Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning
Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, ne...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 4; pp. 1549 - 1559 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research. |
---|---|
AbstractList | Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research. Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research.Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually require pre-defined frequency bands when characterizing neural oscillations and extracting features for classifying EEG signals. However, neural responses are naturally heterogeneous by showing variations in frequency bands of brainwaves and peak frequencies of oscillatory modes across individuals. Fail to account for such variations might result in information loss and classifiers with low accuracy but high variation across individuals. To address these issues, we present a systematic time-frequency analysis approach for analyzing scalp EEG signals. In particular, we propose a data-driven method to compute the subject-specific frequency bands for brain oscillations via Hilbert-Huang Transform, lifting the restriction of using fixed frequency bands for all subjects. Then, we propose two novel metrics to quantify the power and frequency aspects of brainwaves represented by sub-signals decomposed from the EEG signals. The effectiveness of the proposed metrics are tested on two scalp EEG datasets and compared with four commonly used features sets extracted from wavelet and Hilbert-Huang Transform. The validation results show that the proposed metrics are more discriminatory than other features leading to accuracies in the range of 94.93% to 99.84%. Besides classification, the proposed metrics show great potential in quantification of neural oscillations and serving as biomarkers in the neuroscience research. |
Author | Ge, Linqiang Zheng, Jingyi Yu, Wei Hsieh, Fushing Sinha, Sujata Ekstrom, Arne Liang, Mingli |
Author_xml | – sequence: 1 givenname: Jingyi orcidid: 0000-0002-0393-0997 surname: Zheng fullname: Zheng, Jingyi email: jingyi.zheng@auburn.edu organization: Department of Mathematics, and Statistics, Auburn University, Auburn, AL, USA – sequence: 2 givenname: Mingli orcidid: 0000-0002-0668-8489 surname: Liang fullname: Liang, Mingli email: lmliang@email.arizona.edu organization: Department of Psychology, The University of Arizona, Tucson, AZ, USA – sequence: 3 givenname: Sujata surname: Sinha fullname: Sinha, Sujata email: szs0210@auburn.edu organization: Department of Computer Science and System Engineering, Auburn University, Auburn, AL, USA – sequence: 4 givenname: Linqiang orcidid: 0000-0003-0817-8850 surname: Ge fullname: Ge, Linqiang email: ge_linqiang@columbusstate.edu organization: TSYS School of Computer Science, Columbus State University, Columbus, GA, USA – sequence: 5 givenname: Wei orcidid: 0000-0003-4522-7340 surname: Yu fullname: Yu, Wei email: wyu@towson.edu organization: Department of Computer and Information Sciences, Towson University, Towson, MD, USA – sequence: 6 givenname: Arne orcidid: 0000-0002-6812-2368 surname: Ekstrom fullname: Ekstrom, Arne email: adekstrom@email.arizona.edu organization: Department of Psychology, The University of Arizona, Tucson, AZ, USA – sequence: 7 givenname: Fushing surname: Hsieh fullname: Hsieh, Fushing email: fhsieh@ucdavis.edu organization: Department of Statistics, University of California, Davis, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34516381$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1v2zAQhokiRfP5A4oCBYEsXeSSlEiRY5I6cQoDHeKgo3CmjikDiXJJafC_Dw07GTLkFh4Pz3u843tKjsIQkJCvnM04Z-bn7-vF_UwwwWdlvgtVfyIngitdCMH00WvOTXVMLlJ6Zjl0Lhn1hRyXleSq1PyEPKx8j8VtxP8TBrulVwG6bfKJDo4-WOg2dD6_o3_9-I8ufLfGOBaLCcITXUUIyQ2xpxBa-gtxQ5cIMfjwdE4-O-gSXhzOM_J4O1_dLIrln7v7m6tlYcvKjAWoag2utRJYrYG3TmuLIKFtWzC2ZkZYU1ujlWyZsJJL6SojnOLaKae5Kc_Ij33fTRzy-Glsep8sdh0EHKbUCFkLWXJWVxm9fIc-D1PMu2ZKSSaMLsWO-n6gpnWPbbOJvoe4bV6_KwN8D9g4pBTRvSGcNTtXmp0rzc6V5uBK1tTvNNaPMPohjBF896Hy217pEfHtJSNLxfKwL-7lltU |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3390_math12111727 crossref_primary_10_1016_j_procs_2023_11_099 crossref_primary_10_1007_s00521_024_10207_0 crossref_primary_10_1109_JSEN_2023_3303441 crossref_primary_10_1109_ICJECE_2024_3354291 crossref_primary_10_3390_app12105079 crossref_primary_10_1016_j_bspc_2024_106824 crossref_primary_10_1038_s41598_023_49355_z crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1016_j_knosys_2025_113074 crossref_primary_10_3390_app14198911 crossref_primary_10_3934_mbe_2023912 crossref_primary_10_1109_TIE_2023_3323692 |
Cites_doi | 10.1016/j.neuroimage.2010.08.064 10.1016/j.bspc.2017.07.022 10.1111/psyp.13090 10.1088/1757-899X/532/1/012013 10.1109/TCBB.2019.2895077 10.1007/s004220050457 10.1016/j.neuroimage.2017.11.042 10.1002/hipo.22124 10.1098/rstb.2013.0304 10.1109/ACCESS.2018.2889093 10.1016/j.compbiomed.2013.04.002 10.1002/hbm.23730 10.1177/1550147720911009 10.1016/j.bbe.2016.12.005 10.1093/sleep/zsz225 10.5755/j01.eie.24.4.21469 10.1162/jocn_a_01765 10.1016/j.bspc.2017.01.001 10.1016/s0165-0173(98)00056-3 10.1016/j.bbe.2015.10.006 10.1002/hipo.20979 10.1523/eneuro.0275-16.2016 10.1016/j.neuroimage.2013.06.049 10.1016/j.neuron.2013.10.017 10.1016/j.neuroimage.2019.05.026 10.1007/978-3-319-94268-1_56 10.1016/j.jneumeth.2003.10.009 10.1109/TAMD.2015.2431497 10.1016/j.tins.2017.02.004 10.1098/rspa.1998.0193 10.1088/1741-2560/14/1/016003 10.1055/s-0028-1130334 10.3389/fams.2019.00013 10.7554/eLife.32554 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2021.3110267 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1559 |
ExternalDocumentID | 34516381 10_1109_JBHI_2021_3110267 9536024 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: NSF grantid: BCS-1630296 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c349t-a64bafdc5a078a1df88cea5addda9c7092c97c9865d02c5155f492f618f6f8193 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 06:58:50 EDT 2025 Sun Jun 29 13:12:36 EDT 2025 Thu Apr 03 07:06:57 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Tue Jul 01 03:00:01 EDT 2025 Wed Aug 27 02:40:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a64bafdc5a078a1df88cea5addda9c7092c97c9865d02c5155f492f618f6f8193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6812-2368 0000-0003-4522-7340 0000-0002-0393-0997 0000-0002-0668-8489 0000-0003-0817-8850 |
PMID | 34516381 |
PQID | 2650298324 |
PQPubID | 85417 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9536024 crossref_primary_10_1109_JBHI_2021_3110267 proquest_journals_2650298324 crossref_citationtrail_10_1109_JBHI_2021_3110267 proquest_miscellaneous_2572531074 pubmed_primary_34516381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 Kingma (ref35) 2015 Dose (ref32) 2018; 114 ref2 Acharya (ref34) 2018; 100 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Stober (ref29) 2015 Niedermeyer (ref3) 2005 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref12 doi: 10.1016/j.neuroimage.2010.08.064 – ident: ref21 doi: 10.1016/j.bspc.2017.07.022 – ident: ref24 doi: 10.1111/psyp.13090 – ident: ref20 doi: 10.1088/1757-899X/532/1/012013 – ident: ref38 doi: 10.1109/TCBB.2019.2895077 – ident: ref14 doi: 10.1007/s004220050457 – ident: ref16 doi: 10.1016/j.neuroimage.2017.11.042 – ident: ref11 doi: 10.1002/hipo.22124 – ident: ref9 doi: 10.1098/rstb.2013.0304 – ident: ref31 doi: 10.1109/ACCESS.2018.2889093 – ident: ref17 doi: 10.1016/j.compbiomed.2013.04.002 – ident: ref28 doi: 10.1002/hbm.23730 – ident: ref19 doi: 10.1177/1550147720911009 – ident: ref18 doi: 10.1016/j.bbe.2016.12.005 – volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields year: 2005 ident: ref3 – ident: ref7 doi: 10.1093/sleep/zsz225 – ident: ref33 doi: 10.5755/j01.eie.24.4.21469 – ident: ref26 doi: 10.1162/jocn_a_01765 – volume: 100 start-page: 270 volume-title: Comput. Biol. Med. year: 2018 ident: ref34 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EGG signals – ident: ref22 doi: 10.1016/j.bspc.2017.01.001 – ident: ref2 doi: 10.1016/s0165-0173(98)00056-3 – ident: ref6 doi: 10.1016/j.bbe.2015.10.006 – ident: ref13 doi: 10.1002/hipo.20979 – ident: ref15 doi: 10.1523/eneuro.0275-16.2016 – ident: ref5 doi: 10.1016/j.neuroimage.2013.06.049 – ident: ref4 doi: 10.1016/j.neuron.2013.10.017 – ident: ref25 doi: 10.1016/j.neuroimage.2019.05.026 – volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref35 article-title: Adam: A method for stochastic optimization – ident: ref37 doi: 10.1007/978-3-319-94268-1_56 – ident: ref23 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref8 doi: 10.1109/TAMD.2015.2431497 – ident: ref1 doi: 10.1016/j.tins.2017.02.004 – ident: ref27 doi: 10.1098/rspa.1998.0193 – ident: ref30 doi: 10.1088/1741-2560/14/1/016003 – volume: 114 start-page: 532 volume-title: Expert Syst. Appl. year: 2018 ident: ref32 article-title: An end-to-end deep learning approach to MI-EGG signal classification for BCIs – ident: ref36 doi: 10.1055/s-0028-1130334 – year: 2015 ident: ref29 article-title: Deep feature learning for EGG recordings – ident: ref39 doi: 10.3389/fams.2019.00013 – ident: ref10 doi: 10.7554/eLife.32554 |
SSID | ssj0000816896 |
Score | 2.4486713 |
Snippet | Electroencephalography (EEG) is a brain imaging approach that has been widely used in neuroscience and clinical settings. The conventional EEG analyses usually... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1549 |
SubjectTerms | Algorithms Biomarkers Brain Brain Waves Deep learing (DL) Deep Learning EEG Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Empirical Mode Decomposition (EMD) Feature extraction Frequency analysis Frequency dependence Hilbert transformation Hilbert-Huang Transform (HHT) Humans Machine learning Measurement Nervous system Neuroimaging Neurosciences Oscillations Oscillators Peak frequency Scalp Signal classification Subject-specific frequency bands Task analysis Time-frequency analysis Variation Wavelet Analysis |
Title | Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning |
URI | https://ieeexplore.ieee.org/document/9536024 https://www.ncbi.nlm.nih.gov/pubmed/34516381 https://www.proquest.com/docview/2650298324 https://www.proquest.com/docview/2572531074 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8QF2vLallZG4oTwkjhPH6HdbYq0XADBLbIdGxAou4Lk0P76jh0nEgiq3iLZeXnGM994XgAHUiWhSq30QzRMY5NpinomoDIyMlVxblJ3lD07T4ur-OwmuVmCoyEXRmvtgs_02F46X341V609Kju2rkbUKcuwjIZbl6s1nKe4BhKuHRfDC4obMfZOzDDgx2enxS80BlmINmpomy6twWpke9RGefhCI7kWK--jTad1phsw67-3CzZ5GLeNHKs_r0o5_u8PfYB1Dz_JSccvH2FJ159gdeYd7JtwYVNC6PSpC7D-TfqaJWRuyAWSc0Emk5_k-r65I8W9LY_V0KIV9S257AEwEXVFfmi9IL506-0WXE0nl98L6vsuUBXFvKEijaUwlUoE4gcRVibPlRYJSsJKcJUFnCmeKZ6nSRUwZXvEmJgzk4ZIWYMII9qGlXpe610gMg9NEiiJkkLEqspFhvaiiVzGrhRpNIKgX_tS-aLktjfGY-mMk4CXlnKlpVzpKTeCw-GWRVeR41-TN-2qDxP9go9grydw6ffsc8kQrDKOEg6H94dh3G3WhSJqPW9xTpIxlFqIu0aw0zHG8Oyenz6__c4vsMZs6oSL-tmDleap1V8R0DTym-Pkv8H867E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61RWp74VUKC6UYiRPC29h5-shjt2np9tKt6C2yHbtUoOyqJAf49YwdJxIIELdIdl6e8cw3nhfAK6VTpjMn_RAN08TmhqKeiaiKrcp0UtjMH2UvzrPyMjm9Sq824M2YC2OM8cFnZuouvS-_XunOHZUdOVcj6pRNuIN6P2V9ttZ4ouJbSPiGXBwvKG7FJLgxWSSOTt-VJ2gOcoZWKnNtl3ZhO3ZdauOC_aKTfJOVv-NNr3fm92AxfHEfbvJl2rVqqn_8Vszxf3_pPtwNAJS87TnmAWyY5iFsL4KLfQ8uXFIInd_2IdbfyVC1hKwsuUCCrslsdkw-3bSfSXnjCmS1tOxkc02WAwQmsqnJB2PWJBRvvX4El_PZ8n1JQ-cFquNEtFRmiZK21qlEBCFZbYtCG5miLKyl0HkkuBa5FkWW1hHXrkuMTQS3GUPaWsQY8T5sNavGPAGiCmbTSCuUFTLRdSFztBht7HN2lcziCUTD2lc6lCV33TG-Vt48iUTlKFc5ylWBchN4Pd6y7mty_Gvynlv1cWJY8AkcDASuwq79VnGEq1ygjMPhl-Mw7jfnRJGNWXU4J805yi1EXhN43DPG-OyBn57--Z0vYKdcLs6qs5Pzj89gl7tECh8DdABb7W1nniO8adWh5-qfOMHu-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Frequency+Analysis+of+Scalp+EEG+With+Hilbert-Huang+Transform+and+Deep+Learning&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zheng%2C+Jingyi&rft.au=Liang%2C+Mingli&rft.au=Sinha%2C+Sujata&rft.au=Ge%2C+Linqiang&rft.date=2022-04-01&rft.eissn=2168-2208&rft.volume=26&rft.issue=4&rft.spage=1549&rft_id=info:doi/10.1109%2FJBHI.2021.3110267&rft_id=info%3Apmid%2F34516381&rft.externalDocID=34516381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |