DeepVID: Deep Visual Interpretation and Diagnosis for Image Classifiers via Knowledge Distillation

Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 25; no. 6; pp. 2168 - 2180
Main Authors Wang, Junpeng, Gou, Liang, Zhang, Wei, Yang, Hao, Shen, Han-Wei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the understanding of how a model works, the interpretation of DNNs becomes more important, especially in safety-critical applications (e.g., medical diagnosis, autonomous driving). In this paper, we propose DeepVID, a Deep learning approach to Visually Interpret and Diagnose DNN models, especially image classifiers. In detail, we train a small locally-faithful model to mimic the behavior of an original cumbersome DNN around a particular data instance of interest, and the local model is sufficiently simple such that it can be visually interpreted (e.g., a linear model). Knowledge distillation is used to transfer the knowledge from the cumbersome DNN to the small model, and a deep generative model (i.e., variational auto-encoder) is used to generate neighbors around the instance of interest. Those neighbors, which come with small feature variances and semantic meanings, can effectively probe the DNN's behaviors around the interested instance and help the small model to learn those behaviors. Through comprehensive evaluations, as well as case studies conducted together with deep learning experts, we validate the effectiveness of DeepVID.
AbstractList Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the understanding of how a model works, the interpretation of DNNs becomes more important, especially in safety-critical applications (e.g., medical diagnosis, autonomous driving). In this paper, we propose DeepVID, a Deep learning approach to Visually Interpret and Diagnose DNN models, especially image classifiers. In detail, we train a small locally-faithful model to mimic the behavior of an original cumbersome DNN around a particular data instance of interest, and the local model is sufficiently simple such that it can be visually interpreted (e.g., a linear model). Knowledge distillation is used to transfer the knowledge from the cumbersome DNN to the small model, and a deep generative model (i.e., variational auto-encoder) is used to generate neighbors around the instance of interest. Those neighbors, which come with small feature variances and semantic meanings, can effectively probe the DNN's behaviors around the interested instance and help the small model to learn those behaviors. Through comprehensive evaluations, as well as case studies conducted together with deep learning experts, we validate the effectiveness of DeepVID.Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the understanding of how a model works, the interpretation of DNNs becomes more important, especially in safety-critical applications (e.g., medical diagnosis, autonomous driving). In this paper, we propose DeepVID, a Deep learning approach to Visually Interpret and Diagnose DNN models, especially image classifiers. In detail, we train a small locally-faithful model to mimic the behavior of an original cumbersome DNN around a particular data instance of interest, and the local model is sufficiently simple such that it can be visually interpreted (e.g., a linear model). Knowledge distillation is used to transfer the knowledge from the cumbersome DNN to the small model, and a deep generative model (i.e., variational auto-encoder) is used to generate neighbors around the instance of interest. Those neighbors, which come with small feature variances and semantic meanings, can effectively probe the DNN's behaviors around the interested instance and help the small model to learn those behaviors. Through comprehensive evaluations, as well as case studies conducted together with deep learning experts, we validate the effectiveness of DeepVID.
Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the understanding of how a model works, the interpretation of DNNs becomes more important, especially in safety-critical applications (e.g., medical diagnosis, autonomous driving). In this paper, we propose DeepVID, a Deep learning approach to Visually Interpret and Diagnose DNN models, especially image classifiers. In detail, we train a small locally-faithful model to mimic the behavior of an original cumbersome DNN around a particular data instance of interest, and the local model is sufficiently simple such that it can be visually interpreted (e.g., a linear model). Knowledge distillation is used to transfer the knowledge from the cumbersome DNN to the small model, and a deep generative model (i.e., variational auto-encoder) is used to generate neighbors around the instance of interest. Those neighbors, which come with small feature variances and semantic meanings, can effectively probe the DNN's behaviors around the interested instance and help the small model to learn those behaviors. Through comprehensive evaluations, as well as case studies conducted together with deep learning experts, we validate the effectiveness of DeepVID.
Author Yang, Hao
Shen, Han-Wei
Wang, Junpeng
Gou, Liang
Zhang, Wei
Author_xml – sequence: 1
  givenname: Junpeng
  orcidid: 0000-0002-1130-9914
  surname: Wang
  fullname: Wang, Junpeng
  email: wang.7665@osu.edu
  organization: Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA
– sequence: 2
  givenname: Liang
  surname: Gou
  fullname: Gou, Liang
  email: ligou@visa.com
  organization: Visa Research, Palo Alto, CA, USA
– sequence: 3
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhan@visa.com
  organization: Visa Research, Palo Alto, CA, USA
– sequence: 4
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
  email: haoyang@visa.com
  organization: Visa Research, Palo Alto, CA, USA
– sequence: 5
  givenname: Han-Wei
  surname: Shen
  fullname: Shen, Han-Wei
  email: shen.94@osu.edu
  organization: Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30892211$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gByAkZIkLlyz-js2t2oWyohKXsldrkkwqV1lnsRMQ_x6H3XLogZNH8vOMRu97Sc7iGJGQ15ytOGfuw91ufbMSjLuVcEw6JZ-RC-4Ur5hm5qzMrK4rYYQ5J5c5PzDGlbLuBTmXzDohOL8gzQbxsNtuPtJloLuQZxjoNk6YDgknmMIYKcSObgLcxzGHTPsx0e0e7pGuB8g59AFTpj8D0K9x_DVgV342IU9hGP7qL8nzHoaMr07vFfn--dPd-kt1--1mu76-rVqp3FSBsTVIkK2xWmvWS1BoW921jhmlAbjuVGtq2-iGgzUWmJRGNcIZpk2ntLwi7497D2n8MWOe_D7kFssVEcc5e1Gi0dYwsaDvnqAP45xiuc4LUQIVUnJWqLcnam722PlDCntIv_1jegWoj0CbxpwT9r4Nx8imBGHwnPmlJ7_05Jee_KmnYvIn5uPy_zlvjk5AxH-8NaY2hss_SO-bmQ
CODEN ITVGEA
CitedBy_id crossref_primary_10_1016_j_compmedimag_2024_102350
crossref_primary_10_1371_journal_pone_0271225
crossref_primary_10_1016_j_engappai_2024_108547
crossref_primary_10_3390_rs15020370
crossref_primary_10_1016_j_compag_2021_106183
crossref_primary_10_1016_j_knosys_2022_108651
crossref_primary_10_1109_TVCG_2022_3209382
crossref_primary_10_1016_j_neucom_2022_07_006
crossref_primary_10_1371_journal_pone_0285668
crossref_primary_10_1109_TVCG_2023_3301722
crossref_primary_10_1109_TVCG_2021_3076749
crossref_primary_10_1109_TVCG_2024_3357065
crossref_primary_10_1016_j_visinf_2020_04_005
crossref_primary_10_1177_14738716221130338
crossref_primary_10_1016_j_media_2022_102725
crossref_primary_10_1109_MCAS_2021_3071629
crossref_primary_10_3390_s23104829
crossref_primary_10_1109_ACCESS_2024_3480791
crossref_primary_10_1007_s00530_022_00960_4
crossref_primary_10_1016_j_ins_2019_10_074
crossref_primary_10_1016_j_visinf_2024_10_004
crossref_primary_10_1109_TVCG_2021_3114855
crossref_primary_10_1109_TPAMI_2021_3125931
crossref_primary_10_1007_s10515_022_00337_x
crossref_primary_10_1109_TII_2021_3091521
crossref_primary_10_1016_j_neucom_2025_129745
crossref_primary_10_1016_j_compbiomed_2022_106466
crossref_primary_10_1016_j_cag_2021_09_002
crossref_primary_10_1109_TVCG_2022_3148107
crossref_primary_10_1089_big_2021_0333
crossref_primary_10_1109_TVCG_2019_2934591
crossref_primary_10_1016_j_compeleceng_2024_109180
crossref_primary_10_1145_3426866
crossref_primary_10_1109_TVCG_2022_3172107
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1016_j_measurement_2023_113438
crossref_primary_10_1109_TVCG_2020_3030461
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1007_s11704_024_3735_7
crossref_primary_10_1016_j_dt_2021_04_014
crossref_primary_10_1109_ACCESS_2021_3089766
crossref_primary_10_1007_s00521_023_08929_8
crossref_primary_10_1111_cgf_15127
crossref_primary_10_1109_TCYB_2021_3125320
crossref_primary_10_1109_TNNLS_2022_3160939
crossref_primary_10_1109_TVCG_2020_2969185
crossref_primary_10_3390_ai5020023
crossref_primary_10_1016_j_artmed_2020_101952
crossref_primary_10_1007_s12650_019_00607_z
crossref_primary_10_1109_ACCESS_2019_2962775
crossref_primary_10_3389_fcomp_2024_1279810
crossref_primary_10_1016_j_infrared_2024_105202
crossref_primary_10_3390_app112411790
crossref_primary_10_1109_TVCG_2023_3326591
crossref_primary_10_1190_geo2023_0382_1
crossref_primary_10_1007_s00530_022_01019_0
crossref_primary_10_1016_j_knosys_2022_108345
crossref_primary_10_1109_TVCG_2020_3030350
crossref_primary_10_1111_cgf_14329
crossref_primary_10_3103_S0147688221050129
crossref_primary_10_1007_s10489_021_02686_8
crossref_primary_10_1109_TVCG_2020_3028888
crossref_primary_10_1109_COMST_2022_3199544
Cites_doi 10.1109/TVCG.2018.2864504
10.1109/TVCG.2018.2864499
10.1109/5.726791
10.1109/TVCG.2016.2598831
10.1145/2939672.2939778
10.1007/978-3-319-27857-5_77
10.1109/ICCV.2015.425
10.1109/CVPR.2016.90
10.1109/TVCG.2018.2864500
10.1109/CVPR.2016.319
10.1371/journal.pone.0130140
10.1109/TVCG.2017.2744878
10.1109/ICCV.2017.371
10.1109/CVPR.2018.00175
10.1007/BF00994018
10.1109/21.97458
10.1109/TVCG.2017.2744718
10.1109/WACV.2017.131
10.1016/j.patcog.2016.11.008
10.1145/2858036.2858111
10.1109/TVCG.2018.2816223
10.1109/ICCV.2017.74
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2019.2903943
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2180
ExternalDocumentID 30892211
10_1109_TVCG_2019_2903943
8667661
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: SBE-1738502
– fundername: UT-Battelle LLC
  grantid: 4000159557
– fundername: Los Alamos National Laboratory
  grantid: 471415
  funderid: 10.13039/100008902
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AGSQL
AI.
AIBXA
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a687a3a3c685550f3a4e8c5dc90645aa15d4c678b5b1a868a03364b296056d453
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 10:06:44 EDT 2025
Sun Jun 29 12:54:43 EDT 2025
Thu Apr 03 06:54:48 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 03:58:54 EDT 2025
Wed Aug 27 02:46:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a687a3a3c685550f3a4e8c5dc90645aa15d4c678b5b1a868a03364b296056d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1130-9914
PMID 30892211
PQID 2220123310
PQPubID 75741
PageCount 13
ParticipantIDs ieee_primary_8667661
pubmed_primary_30892211
proquest_miscellaneous_2194586025
proquest_journals_2220123310
crossref_citationtrail_10_1109_TVCG_2019_2903943
crossref_primary_10_1109_TVCG_2019_2903943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
szegedy (ref37) 2013; abs 1312 6199
ref12
ref14
maaten (ref26) 2008; 9
ref11
ref32
ref10
ref2
ref1
ref17
chattopadhyay (ref18) 2017
ref19
(ref33) 0
(ref31) 2018
springenberg (ref9) 2014
ref24
ref23
hinton (ref15) 2015
ref25
krizhevsky (ref5) 2012
ref22
karras (ref34) 2017; abs 1710 10196
ref21
kahng (ref20) 2018; 25
(ref30) 2018
(ref28) 2017
ref27
simonyan (ref3) 2014
ref29
ref8
krizhevsky (ref36) 2009
ref4
ref6
montavon (ref7) 2017
kingma (ref16) 2013
References_xml – ident: ref25
  doi: 10.1109/TVCG.2018.2864504
– ident: ref14
  doi: 10.1109/TVCG.2018.2864499
– ident: ref27
  doi: 10.1109/5.726791
– ident: ref19
  doi: 10.1109/TVCG.2016.2598831
– ident: ref8
  doi: 10.1145/2939672.2939778
– ident: ref22
  doi: 10.1007/978-3-319-27857-5_77
– year: 0
  ident: ref33
– year: 2013
  ident: ref16
  article-title: Auto-encoding variational bayes
  publication-title: arXiv 1312 6114
– ident: ref29
  doi: 10.1109/ICCV.2015.425
– ident: ref4
  doi: 10.1109/CVPR.2016.90
– volume: 25
  start-page: 310
  year: 2018
  ident: ref20
  article-title: Gan lab: Understanding complex deep generative models using interactive visual experimentation
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2018.2864500
– year: 2018
  ident: ref31
– ident: ref12
  doi: 10.1109/CVPR.2016.319
– ident: ref10
  doi: 10.1371/journal.pone.0130140
– year: 2017
  ident: ref18
  article-title: Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks
  publication-title: arXiv 1710 11063
– ident: ref21
  doi: 10.1109/TVCG.2017.2744878
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref26
  article-title: Visualizing data using t-sne
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1109/ICCV.2017.371
– year: 2014
  ident: ref3
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref6
  doi: 10.1109/CVPR.2018.00175
– year: 2009
  ident: ref36
  article-title: Learning multiple layers of features from tiny images
  publication-title: Tech Rep
– ident: ref1
  doi: 10.1007/BF00994018
– start-page: 1097
  year: 2012
  ident: ref5
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Neural Inf Process Syst
– ident: ref2
  doi: 10.1109/21.97458
– year: 2017
  ident: ref7
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit Signal Process
– ident: ref23
  doi: 10.1109/TVCG.2017.2744718
– year: 2015
  ident: ref15
  article-title: Distilling the knowledge in a neural network
  publication-title: ArXiv 1503 02531
– volume: abs 1312 6199
  year: 2013
  ident: ref37
  article-title: Intriguing properties of neural networks
  publication-title: CoRR
– ident: ref32
  doi: 10.1109/WACV.2017.131
– volume: abs 1710 10196
  year: 2017
  ident: ref34
  article-title: Progressive growing of gans for improved quality, stability, and variation
  publication-title: CoRR
– year: 2014
  ident: ref9
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv 1412 6806
– ident: ref11
  doi: 10.1016/j.patcog.2016.11.008
– year: 2017
  ident: ref28
– ident: ref35
  doi: 10.1145/2858036.2858111
– ident: ref24
  doi: 10.1109/TVCG.2018.2816223
– year: 2018
  ident: ref30
– ident: ref17
  doi: 10.1109/ICCV.2017.74
SSID ssj0014489
Score 2.5638852
Snippet Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2168
SubjectTerms Analytical models
Artificial neural networks
Classifiers
Data models
Deep learning
Deep neural networks
Diagnosis
Distillation
generative model
knowledge distillation
Knowledge management
Machine learning
Medical imaging
model interpretation
Neural networks
Safety critical
Semantics
Training
Visual analytics
Title DeepVID: Deep Visual Interpretation and Diagnosis for Image Classifiers via Knowledge Distillation
URI https://ieeexplore.ieee.org/document/8667661
https://www.ncbi.nlm.nih.gov/pubmed/30892211
https://www.proquest.com/docview/2220123310
https://www.proquest.com/docview/2194586025
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3KgpTy6La1ciRMiS-JHEvdWsaVQBCdYcYtsx5FWbLOou-mBX89MnI0KAtSbpYwTR2OPv_F8ngHYL0shK5vyKDGWR9IkPNLOpREXwghnYyvaW64Xl-nptfx1o25W4LC_C-O9b8lnfkjNNpZfzlxDR2VHOREyyddZRcct3NXqIwboZujAL8wijii9i2AmsT66Gh__JBKXHnIdCy3Foz2oLaryMr5s95mTt3CxHGGgl9wOm4UduvsnyRv_9xfewUYHONn3MEM2YcXX72H9nzSEW2BH3t-Nz0bfGDXYeDJvsMdjOiIzdclGgZc3mTOEuuzsN9oi1lbVnFRUUZv9nRh2vjykQ2k0H9PAtduG65MfV8enUVd7IXJC6kVk0jwzpK40V-jEVMJInztVOk0J7oxJVCkdbnRW2cTkaW5iIVJpOTpEKi2lEjuwVs9q_wFYVmVoOpwu48RIzg1iPpNZp9FyOFtZNYB4qY3CdYnJqT7GtGgdlFgXpMCCFFh0ChzAQd_lLmTleE14i_TQC3YqGMDeUuVFt27nBaIlApmIeQfwtX-MK47CKKb2swZlEi0Vle7Cke-GqdK_W8S55uhTf3z-m5_gDY0sUM32YG3xp_GfEdQs7Jd2Nj8A9-jw8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V7QE4tEChLBQwElyQso3_khiJA-pSdtm2p-2qt2A7jrSizVbsBgTPwqv03TqOsxFFwK0SN0sZx4lnPP5sf54BeFkUXJQmYRHVhkVCUxYpa5OIca65NbHhzS3Xo-NkeCI-nsrTNfjZ3YVxzjXkM9f3xeYsv5jb2m-V7WWekJnQlkI5dt-_4QJt8XY0QG2-Yuzg_WR_GLU5BCLLhVpGOslS7ZtNMolgvORauMzKwiofqE1rKgth0WEbaajOkkzHnCfCMAT2MimEzwmBDn4DcYZk4XZYd0aBCxsVGI1pxHBd0J6Z0ljtTab7HzxtTPWZirkS_Nqs16Rx-TuibWa2gy24XPVJILR87tdL07c_fgsX-b922l3YbCE1eRfGwD1Yc9V9uPNLoMVtMAPnLqajwRviC2Q6W9RY4zrhkuiqIIPAPJwtCIJ5MjpHb0uavKGz0ucMJ19nmoxX25AojQ7yLLAJH8DJjfzkQ1iv5pV7BCQtU3SOVhUx1YIxjahWp8Yq9I3WlEb2IF5pP7dt6HWfAeQsb5Zgscq9weTeYPLWYHrwuqtyEeKO_Et42-u9E2xV3oPdlYnlrWda5IgHPYxGVN-DF91j9Cn-oEhXbl6jDFVC-uRk-OU7wTS7d_M4U4xR-vjPbT6HW8PJ0WF-ODoeP4Hb_isDsW4X1pdfavcUIdzSPGtGEoFPN22FV35IS_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepVID%3A+Deep+Visual+Interpretation+and+Diagnosis+for+Image+Classifiers+via+Knowledge+Distillation&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Wang%2C+Junpeng&rft.au=Gou%2C+Liang&rft.au=Zhang%2C+Wei&rft.au=Yang%2C+Hao&rft.date=2019-06-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=25&rft.issue=6&rft.spage=2168&rft_id=info:doi/10.1109%2FTVCG.2019.2903943&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon