Offshore renewable energy site correlated wind-wave statistics

Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 68; p. 103207
Main Authors Gaidai, Oleg, Wang, Fang, Wu, Yu, Xing, Yihan, Medina, Ausberto Rivera, Wang, Junlei
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.04.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years. To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model. The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set. In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented.
AbstractList Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years. To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model. The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set. In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented.
Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to study extreme wind speed and wave height statistics, based on available in-situ hourly wind speed and wave height maxima. The wind and wave data, studied in this paper, was obtained from numerical hind cast model, locally applied to the offshore the area that covers SEM-REV (European wind and wave energy research site) location, for the time period 2001–2010 years. To obtain accurate local wind and wave data set, accurate wave and wind measurements from in-situ monitoring tools (meteorological stations and buoys) as well as remote satellite sensing data (ENVISAT and TOPEX satellite records) were plugged into atmospheric wind and wave model. The novel bivariate correction technique based on the Average Conditional Exceedance Rate (ACER) method has been presented in brief detail. The bivariate correction method produced quite accurate extreme value predictions, efficiently utilizing available wind speeds and wave heights data set. In some practical situations it would be useful to improve accuracy of some statistical predictions, using information supplied by another synchronous highly correlated random process that has been measured for a longer time than the process of interest. In this paper the novel technique of improving correlated extreme wind speed and wave height predictions has been presented.
ArticleNumber 103207
Author Wang, Junlei
Wang, Fang
Wu, Yu
Gaidai, Oleg
Xing, Yihan
Medina, Ausberto Rivera
Author_xml – sequence: 1
  givenname: Oleg
  orcidid: 0000-0002-3196-8562
  surname: Gaidai
  fullname: Gaidai, Oleg
  organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China
– sequence: 2
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  email: wangfang@shou.edu.cn
  organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China
– sequence: 3
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
  organization: Shanghai Engineering Research Center of Marine Renewable Energy, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China
– sequence: 4
  givenname: Yihan
  surname: Xing
  fullname: Xing, Yihan
  organization: University of Stavanger, Norway
– sequence: 5
  givenname: Ausberto Rivera
  surname: Medina
  fullname: Medina, Ausberto Rivera
  organization: Federal University of Rio de Janeiro UFRJ, Brazil
– sequence: 6
  givenname: Junlei
  surname: Wang
  fullname: Wang, Junlei
  email: jlwang@zzu.edu.cn
  organization: School of Mechanical and Power Engineering, Zhengzhou University, China
BookMark eNqNkMtOwzAQRS1UJErhH4JYp_jVONmAUMVLqtQNrC3HmbSOUrvYbqv-Pa7CArHqah6auTP3XKORdRYQuiN4SjApHrrp1rsa7GoDej2lmNLUZxSLCzQmpShzTsVshMaYFkVeVhRfoesQOoyJILwao8dl24a185B5sHBQdQ9ZSvzqmAUTIdPOe-hVhCY7GNvkB7WHLEQVTYhGhxt02ao-wO1vnKCv15fP-Xu-WL59zJ8XuWa8irkSuq5ZM0sF4QpazZWoakxFRdtKtKAoB17zGcVlqjinmrFCl0QAE6QljE3Q_aCb3H7vIETZuZ236aRMxspkklRFmnoaprR3IXhopTanV52NXpleEixP0GQn_0CTJ2hygJYUqn8KW282yh_P2p0Pu5BA7A14GbQBq6ExHnSUjTNnqPwAnC2Qow
CitedBy_id crossref_primary_10_1088_2053_1591_acf64e
crossref_primary_10_1186_s40712_024_00142_2
crossref_primary_10_1016_j_apples_2025_100209
crossref_primary_10_1016_j_egyr_2024_08_040
crossref_primary_10_1016_j_oceaneng_2023_114652
crossref_primary_10_1016_j_enconman_2023_117880
crossref_primary_10_1016_j_trip_2024_101194
crossref_primary_10_1049_itr2_12613
crossref_primary_10_3390_jmse11061237
crossref_primary_10_1007_s10669_023_09922_1
crossref_primary_10_1186_s41072_023_00159_4
crossref_primary_10_3390_atmos15111357
crossref_primary_10_1115_1_4066410
crossref_primary_10_1007_s44289_024_00030_9
crossref_primary_10_1007_s44289_024_00036_3
crossref_primary_10_1007_s44289_024_00027_4
crossref_primary_10_1016_j_oceaneng_2024_119630
crossref_primary_10_1038_s41598_023_43554_4
crossref_primary_10_1016_j_oceaneng_2022_113318
crossref_primary_10_1093_ijlct_ctad108
crossref_primary_10_1007_s40430_023_04607_x
crossref_primary_10_1016_j_istruc_2024_107691
crossref_primary_10_1177_10775463241279993
crossref_primary_10_1007_s40722_024_00316_2
crossref_primary_10_1177_1748006X251323690
crossref_primary_10_1007_s41324_025_00604_5
crossref_primary_10_1002_aesr_202200177
crossref_primary_10_1016_j_rineng_2022_100593
crossref_primary_10_1038_s41598_023_34606_w
crossref_primary_10_1002_cai2_47
crossref_primary_10_12688_f1000research_125924_2
crossref_primary_10_12688_f1000research_125924_3
crossref_primary_10_12688_f1000research_125924_1
crossref_primary_10_1016_j_fraope_2024_100075
crossref_primary_10_3389_fenvs_2022_997216
crossref_primary_10_1038_s41598_023_27547_x
crossref_primary_10_1080_21650020_2024_2327362
crossref_primary_10_1016_j_ecmx_2025_100946
crossref_primary_10_1038_s41598_023_33699_7
crossref_primary_10_3390_mi14020271
crossref_primary_10_1007_s40868_024_00145_w
crossref_primary_10_1038_s41598_023_31533_8
crossref_primary_10_1061_NHREFO_NHENG_2184
crossref_primary_10_1016_j_oceaneng_2024_118834
crossref_primary_10_1016_j_ijnaoe_2023_100540
crossref_primary_10_1016_j_sctalk_2024_100366
crossref_primary_10_1038_s41598_022_25806_x
crossref_primary_10_1016_j_probengmech_2024_103676
crossref_primary_10_1016_j_heliyon_2023_e15189
crossref_primary_10_1016_j_apples_2023_100146
crossref_primary_10_1016_j_rineng_2024_102326
crossref_primary_10_1016_j_rineng_2024_102689
crossref_primary_10_1186_s42162_024_00350_2
crossref_primary_10_1177_14613484241275301
crossref_primary_10_1016_j_apor_2023_103708
crossref_primary_10_1016_j_rineng_2022_100828
crossref_primary_10_1007_s00773_024_01001_7
crossref_primary_10_1016_j_renene_2024_121824
crossref_primary_10_1007_s12541_024_00977_x
crossref_primary_10_1002_cli2_64
crossref_primary_10_1038_s41598_022_24061_4
crossref_primary_10_1016_j_marstruc_2022_103278
crossref_primary_10_1080_19942060_2024_2305318
crossref_primary_10_1002_qre_3402
crossref_primary_10_1016_j_oceaneng_2022_113016
crossref_primary_10_1016_j_rineng_2024_102796
crossref_primary_10_1080_15397734_2024_2379523
crossref_primary_10_1115_1_4066682
crossref_primary_10_1002_ese3_1485
crossref_primary_10_1038_s41598_023_28136_8
crossref_primary_10_1016_j_cpcardiol_2024_102391
crossref_primary_10_1186_s40807_023_00085_w
crossref_primary_10_1016_j_procir_2024_06_011
crossref_primary_10_1038_s41598_023_30704_x
crossref_primary_10_1016_j_heliyon_2023_e13533
Cites_doi 10.1093/biomet/75.3.397
10.1016/j.jweia.2015.01.011
10.1115/1.3160652
10.1016/S0422-9894(00)80004-5
10.1017/S1350482799001103
10.1016/j.coastaleng.2016.06.009
10.1115/OMAE2015-41532
10.1016/j.apor.2019.04.015
10.1007/s11069-012-0229-y
10.1016/j.strusafe.2004.01.002
10.1080/01621459.1967.10482930
10.1016/S0378-3839(00)00018-1
10.1016/j.marstruc.2018.11.007
10.1016/j.strusafe.2008.06.021
10.1061/(ASCE)0733-9399(2010)136:3(290)
10.1016/j.renene.2015.01.069
10.1016/j.coastaleng.2010.12.003
10.1175/JCLI-D-11-00132.1
10.1080/17445302.2020.1733315
10.1016/j.apor.2019.04.024
10.1016/j.jweia.2019.02.021
10.1016/S0378-3839(00)00007-7
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier Science Ltd. Apr 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Apr 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.probengmech.2022.103207
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-4275
ExternalDocumentID 10_1016_j_probengmech_2022_103207
S0266892022000066
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c349t-a7cbb3d534914aefc4a79b02792f97fea24e4b452087fe442c336c817e371f133
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Sat Jul 26 02:58:14 EDT 2025
Tue Jul 01 00:54:45 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Extreme value statistics
Renewable energy environment
Wave height statistics
Offshore wind speed
SEM-REV
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a7cbb3d534914aefc4a79b02792f97fea24e4b452087fe442c336c817e371f133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3196-8562
PQID 2668427196
PQPubID 2047568
ParticipantIDs proquest_journals_2668427196
crossref_citationtrail_10_1016_j_probengmech_2022_103207
crossref_primary_10_1016_j_probengmech_2022_103207
elsevier_sciencedirect_doi_10_1016_j_probengmech_2022_103207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Naess, Gaidai (b12) 2009; 31
Bidlot, Janssen (b19) 2003
Gaidai, Naess, Karpa, Xu, Cheng, Ye (b22) 2019; 88
Battjesa, Groenendijk (b8) 2000; 40
Larsen, Kalogeri, Galanis, Kallos (b4) 2015; 80
Karpa, Naess (b28) 2015; 137
Laface, Malara, Romolo, Arena (b15) 2016; 116
Rugbjerg, Sørensen, Jacobsen (b2) 2006
Gaidai, Storhaug, Naess (b29) 2016
Gudendorf, Segers (b34) 2010
Janssen (b18) 2000; 63
Cook, Harris (b11) 2004; 26
Naess, Gaidai, Batsevych (b13) 2010; 136
Hui, Gaidai, Naess, Storhaug, Xu (b21) 2019; 64
Xu, Gaidai, Naess, Sahoo (b24) 2020
Franck, Luc (b7) 2011; 58
Naess, Karpa (b27) 2015; 139
Xu, Gaidai, Naess, Sahoo (b23) 2019; 88
Kallos (b25) 1997
Coles (b31) 2001
Mesinger (b26) 1984; 44
Ferreira, Guedes (b9) 2000; 40
Mai, Wilhelmi, Barjenbruch (b10) 2010; 1
Aarnes, Breivik, Reistad (b5) 2012; 25
Teena, Sanil Kumar, Sudheesh, Sajeev (b6) 2012; 64
Y. Yu, J. Rij, R. Coe, M. Lawson, Preliminary wave energy converters extreme load analysis, in: Proceedings OMAE, Vol. 9, 2015.
Palutikof, Brabson, Lister, Adcock (b16) 1999; 6
Gumbel, Mustafi (b30) 1967; 62
Gaidai, Naess, Xu, Cheng (b20) 2019; 188
Mouslim, Babarit, Jordana (b17) 2008
M. Rugbjerg, O.R. Sørensen, V. Jacobsen, Wave forecasting for offshore wind farms, in: 9th International Workshop on Wave Hindcasting and Forecasting, 2006, pp. 24–29.
Nelsen (b33) 2006
Tawn (b32) 1988; 75
Naess, Stansberg, Gaidai, Baarholm (b14) 2009; 131
Kallos (10.1016/j.probengmech.2022.103207_b25) 1997
Gaidai (10.1016/j.probengmech.2022.103207_b29) 2016
Nelsen (10.1016/j.probengmech.2022.103207_b33) 2006
Naess (10.1016/j.probengmech.2022.103207_b12) 2009; 31
Mesinger (10.1016/j.probengmech.2022.103207_b26) 1984; 44
Battjesa (10.1016/j.probengmech.2022.103207_b8) 2000; 40
Hui (10.1016/j.probengmech.2022.103207_b21) 2019; 64
Gumbel (10.1016/j.probengmech.2022.103207_b30) 1967; 62
Tawn (10.1016/j.probengmech.2022.103207_b32) 1988; 75
Karpa (10.1016/j.probengmech.2022.103207_b28) 2015; 137
Cook (10.1016/j.probengmech.2022.103207_b11) 2004; 26
10.1016/j.probengmech.2022.103207_b3
10.1016/j.probengmech.2022.103207_b1
Mouslim (10.1016/j.probengmech.2022.103207_b17) 2008
Janssen (10.1016/j.probengmech.2022.103207_b18) 2000; 63
Gudendorf (10.1016/j.probengmech.2022.103207_b34) 2010
Aarnes (10.1016/j.probengmech.2022.103207_b5) 2012; 25
Rugbjerg (10.1016/j.probengmech.2022.103207_b2) 2006
Palutikof (10.1016/j.probengmech.2022.103207_b16) 1999; 6
Naess (10.1016/j.probengmech.2022.103207_b27) 2015; 139
Coles (10.1016/j.probengmech.2022.103207_b31) 2001
Xu (10.1016/j.probengmech.2022.103207_b24) 2020
Ferreira (10.1016/j.probengmech.2022.103207_b9) 2000; 40
Larsen (10.1016/j.probengmech.2022.103207_b4) 2015; 80
Naess (10.1016/j.probengmech.2022.103207_b13) 2010; 136
Gaidai (10.1016/j.probengmech.2022.103207_b22) 2019; 88
Bidlot (10.1016/j.probengmech.2022.103207_b19) 2003
Teena (10.1016/j.probengmech.2022.103207_b6) 2012; 64
Xu (10.1016/j.probengmech.2022.103207_b23) 2019; 88
Mai (10.1016/j.probengmech.2022.103207_b10) 2010; 1
Laface (10.1016/j.probengmech.2022.103207_b15) 2016; 116
Franck (10.1016/j.probengmech.2022.103207_b7) 2011; 58
Gaidai (10.1016/j.probengmech.2022.103207_b20) 2019; 188
Naess (10.1016/j.probengmech.2022.103207_b14) 2009; 131
References_xml – volume: 58
  start-page: 385
  year: 2011
  end-page: 394
  ident: b7
  article-title: A multi-distribution approach to POT methods for determining extreme wave heights
  publication-title: Coast. Eng.
– volume: 25
  start-page: 1529
  year: 2012
  end-page: 1543
  ident: b5
  article-title: Wave extremes in the northeast atlantic
  publication-title: J. Clim.
– volume: 6
  start-page: 119
  year: 1999
  end-page: 132
  ident: b16
  article-title: A review of methods to calculate extreme wind speeds
  publication-title: Meteorol. Appl.
– year: 2003
  ident: b19
  article-title: Unresolved Bathymetry, Neutral Winds and New Stress Tables in WAM
– reference: Y. Yu, J. Rij, R. Coe, M. Lawson, Preliminary wave energy converters extreme load analysis, in: Proceedings OMAE, Vol. 9, 2015.
– volume: 64
  start-page: 138
  year: 2019
  end-page: 145
  ident: b21
  article-title: Improving container ship panel stress prediction, based on another highly correlated panel stress measurement
  publication-title: Mar. Struct.
– volume: 26
  start-page: 391
  year: 2004
  end-page: 420
  ident: b11
  article-title: Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents
  publication-title: Struct. Saf.
– volume: 188
  start-page: 102
  year: 2019
  end-page: 109
  ident: b20
  article-title: Improving extreme wind speed prediction based on a short data sample, using a highly correlated long data sample
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 62
  start-page: 569
  year: 1967
  end-page: 588
  ident: b30
  article-title: Some analytical properties of bivariate extremal distributions
  publication-title: J. Amer. Statist. Assoc.
– volume: 80
  start-page: 205
  year: 2015
  end-page: 218
  ident: b4
  article-title: A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications
  publication-title: Renew. Energy
– volume: 31
  start-page: 325
  year: 2009
  end-page: 334
  ident: b12
  article-title: Estimation of extreme values from sampled time series
  publication-title: Struct. Saf.
– volume: 131
  year: 2009
  ident: b14
  article-title: Statistics of extreme events in airgap measurements
  publication-title: J. Offshore Mech. Arct. Eng.
– year: 2008
  ident: b17
  article-title: Project development of a wave energy test site in the French Atlantic Coast
  publication-title: Proc. 2nd International Conference on Ocean Energy
– volume: 136
  start-page: 290
  year: 2010
  end-page: 298
  ident: b13
  article-title: Prediction of extreme response statistics of narrow-band random vibrations
  publication-title: J. Eng. Mech.
– year: 2006
  ident: b2
  article-title: Wave forecasting for offshore wind farms
  publication-title: 9th International Workshop on Wave Hindcasting and Forecasting
– year: 1997
  ident: b25
  article-title: The regional weather forecasting system SKIRON
  publication-title: Proceedings of Symposium on Regional Weather Prediction on Parallel Computer Environment
– volume: 116
  start-page: 220
  year: 2016
  end-page: 235
  ident: b15
  article-title: Peak over threshold vis-à-vis equivalent triangular storm: Return value sensitivity to storm threshold
  publication-title: Coast. Eng.
– volume: 1
  start-page: 712
  year: 2010
  end-page: 717
  ident: b10
  article-title: Wave height distributions in shallow waters
  publication-title: Coast. Eng. Proc.
– volume: 137
  year: 2015
  ident: b28
  article-title: Statistics of extreme wind speeds and wave heights by the bivariate ACER2D method
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 63
  start-page: 35
  year: 2000
  end-page: 56
  ident: b18
  article-title: ECMWF Wave modeling and altimeter wave height data
  publication-title: Satell. Oceanogr. Soc.
– volume: 88
  start-page: 89
  year: 2019
  end-page: 98
  ident: b23
  article-title: Improving the prediction of extreme FPSO hawser tension, using another highly correlated hawser tension with a longer time record
  publication-title: Appl. Ocean Res.
– start-page: 368
  year: 2016
  end-page: 386
  ident: b29
  article-title: Extreme large cargo ship panel stresses by bivariate ACER2D method, vol. 127
– volume: 64
  start-page: 223
  year: 2012
  end-page: 236
  ident: b6
  article-title: Statistical analysis on extreme wave height
  publication-title: Nat. Hazards
– volume: 75
  start-page: 397
  year: 1988
  end-page: 415
  ident: b32
  article-title: Bivariate extreme value theory: Models and estimation
  publication-title: Biometrika
– year: 2010
  ident: b34
  article-title: Extreme-Value Copulas, Copula Theory and its Applications
– volume: 88
  start-page: 63
  year: 2019
  end-page: 70
  ident: b22
  article-title: Improving extreme wind speed prediction for north sea offshore oil and gas fields
  publication-title: Appl. Ocean Res.
– year: 2006
  ident: b33
  publication-title: An Introduction to Copulas
– year: 2020
  ident: b24
  article-title: Extreme loads analysis of a site-specific semisubmersible type wind turbine
  publication-title: Ships Offshore Struct.
– volume: 139
  start-page: 82
  year: 2015
  end-page: 88
  ident: b27
  article-title: Statistics of bivariate extreme wind speeds by the ACER2D method
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: M. Rugbjerg, O.R. Sørensen, V. Jacobsen, Wave forecasting for offshore wind farms, in: 9th International Workshop on Wave Hindcasting and Forecasting, 2006, pp. 24–29.
– year: 2001
  ident: b31
  publication-title: An Introduction to Statistical Modeling of Extreme Values
– volume: 44
  start-page: 195
  year: 1984
  end-page: 202
  ident: b26
  article-title: A blocking technique for representation of mountains in atmospheric models
  publication-title: Riv. Meteorol. Aeronaut.
– volume: 40
  start-page: 361
  year: 2000
  end-page: 374
  ident: b9
  article-title: Modelling distributions of significant wave height
  publication-title: Coast. Eng.
– volume: 40
  start-page: 161
  year: 2000
  end-page: 182
  ident: b8
  article-title: Wave height distributions on shallow foreshores
  publication-title: Coast. Eng.
– volume: 75
  start-page: 397
  issue: 3
  year: 1988
  ident: 10.1016/j.probengmech.2022.103207_b32
  article-title: Bivariate extreme value theory: Models and estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/75.3.397
– volume: 139
  start-page: 82
  year: 2015
  ident: 10.1016/j.probengmech.2022.103207_b27
  article-title: Statistics of bivariate extreme wind speeds by the ACER2D method
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.01.011
– volume: 131
  year: 2009
  ident: 10.1016/j.probengmech.2022.103207_b14
  article-title: Statistics of extreme events in airgap measurements
  publication-title: J. Offshore Mech. Arct. Eng.
  doi: 10.1115/1.3160652
– year: 1997
  ident: 10.1016/j.probengmech.2022.103207_b25
  article-title: The regional weather forecasting system SKIRON
– volume: 63
  start-page: 35
  year: 2000
  ident: 10.1016/j.probengmech.2022.103207_b18
  article-title: ECMWF Wave modeling and altimeter wave height data
  publication-title: Satell. Oceanogr. Soc.
  doi: 10.1016/S0422-9894(00)80004-5
– volume: 6
  start-page: 119
  year: 1999
  ident: 10.1016/j.probengmech.2022.103207_b16
  article-title: A review of methods to calculate extreme wind speeds
  publication-title: Meteorol. Appl.
  doi: 10.1017/S1350482799001103
– year: 2006
  ident: 10.1016/j.probengmech.2022.103207_b2
  article-title: Wave forecasting for offshore wind farms
– volume: 116
  start-page: 220
  issue: 3–4
  year: 2016
  ident: 10.1016/j.probengmech.2022.103207_b15
  article-title: Peak over threshold vis-à-vis equivalent triangular storm: Return value sensitivity to storm threshold
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2016.06.009
– ident: 10.1016/j.probengmech.2022.103207_b3
  doi: 10.1115/OMAE2015-41532
– ident: 10.1016/j.probengmech.2022.103207_b1
– volume: 88
  start-page: 89
  year: 2019
  ident: 10.1016/j.probengmech.2022.103207_b23
  article-title: Improving the prediction of extreme FPSO hawser tension, using another highly correlated hawser tension with a longer time record
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.04.015
– volume: 64
  start-page: 223
  issue: 1
  year: 2012
  ident: 10.1016/j.probengmech.2022.103207_b6
  article-title: Statistical analysis on extreme wave height
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-012-0229-y
– volume: 26
  start-page: 391
  year: 2004
  ident: 10.1016/j.probengmech.2022.103207_b11
  article-title: Exact and general FT1 penultimate distributions of extreme wind speeds drawn from tail-equivalent Weibull parents
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2004.01.002
– volume: 62
  start-page: 569
  issue: 318
  year: 1967
  ident: 10.1016/j.probengmech.2022.103207_b30
  article-title: Some analytical properties of bivariate extremal distributions
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1967.10482930
– year: 2003
  ident: 10.1016/j.probengmech.2022.103207_b19
– volume: 40
  start-page: 361
  year: 2000
  ident: 10.1016/j.probengmech.2022.103207_b9
  article-title: Modelling distributions of significant wave height
  publication-title: Coast. Eng.
  doi: 10.1016/S0378-3839(00)00018-1
– year: 2010
  ident: 10.1016/j.probengmech.2022.103207_b34
– volume: 64
  start-page: 138
  year: 2019
  ident: 10.1016/j.probengmech.2022.103207_b21
  article-title: Improving container ship panel stress prediction, based on another highly correlated panel stress measurement
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2018.11.007
– volume: 44
  start-page: 195
  year: 1984
  ident: 10.1016/j.probengmech.2022.103207_b26
  article-title: A blocking technique for representation of mountains in atmospheric models
  publication-title: Riv. Meteorol. Aeronaut.
– year: 2008
  ident: 10.1016/j.probengmech.2022.103207_b17
  article-title: Project development of a wave energy test site in the French Atlantic Coast
– volume: 137
  issue: 2
  year: 2015
  ident: 10.1016/j.probengmech.2022.103207_b28
  article-title: Statistics of extreme wind speeds and wave heights by the bivariate ACER2D method
  publication-title: J. Offshore Mech. Arctic Eng.
– start-page: 368
  year: 2016
  ident: 10.1016/j.probengmech.2022.103207_b29
– volume: 31
  start-page: 325
  issue: 4
  year: 2009
  ident: 10.1016/j.probengmech.2022.103207_b12
  article-title: Estimation of extreme values from sampled time series
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.021
– volume: 136
  start-page: 290
  issue: 3
  year: 2010
  ident: 10.1016/j.probengmech.2022.103207_b13
  article-title: Prediction of extreme response statistics of narrow-band random vibrations
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2010)136:3(290)
– volume: 80
  start-page: 205
  year: 2015
  ident: 10.1016/j.probengmech.2022.103207_b4
  article-title: A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.01.069
– volume: 58
  start-page: 385
  year: 2011
  ident: 10.1016/j.probengmech.2022.103207_b7
  article-title: A multi-distribution approach to POT methods for determining extreme wave heights
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2010.12.003
– volume: 25
  start-page: 1529
  year: 2012
  ident: 10.1016/j.probengmech.2022.103207_b5
  article-title: Wave extremes in the northeast atlantic
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00132.1
– year: 2020
  ident: 10.1016/j.probengmech.2022.103207_b24
  article-title: Extreme loads analysis of a site-specific semisubmersible type wind turbine
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2020.1733315
– year: 2006
  ident: 10.1016/j.probengmech.2022.103207_b33
– volume: 88
  start-page: 63
  year: 2019
  ident: 10.1016/j.probengmech.2022.103207_b22
  article-title: Improving extreme wind speed prediction for north sea offshore oil and gas fields
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.04.024
– volume: 188
  start-page: 102
  year: 2019
  ident: 10.1016/j.probengmech.2022.103207_b20
  article-title: Improving extreme wind speed prediction based on a short data sample, using a highly correlated long data sample
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2019.02.021
– year: 2001
  ident: 10.1016/j.probengmech.2022.103207_b31
– volume: 40
  start-page: 161
  issue: 3
  year: 2000
  ident: 10.1016/j.probengmech.2022.103207_b8
  article-title: Wave height distributions on shallow foreshores
  publication-title: Coast. Eng.
  doi: 10.1016/S0378-3839(00)00007-7
– volume: 1
  start-page: 712
  year: 2010
  ident: 10.1016/j.probengmech.2022.103207_b10
  article-title: Wave height distributions in shallow waters
  publication-title: Coast. Eng. Proc.
SSID ssj0017149
Score 2.5312264
Snippet Offshore engineering often requires estimation of extreme wind speeds and wave heights at offshore in-situ locations. This paper presents practical approach to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103207
SubjectTerms Bivariate analysis
Correlation analysis
Datasets
Estimating techniques
Extreme value statistics
Extreme values
Offshore
Offshore engineering
Offshore wind speed
Propagation
Random processes
Remote sensing
Renewable energy environment
SEM-REV
TOPEX
Turbines
Wave height
Wave height statistics
Wave power
Weather stations
Wind power
Wind speed
Wind waves
Title Offshore renewable energy site correlated wind-wave statistics
URI https://dx.doi.org/10.1016/j.probengmech.2022.103207
https://www.proquest.com/docview/2668427196
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIF58i-tjieA1bpumTQsiiLisLir4QG8hTSe6sq7iru7N326mTX3hQbCXktKE9utkMtPMN0PIdiBtFMY6YTa0loksBKZBxixy5n1SpCaVFrnDJ6dJ50oc38Q3E-Sg5sJgWKXX_ZVOL7W1v9LyaLaeer3WhfMekjTjSBUtV05ksAuJUr7z9hHmgfW9s-o_S8Lw7mmy9RnjhUVbYHD7AOW-BOdIQedYWfb3NeqHti6XoPY8mfW2I92vHm-BTMBgkcx5O5L6WTpcIntn1g7vHp-BYr7KMZKjKJQcP4p7xdRgRY6-MzILOnYuORvrV6DILKqSNi-Tq_bh5UGH-ToJzEQiGzEtTZ5HRewaodBgjdAyywNMDWgzaUFzASIXMQ8c8iAEN1GUmDSUEMnQOid1hUwOHgewSqh7-SwNuIm1KUQRGJ0GbqyMgztsEECDpDUyyvgk4ljLoq_qaLF79QVUhaCqCtQG4R9dn6pMGn_ptFvDr76JhXIa_y_dN-pPpvzcHCoUG8GlUz1r_xt9ncxgq4rj2SCTo-cX2HQmyihvljLYJFP7R93OKZ6759fdd7QO6Ps
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkNpeoPQhXgVXao_uJo4TJxJUQjy0lEcPBYmb6zjjdhEExC6suPCn-IP1JA60VQ9IFbkl0VjOZ-ebsT0PgA-Rckmcmoy72Dkuixi5QZXyxJv3WZXbXDmKHd4_yPpH8stxejwBd10sDLlVBu5vOb1h6_CkF9DsXQwGvW9-9ZDlhaBQ0UZzBs_KXbwZ-3XbcG1n0w_yRyG2tw43-jyUFuA2kcWIG2XLMqlSfxNLg85Ko4oyomx6rlAOjZAoS5mKyHcWpRQ2STKbxwoTFbuYdkE9709JTxdUNuHT7b1fCRUUL9qNnYxT957B-wenMqoSg_WPM2wOQoSgmHdBpWz_rRT_Ug-Nztt-CdPBWGXrLR6zMIH1K5gJhisLtDB8DZ-_Ojf8eX6JjBJkjikai2ETVMjocJpZKgFy6q3aio0HdcXH5hoZhTK1WaLfwNGToPcWJuvzGueA-Y8v8kjY1NhKVpE1eeTbKgT6y0URzkPeIaNtyFpOxTNOdeeedqJ_A1UTqLoFdR7EvehFm7rjMUKrHfz6j3movYp5jPhSN2Q6kMFQ0zyVQnmuW_i_1lfgef9wf0_v7RzsLsILetM6ES3B5OjyCt95-2hULjfzkcH3p_4BfgHBoSJ7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+renewable+energy+site+correlated+wind-wave+statistics&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Gaidai%2C+Oleg&rft.au=Wang%2C+Fang&rft.au=Wu%2C+Yu&rft.au=Xing%2C+Yihan&rft.date=2022-04-01&rft.issn=0266-8920&rft.volume=68&rft.spage=103207&rft_id=info:doi/10.1016%2Fj.probengmech.2022.103207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_probengmech_2022_103207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon