Sustainable enhancement in yield and quality of rain-fed maize through Gracilaria edulis and Kappaphycus alvarezii seaweed sap

The present study aimed to assess not only the efficacy of sap from two seaweeds Kappaphycus alvarezii (K-sap) and Gracilaria edulis (G-sap) on productivity and quality of Zea mays under rain-fed condition, but also to quantify whether sap application is beneficial in terms of lowering the carbon an...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied phycology Vol. 28; no. 3; pp. 2099 - 2112
Main Authors Singh, S, Singh, M. K., Pal, S. K., Trivedi, K., Yesuraj, D., Singh, C. S., Anand, K. G. Vijay, Chandramohan, M., Patidar, R., Kubavat, D., Zodape, S. T., Ghosh, Arup
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study aimed to assess not only the efficacy of sap from two seaweeds Kappaphycus alvarezii (K-sap) and Gracilaria edulis (G-sap) on productivity and quality of Zea mays under rain-fed condition, but also to quantify whether sap application is beneficial in terms of lowering the carbon and phosphate footprint of mineral fertilizers per unit of produce. Field experiment was carried out to test 18 treatments, viz., 5 concentrations (2.5, 5.0, 7.5, 10 and 15 %) each of K-sap and G-sap applied along with recommended rate of fertilizers (RRF); 3 concentrations (7.5, 10 and 15 %) of each of the two types of sap applied along with 50 % RRF; alongside 2 control treatments T1 (water spray along with 100 % RRF) and T18 (water spray along with 50 % RRF). The optimal treatments that enhanced the grain productivity of maize were 5 % G-sap or 7.5 % K-sap applied in conjunction with 100 % RRF and the grain yield enhancements ranged from 21.4 to 29.8 % as compared to T1. Significant increase in P (35.5 %) and K (14.4 %) content in grains was observed through G-sap application, suggesting bio-stimulation in absorption of these elements. Notably, stover yield production at reduced RRF in certain combinations with sap was at par with T1 suggesting a possible saving on fertilizer requirement for fodder production under rain-fed conditions. Compared to T1, there was marked reduction of 17.5 and 23.1 % in global warming potential per unit of produce when 7.5 % K-sap and 5 % G-sap were used respectively in conjunction with 100 % RRF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0921-8971
1573-5176
DOI:10.1007/s10811-015-0680-8