsen (b33) 2006 Tawn (b32) 1988; 75 Naess, Stansberg, Gaidai, Baarholm (b14) 2009; 131 Kallos (10.1016/j.probengmech.2022.103207_b25) 1997 Gaidai (10.1016/j.probengmech.2022.103207_b29) 2016 Nelsen (10.1016/j.probengmech.2022.103207_b33) 2006 Naess (10.1016/j.probengmech.2022.103207_b12) 2009; 31 Mesinger (10.1016/j.probengmech.2022.103207_b26) 1984; 44 Battjesa (10.1016/j.probengmech.2022.103207_b8) 2000; 40 Hui (10.1016/j.probengmech.2022.103207_b21) 2019; 64 Gumbel (10.1016/j.probengmech.2022.103207_b30) 1967; 62 Tawn (10.1016/j.probengmech.2022.103207_b32) 1988; 75 Karpa (10.1016/j.probengmech.2022.103207_b28) 2015; 137 Cook (10.1016/j.probengmech.2022.103207_b11) 2004; 26 10.1016/j.probengmech.2022.103207_b3 10.1016/j.probengmech.2022.103207_b1 Mouslim (10.1016/j.probengmech.2022.103207_b17) 2008 Janssen (10.1016/j.probengmech.2022.103207_b18) 2000; 63 Gudendorf (10.1016/j.probengmech.2022.103207_b34) 2010 Aarnes (10.1016/j.probengmech.2022.103207_b5) 2012; 25 Rugbjerg (10.1016/j.probengmech.2022.103207_b2) 2006 Palutikof (10.1016/j.probengmech.2022.103207_b16) 1999; 6 Naess (10.1016/j.probengmech.2022.103207_b27) 2015; 139 Coles (10.1016/j.probengmech.2022.103207_b31) 2001 Xu (10.1016/j.probengmech.2022.103207_b24) 2020 Ferreira (10.1016/j.probengmech.2022.103207_b9) 2000; 40 Larsen (10.1016/j.probengmech.2022.103207_b4) 2015; 80 Naess (10.1016/j.probengmech.2022.103207_b13) 2010; 136 Gaidai (10.1016/j.probengmech.2022.103207_b22) 2019; 88 Bidlot (10.1016/j.probengmech.2022.103207_b19) 2003 Teena (10.1016/j.probengmech.2022.103207_b6) 2012; 64 Xu (10.1016/j.probengmech.2022.103207_b23) 2019; 88 Mai (10.1016/j.probengmech.2022.103207_b10) 2010; 1 Laface (10.1016/j.probengmech.2022.103207_b15) 2016; 116 Franck (10.1016/j.probengmech.2022.103207_b7) 2011; 58 Gaidai (10.1016/j.probengmech.2022.103207_b20) 2019; 188 Naess (10.1016/j.probengmech.2022.103207_b14) 2009; 131 |
References_xml | – volume: 58 start-page: 385 year: 2011 end-page: 394 ident: b7 article-title: A multi-distribution approach to POT methods for determining extreme wave heights publication-title: Coast. Eng. – volume: 25 start-page: 1529 year: 2012 end-page: 1543 ident: b5 article-title: Wave extremes in the northeast atlantic publication-title: J. Clim. – volume: 6 start-page: 119 year: 1999 end-page: 132 ident: b16 article-title: A review of methods to calculate extreme wind speeds publication-title: Meteorol. Appl. – year: 2003 ident: b19 article-title: Unresolved Bathymetry, Neutral Winds and New Stress Tables in WAM – reference: Y. Yu, J. Rij, R. Coe, M. Lawson, Preliminary wave energy converters extreme load analysis, in: Proceedings OMAE, Vol. 9, 2015. – volume: 64 start-page: 138 year: 2019 end-page: 145 ident: b21 article-title: Improving container ship panel stress prediction, based on another highly correlated panel stress measurement publication-title: Mar. Struct. – volume: 26 start-page: 391 year: 2004 end-page: 420 ident: b11 article-title: Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents publication-title: Struct. Saf. – volume: 188 start-page: 102 year: 2019 end-page: 109 ident: b20 article-title: Improving extreme wind speed prediction based on a short data sample, using a highly correlated long data sample publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 62 start-page: 569 year: 1967 end-page: 588 ident: b30 article-title: Some analytical properties of bivariate extremal distributions publication-title: J. Amer. Statist. Assoc. – volume: 80 start-page: 205 year: 2015 end-page: 218 ident: b4 article-title: A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications publication-title: Renew. Energy – volume: 31 start-page: 325 year: 2009 end-page: 334 ident: b12 article-title: Estimation of extreme values from sampled time series publication-title: Struct. Saf. – volume: 131 year: 2009 ident: b14 article-title: Statistics of extreme events in airgap measurements publication-title: J. Offshore Mech. Arct. Eng. – year: 2008 ident: b17 article-title: Project development of a wave energy test site in the French Atlantic Coast publication-title: Proc. 2nd International Conference on Ocean Energy – volume: 136 start-page: 290 year: 2010 end-page: 298 ident: b13 article-title: Prediction of extreme response statistics of narrow-band random vibrations publication-title: J. Eng. Mech. – year: 2006 ident: b2 article-title: Wave forecasting for offshore wind farms publication-title: 9th International Workshop on Wave Hindcasting and Forecasting – year: 1997 ident: b25 article-title: The regional weather forecasting system SKIRON publication-title: Proceedings of Symposium on Regional Weather Prediction on Parallel Computer Environment – volume: 116 start-page: 220 year: 2016 end-page: 235 ident: b15 article-title: Peak over threshold vis-à-vis equivalent triangular storm: Return value sensitivity to storm threshold publication-title: Coast. Eng. – volume: 1 start-page: 712 year: 2010 end-page: 717 ident: b10 article-title: Wave height distributions in shallow waters publication-title: Coast. Eng. Proc. – volume: 137 year: 2015 ident: b28 article-title: Statistics of extreme wind speeds and wave heights by the bivariate ACER2D method publication-title: J. Offshore Mech. Arctic Eng. – volume: 63 start-page: 35 year: 2000 end-page: 56 ident: b18 article-title: ECMWF Wave modeling and altimeter wave height data publication-title: Satell. Oceanogr. Soc. – volume: 88 start-page: 89 year: 2019 end-page: 98 ident: b23 article-title: Improving the prediction of extreme FPSO hawser tension, using another highly correlated hawser tension with a longer time record publication-title: Appl. Ocean Res. – start-page: 368 year: 2016 end-page: 386 ident: b29 article-title: Extreme large cargo ship panel stresses by bivariate ACER2D method, vol. 127 – volume: 64 start-page: 223 year: 2012 end-page: 236 ident: b6 article-title: Statistical analysis on extreme wave height publication-title: Nat. Hazards – volume: 75 start-page: 397 year: 1988 end-page: 415 ident: b32 article-title: Bivariate extreme value theory: Models and estimation publication-title: Biometrika – year: 2010 ident: b34 article-title: Extreme-Value Copulas, Copula Theory and its Applications – volume: 88 start-page: 63 year: 2019 end-page: 70 ident: b22 article-title: Improving extreme wind speed prediction for north sea offshore oil and gas fields publication-title: Appl. Ocean Res. – year: 2006 ident: b33 publication-title: An Introduction to Copulas – year: 2020 ident: b24 article-title: Extreme loads analysis of a site-specific semisubmersible type wind turbine publication-title: Ships Offshore Struct. – volume: 139 start-page: 82 year: 2015 end-page: 88 ident: b27 article-title: Statistics of bivariate extreme wind speeds by the ACER2D method publication-title: J. Wind Eng. Ind. Aerodyn. – reference: M. Rugbjerg, O.R. Sørensen, V. Jacobsen, Wave forecasting for offshore wind farms, in: 9th International Workshop on Wave Hindcasting and Forecasting, 2006, pp. 24–29. – year: 2001 ident: b31 publication-title: An Introduction to Statistical Modeling of Extreme Values – volume: 44 start-page: 195 year: 1984 end-page: 202 ident: b26 article-title: A blocking technique for representation of mountains in atmospheric models publication-title: Riv. Meteorol. Aeronaut. – volume: 40 start-page: 361 year: 2000 end-page: 374 ident: b9 article-title: Modelling distributions of significant wave height publication-title: Coast. Eng. – volume: 40 start-page: 161 year: 2000 end-page: 182 ident: b8 article-title: Wave height distributions on shallow foreshores publication-title: Coast. Eng. – volume: 75 start-page: 397 issue: 3 year: 1988 ident: 10.1016/j.probengmech.2022.103207_b32 article-title: Bivariate extreme value theory: Models and estimation publication-title: Biometrika doi: 10.1093/biomet/75.3.397 – volume: 139 start-page: 82 year: 2015 ident: 10.1016/j.probengmech.2022.103207_b27 article-title: Statistics of bivariate extreme wind speeds by the ACER2D method publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.01.011 – volume: 131 year: 2009 ident: 10.1016/j.probengmech.2022.103207_b14 article-title: Statistics of extreme events in airgap measurements publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.3160652 – year: 1997 ident: 10.1016/j.probengmech.2022.103207_b25 article-title: The regional weather forecasting system SKIRON – volume: 63 start-page: 35 year: 2000 ident: 10.1016/j.probengmech.2022.103207_b18 article-title: ECMWF Wave modeling and altimeter wave height data publication-title: Satell. Oceanogr. Soc. doi: 10.1016/S0422-9894(00)80004-5 – volume: 6 start-page: 119 year: 1999 ident: 10.1016/j.probengmech.2022.103207_b16 article-title: A review of methods to calculate extreme wind speeds publication-title: Meteorol. Appl. doi: 10.1017/S1350482799001103 – year: 2006 ident: 10.1016/j.probengmech.2022.103207_b2 article-title: Wave forecasting for offshore wind farms – volume: 116 start-page: 220 issue: 3–4 year: 2016 ident: 10.1016/j.probengmech.2022.103207_b15 article-title: Peak over threshold vis-à-vis equivalent triangular storm: Return value sensitivity to storm threshold publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2016.06.009 – ident: 10.1016/j.probengmech.2022.103207_b3 doi: 10.1115/OMAE2015-41532 – ident: 10.1016/j.probengmech.2022.103207_b1 – volume: 88 start-page: 89 year: 2019 ident: 10.1016/j.probengmech.2022.103207_b23 article-title: Improving the prediction of extreme FPSO hawser tension, using another highly correlated hawser tension with a longer time record publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.04.015 – volume: 64 start-page: 223 issue: 1 year: 2012 ident: 10.1016/j.probengmech.2022.103207_b6 article-title: Statistical analysis on extreme wave height publication-title: Nat. Hazards doi: 10.1007/s11069-012-0229-y – volume: 26 start-page: 391 year: 2004 ident: 10.1016/j.probengmech.2022.103207_b11 article-title: Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2004.01.002 – volume: 62 start-page: 569 issue: 318 year: 1967 ident: 10.1016/j.probengmech.2022.103207_b30 article-title: Some analytical properties of bivariate extremal distributions publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1967.10482930 – year: 2003 ident: 10.1016/j.probengmech.2022.103207_b19 – volume: 40 start-page: 361 year: 2000 ident: 10.1016/j.probengmech.2022.103207_b9 article-title: Modelling distributions of significant wave height publication-title: Coast. Eng. doi: 10.1016/S0378-3839(00)00018-1 – year: 2010 ident: 10.1016/j.probengmech.2022.103207_b34 – volume: 64 start-page: 138 year: 2019 ident: 10.1016/j.probengmech.2022.103207_b21 article-title: Improving container ship panel stress prediction, based on another highly correlated panel stress measurement publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2018.11.007 – volume: 44 start-page: 195 year: 1984 ident: 10.1016/j.probengmech.2022.103207_b26 article-title: A blocking technique for representation of mountains in atmospheric models publication-title: Riv. Meteorol. Aeronaut. – year: 2008 ident: 10.1016/j.probengmech.2022.103207_b17 article-title: Project development of a wave energy test site in the French Atlantic Coast – volume: 137 issue: 2 year: 2015 ident: 10.1016/j.probengmech.2022.103207_b28 article-title: Statistics of extreme wind speeds and wave heights by the bivariate ACER2D method publication-title: J. Offshore Mech. Arctic Eng. – start-page: 368 year: 2016 ident: 10.1016/j.probengmech.2022.103207_b29 – volume: 31 start-page: 325 issue: 4 year: 2009 ident: 10.1016/j.probengmech.2022.103207_b12 article-title: Estimation of extreme values from sampled time series publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2008.06.021 – volume: 136 start-page: 290 issue: 3 year: 2010 ident: 10.1016/j.probengmech.2022.103207_b13 article-title: Prediction of extreme response statistics of narrow-band random vibrations publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2010)136:3(290) – volume: 80 start-page: 205 year: 2015 ident: 10.1016/j.probengmech.2022.103207_b4 article-title: A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications publication-title: Renew. Energy doi: 10.1016/j.renene.2015.01.069 – volume: 58 start-page: 385 year: 2011 ident: 10.1016/j.probengmech.2022.103207_b7 article-title: A multi-distribution approach to POT methods for determining extreme wave heights publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2010.12.003 – volume: 25 start-page: 1529 year: 2012 ident: 10.1016/j.probengmech.2022.103207_b5 article-title: Wave extremes in the northeast atlantic publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00132.1 – year: 2020 ident: 10.1016/j.probengmech.2022.103207_b24 article-title: Extreme loads analysis of a site-specific semisubmersible type wind turbine publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2020.1733315 – year: 2006 ident: 10.1016/j.probengmech.2022.103207_b33 – volume: 88 start-page: 63 year: 2019 ident: 10.1016/j.probengmech.2022.103207_b22 article-title: Improving extreme wind speed prediction for north sea offshore oil and gas fields publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.04.024 – volume: 188 start-page: 102 year: 2019 ident: 10.1016/j.probengmech.2022.103207_b20 article-title: Improving extreme wind speed prediction based on a short data sample, using a highly correlated long data sample publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2019.02.021 – year: 2001 ident: 10.1016/j.probengmech.2022.103207_b31 – volume: 40 start-page: 161 issue: 3 year: 2000 ident: 10.1016/j.probengmech.2022.103207_b8 article-title: Wave height distributions on shallow foreshores publication-title: Coast. Eng. doi: 10.1016/S0378-3839(00)00007-7 – volume: 1 start-page: 712 year: 2010 ident: 10.1016/j.probengmech.2022.103207_b10 article-title: Wave height distributions in shallow waters publication-title: Coast. Eng. Proc. |
SSID | ssj0017149 |
Score | 2.5312264 |
Snippet | Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103207 |
SubjectTerms | Bivariate analysis Correlation analysis Datasets Estimating techniques Extreme value statistics Extreme values Offshore Offshore engineering Offshore wind speed Propagation Random processes Remote sensing Renewable energy environment SEM-REV TOPEX Turbines Wave height Wave height statistics Wave power Weather stations Wind power Wind speed Wind waves |
Title | Offshore renewable energy site correlated wind-wave statistics |
URI | https://dx.doi.org/10.1016/j.probengmech.2022.103207 https://www.proquest.com/docview/2668427196 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIF58i-tjieA1bpumTQsiiLisLir4QG8hTSe6sq7iru7N326mTX3hQbCXktKE9utkMtPMN0PIdiBtFMY6YTa0loksBKZBxixy5n1SpCaVFrnDJ6dJ50oc38Q3E-Sg5sJgWKXX_ZVOL7W1v9LyaLaeer3WhfMekjTjSBUtV05ksAuJUr7z9hHmgfW9s-o_S8Lw7mmy9RnjhUVbYHD7AOW-BOdIQedYWfb3NeqHti6XoPY8mfW2I92vHm-BTMBgkcx5O5L6WTpcIntn1g7vHp-BYr7KMZKjKJQcP4p7xdRgRY6-MzILOnYuORvrV6DILKqSNi-Tq_bh5UGH-ToJzEQiGzEtTZ5HRewaodBgjdAyywNMDWgzaUFzASIXMQ8c8iAEN1GUmDSUEMnQOid1hUwOHgewSqh7-SwNuIm1KUQRGJ0GbqyMgztsEECDpDUyyvgk4ljLoq_qaLF79QVUhaCqCtQG4R9dn6pMGn_ptFvDr76JhXIa_y_dN-pPpvzcHCoUG8GlUz1r_xt9ncxgq4rj2SCTo-cX2HQmyihvljLYJFP7R93OKZ6759fdd7QO6Ps |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkNpeoPQhXgVXao_uJo4TJxJUQjy0lEcPBYmb6zjjdhEExC6suPCn-IP1JA60VQ9IFbkl0VjOZ-ebsT0PgA-Rckmcmoy72Dkuixi5QZXyxJv3WZXbXDmKHd4_yPpH8stxejwBd10sDLlVBu5vOb1h6_CkF9DsXQwGvW9-9ZDlhaBQ0UZzBs_KXbwZ-3XbcG1n0w_yRyG2tw43-jyUFuA2kcWIG2XLMqlSfxNLg85Ko4oyomx6rlAOjZAoS5mKyHcWpRQ2STKbxwoTFbuYdkE9709JTxdUNuHT7b1fCRUUL9qNnYxT957B-wenMqoSg_WPM2wOQoSgmHdBpWz_rRT_Ug-Nztt-CdPBWGXrLR6zMIH1K5gJhisLtDB8DZ-_Ojf8eX6JjBJkjikai2ETVMjocJpZKgFy6q3aio0HdcXH5hoZhTK1WaLfwNGToPcWJuvzGueA-Y8v8kjY1NhKVpE1eeTbKgT6y0URzkPeIaNtyFpOxTNOdeeedqJ_A1UTqLoFdR7EvehFm7rjMUKrHfz6j3movYp5jPhSN2Q6kMFQ0zyVQnmuW_i_1lfgef9wf0_v7RzsLsILetM6ES3B5OjyCt95-2hULjfzkcH3p_4BfgHBoSJ7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+renewable+energy+site+correlated+wind-wave+statistics&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Gaidai%2C+Oleg&rft.au=Wang%2C+Fang&rft.au=Wu%2C+Yu&rft.au=Xing%2C+Yihan&rft.date=2022-04-01&rft.issn=0266-8920&rft.volume=68&rft.spage=103207&rft_id=info:doi/10.1016%2Fj.probengmech.2022.103207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_probengmech_2022_103207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |