Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning

Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 4; pp. 1549 - 1559
Main Authors Zheng, Jingyi, Liang, Mingli, Sinha, Sujata, Ge, Linqiang, Yu, Wei, Ekstrom, Arne, Hsieh, Fushing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.
AbstractList Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.
Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.
Author Ge, Linqiang
Zheng, Jingyi
Yu, Wei
Hsieh, Fushing
Sinha, Sujata
Ekstrom, Arne
Liang, Mingli
Author_xml – sequence: 1
  givenname: Jingyi
  orcidid: 0000-0002-0393-0997
  surname: Zheng
  fullname: Zheng, Jingyi
  email: jingyi.zheng@auburn.edu
  organization: Department of Mathematics, and Statistics, Auburn University, Auburn, AL, USA
– sequence: 2
  givenname: Mingli
  orcidid: 0000-0002-0668-8489
  surname: Liang
  fullname: Liang, Mingli
  email: lmliang@email.arizona.edu
  organization: Department of Psychology, The University of Arizona, Tucson, AZ, USA
– sequence: 3
  givenname: Sujata
  surname: Sinha
  fullname: Sinha, Sujata
  email: szs0210@auburn.edu
  organization: Department of Computer Science and System Engineering, Auburn University, Auburn, AL, USA
– sequence: 4
  givenname: Linqiang
  orcidid: 0000-0003-0817-8850
  surname: Ge
  fullname: Ge, Linqiang
  email: ge_linqiang@columbusstate.edu
  organization: TSYS School of Computer Science, Columbus State University, Columbus, GA, USA
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-4522-7340
  surname: Yu
  fullname: Yu, Wei
  email: wyu@towson.edu
  organization: Department of Computer and Information Sciences, Towson University, Towson, MD, USA
– sequence: 6
  givenname: Arne
  orcidid: 0000-0002-6812-2368
  surname: Ekstrom
  fullname: Ekstrom, Arne
  email: adekstrom@email.arizona.edu
  organization: Department of Psychology, The University of Arizona, Tucson, AZ, USA
– sequence: 7
  givenname: Fushing
  surname: Hsieh
  fullname: Hsieh, Fushing
  email: fhsieh@ucdavis.edu
  organization: Department of Statistics, University of California, Davis, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34516381$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1v2zAQhokiRfP5A4oCBYEsXeSSlEiRY5I6cQoDHeKgo3CmjikDiXJJafC_Dw07GTLkFh4Pz3u843tKjsIQkJCvnM04Z-bn7-vF_UwwwWdlvgtVfyIngitdCMH00WvOTXVMLlJ6Zjl0Lhn1hRyXleSq1PyEPKx8j8VtxP8TBrulVwG6bfKJDo4-WOg2dD6_o3_9-I8ufLfGOBaLCcITXUUIyQ2xpxBa-gtxQ5cIMfjwdE4-O-gSXhzOM_J4O1_dLIrln7v7m6tlYcvKjAWoag2utRJYrYG3TmuLIKFtWzC2ZkZYU1ujlWyZsJJL6SojnOLaKae5Kc_Ij33fTRzy-Glsep8sdh0EHKbUCFkLWXJWVxm9fIc-D1PMu2ZKSSaMLsWO-n6gpnWPbbOJvoe4bV6_KwN8D9g4pBTRvSGcNTtXmp0rzc6V5uBK1tTvNNaPMPohjBF896Hy217pEfHtJSNLxfKwL-7lltU
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_math12111727
crossref_primary_10_1016_j_procs_2023_11_099
crossref_primary_10_1007_s00521_024_10207_0
crossref_primary_10_1109_JSEN_2023_3303441
crossref_primary_10_1109_ICJECE_2024_3354291
crossref_primary_10_3390_app12105079
crossref_primary_10_1016_j_bspc_2024_106824
crossref_primary_10_1038_s41598_023_49355_z
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1016_j_knosys_2025_113074
crossref_primary_10_3390_app14198911
crossref_primary_10_3934_mbe_2023912
crossref_primary_10_1109_TIE_2023_3323692
Cites_doi 10.1016/j.neuroimage.2010.08.064
10.1016/j.bspc.2017.07.022
10.1111/psyp.13090
10.1088/1757-899X/532/1/012013
10.1109/TCBB.2019.2895077
10.1007/s004220050457
10.1016/j.neuroimage.2017.11.042
10.1002/hipo.22124
10.1098/rstb.2013.0304
10.1109/ACCESS.2018.2889093
10.1016/j.compbiomed.2013.04.002
10.1002/hbm.23730
10.1177/1550147720911009
10.1016/j.bbe.2016.12.005
10.1093/sleep/zsz225
10.5755/j01.eie.24.4.21469
10.1162/jocn_a_01765
10.1016/j.bspc.2017.01.001
10.1016/s0165-0173(98)00056-3
10.1016/j.bbe.2015.10.006
10.1002/hipo.20979
10.1523/eneuro.0275-16.2016
10.1016/j.neuroimage.2013.06.049
10.1016/j.neuron.2013.10.017
10.1016/j.neuroimage.2019.05.026
10.1007/978-3-319-94268-1_56
10.1016/j.jneumeth.2003.10.009
10.1109/TAMD.2015.2431497
10.1016/j.tins.2017.02.004
10.1098/rspa.1998.0193
10.1088/1741-2560/14/1/016003
10.1055/s-0028-1130334
10.3389/fams.2019.00013
10.7554/eLife.32554
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3110267
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1559
ExternalDocumentID 34516381
10_1109_JBHI_2021_3110267
9536024
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: BCS-1630296
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-a64bafdc5a078a1df88cea5addda9c7092c97c9865d02c5155f492f618f6f8193
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 06:58:50 EDT 2025
Sun Jun 29 13:12:36 EDT 2025
Thu Apr 03 07:06:57 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Tue Jul 01 03:00:01 EDT 2025
Wed Aug 27 02:40:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a64bafdc5a078a1df88cea5addda9c7092c97c9865d02c5155f492f618f6f8193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6812-2368
0000-0003-4522-7340
0000-0002-0393-0997
0000-0002-0668-8489
0000-0003-0817-8850
PMID 34516381
PQID 2650298324
PQPubID 85417
PageCount 11
ParticipantIDs ieee_primary_9536024
crossref_primary_10_1109_JBHI_2021_3110267
proquest_journals_2650298324
crossref_citationtrail_10_1109_JBHI_2021_3110267
proquest_miscellaneous_2572531074
pubmed_primary_34516381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
Kingma (ref35) 2015
Dose (ref32) 2018; 114
ref2
Acharya (ref34) 2018; 100
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Stober (ref29) 2015
Niedermeyer (ref3) 2005
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref12
  doi: 10.1016/j.neuroimage.2010.08.064
– ident: ref21
  doi: 10.1016/j.bspc.2017.07.022
– ident: ref24
  doi: 10.1111/psyp.13090
– ident: ref20
  doi: 10.1088/1757-899X/532/1/012013
– ident: ref38
  doi: 10.1109/TCBB.2019.2895077
– ident: ref14
  doi: 10.1007/s004220050457
– ident: ref16
  doi: 10.1016/j.neuroimage.2017.11.042
– ident: ref11
  doi: 10.1002/hipo.22124
– ident: ref9
  doi: 10.1098/rstb.2013.0304
– ident: ref31
  doi: 10.1109/ACCESS.2018.2889093
– ident: ref17
  doi: 10.1016/j.compbiomed.2013.04.002
– ident: ref28
  doi: 10.1002/hbm.23730
– ident: ref19
  doi: 10.1177/1550147720911009
– ident: ref18
  doi: 10.1016/j.bbe.2016.12.005
– volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2005
  ident: ref3
– ident: ref7
  doi: 10.1093/sleep/zsz225
– ident: ref33
  doi: 10.5755/j01.eie.24.4.21469
– ident: ref26
  doi: 10.1162/jocn_a_01765
– volume: 100
  start-page: 270
  volume-title: Comput. Biol. Med.
  year: 2018
  ident: ref34
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EGG signals
– ident: ref22
  doi: 10.1016/j.bspc.2017.01.001
– ident: ref2
  doi: 10.1016/s0165-0173(98)00056-3
– ident: ref6
  doi: 10.1016/j.bbe.2015.10.006
– ident: ref13
  doi: 10.1002/hipo.20979
– ident: ref15
  doi: 10.1523/eneuro.0275-16.2016
– ident: ref5
  doi: 10.1016/j.neuroimage.2013.06.049
– ident: ref4
  doi: 10.1016/j.neuron.2013.10.017
– ident: ref25
  doi: 10.1016/j.neuroimage.2019.05.026
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref35
  article-title: Adam: A method for stochastic optimization
– ident: ref37
  doi: 10.1007/978-3-319-94268-1_56
– ident: ref23
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref8
  doi: 10.1109/TAMD.2015.2431497
– ident: ref1
  doi: 10.1016/j.tins.2017.02.004
– ident: ref27
  doi: 10.1098/rspa.1998.0193
– ident: ref30
  doi: 10.1088/1741-2560/14/1/016003
– volume: 114
  start-page: 532
  volume-title: Expert Syst. Appl.
  year: 2018
  ident: ref32
  article-title: An end-to-end deep learning approach to MI-EGG signal classification for BCIs
– ident: ref36
  doi: 10.1055/s-0028-1130334
– year: 2015
  ident: ref29
  article-title: Deep feature learning for EGG recordings
– ident: ref39
  doi: 10.3389/fams.2019.00013
– ident: ref10
  doi: 10.7554/eLife.32554
SSID ssj0000816896
Score 2.4486713
Snippet Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1549
SubjectTerms Algorithms
Biomarkers
Brain
Brain Waves
Deep learing (DL)
Deep Learning
EEG
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Empirical Mode Decomposition (EMD)
Feature extraction
Frequency analysis
Frequency dependence
Hilbert transformation
Hilbert-Huang Transform (HHT)
Humans
Machine learning
Measurement
Nervous system
Neuroimaging
Neurosciences
Oscillations
Oscillators
Peak frequency
Scalp
Signal classification
Subject-specific frequency bands
Task analysis
Time-frequency analysis
Variation
Wavelet Analysis
Title Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning
URI https://ieeexplore.ieee.org/document/9536024
https://www.ncbi.nlm.nih.gov/pubmed/34516381
https://www.proquest.com/docview/2650298324
https://www.proquest.com/docview/2572531074
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8QF2vLallZG4oTwkjhPH6HdbYq0XADBLbIdGxAou4Lk0P76jh0nEgiq3iLZeXnGM994XgAHUiWhSq30QzRMY5NpinomoDIyMlVxblJ3lD07T4ur-OwmuVmCoyEXRmvtgs_02F46X341V609Kju2rkbUKcuwjIZbl6s1nKe4BhKuHRfDC4obMfZOzDDgx2enxS80BlmINmpomy6twWpke9RGefhCI7kWK--jTad1phsw67-3CzZ5GLeNHKs_r0o5_u8PfYB1Dz_JSccvH2FJ159gdeYd7JtwYVNC6PSpC7D-TfqaJWRuyAWSc0Emk5_k-r65I8W9LY_V0KIV9S257AEwEXVFfmi9IL506-0WXE0nl98L6vsuUBXFvKEijaUwlUoE4gcRVibPlRYJSsJKcJUFnCmeKZ6nSRUwZXvEmJgzk4ZIWYMII9qGlXpe610gMg9NEiiJkkLEqspFhvaiiVzGrhRpNIKgX_tS-aLktjfGY-mMk4CXlnKlpVzpKTeCw-GWRVeR41-TN-2qDxP9go9grydw6ffsc8kQrDKOEg6H94dh3G3WhSJqPW9xTpIxlFqIu0aw0zHG8Oyenz6__c4vsMZs6oSL-tmDleap1V8R0DTym-Pkv8H867E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RWp74VUKC6UYiRPC29h5-shjt2np9tKt6C2yHbtUoOyqJAf49YwdJxIIELdIdl6e8cw3nhfAK6VTpjMn_RAN08TmhqKeiaiKrcp0UtjMH2UvzrPyMjm9Sq824M2YC2OM8cFnZuouvS-_XunOHZUdOVcj6pRNuIN6P2V9ttZ4ouJbSPiGXBwvKG7FJLgxWSSOTt-VJ2gOcoZWKnNtl3ZhO3ZdauOC_aKTfJOVv-NNr3fm92AxfHEfbvJl2rVqqn_8Vszxf3_pPtwNAJS87TnmAWyY5iFsL4KLfQ8uXFIInd_2IdbfyVC1hKwsuUCCrslsdkw-3bSfSXnjCmS1tOxkc02WAwQmsqnJB2PWJBRvvX4El_PZ8n1JQ-cFquNEtFRmiZK21qlEBCFZbYtCG5miLKyl0HkkuBa5FkWW1hHXrkuMTQS3GUPaWsQY8T5sNavGPAGiCmbTSCuUFTLRdSFztBht7HN2lcziCUTD2lc6lCV33TG-Vt48iUTlKFc5ylWBchN4Pd6y7mty_Gvynlv1cWJY8AkcDASuwq79VnGEq1ygjMPhl-Mw7jfnRJGNWXU4J805yi1EXhN43DPG-OyBn57--Z0vYKdcLs6qs5Pzj89gl7tECh8DdABb7W1nniO8adWh5-qfOMHu-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Frequency+Analysis+of+Scalp+EEG+With+Hilbert-Huang+Transform+and+Deep+Learning&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zheng%2C+Jingyi&rft.au=Liang%2C+Mingli&rft.au=Sinha%2C+Sujata&rft.au=Ge%2C+Linqiang&rft.date=2022-04-01&rft.eissn=2168-2208&rft.volume=26&rft.issue=4&rft.spage=1549&rft_id=info:doi/10.1109%2FJBHI.2021.3110267&rft_id=info%3Apmid%2F34516381&rft.externalDocID=34516381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon