A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization

Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 12; pp. 5099 - 5112
Main Authors Rambabu, Rethnaraj, Vadakkepat, Prahlad, Tan, Kay Chen, Jiang, Min
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward the true POS. To achieve a robust prediction of POS, a mixture-of-experts-based ensemble framework is proposed. Unlike existing approaches, the framework utilizes multiple prediction mechanisms to improve the overall prediction. A gating network is applied to manage switching among the various predictors based on performance of the predictors at different time intervals of the optimization process. The efficacy of the proposed framework is validated through experimental studies based on 13 dynamic multiobjective benchmark optimization problems. The simulation results show that the proposed framework improves the dynamic optimization performance significantly, particularly for: 1) problems with distinct dynamic POS in decision space over time and 2) problems with highly nonlinear decision variable linkages.
AbstractList Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward the true POS. To achieve a robust prediction of POS, a mixture-of-experts-based ensemble framework is proposed. Unlike existing approaches, the framework utilizes multiple prediction mechanisms to improve the overall prediction. A gating network is applied to manage switching among the various predictors based on performance of the predictors at different time intervals of the optimization process. The efficacy of the proposed framework is validated through experimental studies based on 13 dynamic multiobjective benchmark optimization problems. The simulation results show that the proposed framework improves the dynamic optimization performance significantly, particularly for: 1) problems with distinct dynamic POS in decision space over time and 2) problems with highly nonlinear decision variable linkages.
Author Tan, Kay Chen
Jiang, Min
Vadakkepat, Prahlad
Rambabu, Rethnaraj
Author_xml – sequence: 1
  givenname: Rethnaraj
  orcidid: 0000-0003-1364-5046
  surname: Rambabu
  fullname: Rambabu, Rethnaraj
  email: rethnaraj@u.nus.edu
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Prahlad
  surname: Vadakkepat
  fullname: Vadakkepat, Prahlad
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 3
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kaytan@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Min
  orcidid: 0000-0003-2946-6974
  surname: Jiang
  fullname: Jiang, Min
  email: minjiang@xmu.edu.cn
  organization: Department of Cognitive Science and Technology, Xiamen University, Xiamen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31021815$$D View this record in MEDLINE/PubMed
BookMark eNpdkE9LwzAYh4NM3NR9ABGk4MVLZ5K2aXKcc_4BRQ_z4MWQdm8hs21m0s7NT2_K5g6GQMLvfd6X5DlGvdrUgNAZwSNCsLieTd5vRhQTMaICC47ZARpQwnhIaZr09neW9tHQuQX2i_tI8CPUjwimhJNkgD7GwbNeN62F0BThdL0E27jg1cJc5402dXBnVQXfxn4GhbHBdGXKtsuV3QS3m1pVOg-e29JH2QJ8xwqCl2WjK_2jOuwUHRaqdDDcnSfo7W46mzyETy_3j5PxU5hHsWhCFc9VxBieFyLCRKUKGIuTmADP4gxnlBNcpCrjRc4i7mOc5MJLoAnOU8VwHJ2gq-3cpTVfLbhGVtrlUJaqBtM6Sb0Nyv0mHr38hy5Ma2v_OkljxtOERnHqKbKlcmucs1DIpdWV_7UkWHb-Zedfdv7lzr_vudhNbrMK5vuOP9seON8CGgD2Zc4Ej3z1F0rUio8
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TETCI_2023_3336918
crossref_primary_10_1016_j_asoc_2020_107027
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_1016_j_ins_2021_08_027
crossref_primary_10_1016_j_swevo_2022_101041
crossref_primary_10_1016_j_ins_2023_03_100
crossref_primary_10_1016_j_swevo_2023_101284
crossref_primary_10_3390_math9040420
crossref_primary_10_1016_j_ins_2023_119627
crossref_primary_10_1109_TCYB_2021_3070434
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1109_TEVC_2023_3234113
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_3934_mbe_2024156
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1016_j_asoc_2023_110359
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_1049_ntw2_12059
crossref_primary_10_1109_TEVC_2021_3051172
crossref_primary_10_1016_j_asoc_2022_109892
crossref_primary_10_1109_TEVC_2022_3193287
crossref_primary_10_1016_j_eswa_2024_123344
crossref_primary_10_1007_s11071_021_07180_x
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1109_TR_2023_3295012
crossref_primary_10_1371_journal_pone_0254839
crossref_primary_10_1109_TCYB_2020_3017017
crossref_primary_10_1109_TCYB_2021_3059252
crossref_primary_10_1016_j_energy_2023_128344
crossref_primary_10_1016_j_ins_2021_05_064
crossref_primary_10_1109_TEVC_2021_3135020
crossref_primary_10_1109_TEVC_2022_3233642
crossref_primary_10_1016_j_ins_2022_09_022
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1109_ACCESS_2020_2974324
crossref_primary_10_1016_j_ins_2021_04_055
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1016_j_eswa_2023_120951
crossref_primary_10_1016_j_isatra_2022_03_015
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1016_j_swevo_2024_101468
Cites_doi 10.1109/TEVC.2008.920671
10.1109/TEVC.2006.882428
10.1109/TCYB.2015.2490738
10.1007/s12293-012-0090-2
10.1109/TNNLS.2012.2200299
10.1109/CEC.2009.4983004
10.1109/ISCAS.2015.7168936
10.1007/978-3-662-06560-0
10.1007/s00500-004-0422-3
10.1109/TEVC.2016.2574621
10.1109/CEC.2009.4982978
10.1109/CEC.2005.1554987
10.1109/72.857774
10.1145/1143997.1144187
10.1007/978-3-642-37192-9_62
10.1109/CEC.2011.5949865
10.1609/aaai.v33i01.33012354
10.1142/S0129065795000251
10.1109/NNSP.1994.366050
10.1007/978-3-540-95976-2_5
10.1016/j.neucom.2007.08.021
10.1145/2517649
10.1109/TEVC.2008.925798
10.1016/j.tcs.2019.03.003
10.1007/s12293-009-0026-7
10.1007/s12293-009-0012-0
10.1109/CEC.2017.7969510
10.1109/TEVC.2007.892759
10.1162/neco.1991.3.1.79
10.1109/TEVC.2016.2567644
10.1007/1-84628-137-7_2
10.1109/3477.584952
10.1109/CEC.2016.7744267
10.1109/CEC.1999.785502
10.21236/ADA229159
10.1142/S1469026801000135
10.1109/TEVC.2017.2669638
10.1109/TEVC.2014.2377125
10.1109/TEVC.2004.831456
10.1109/CEC.2010.5586024
10.1109/SBRN.2002.1181463
10.1109/4235.996017
10.1109/TCYB.2013.2245892
10.1007/s10462-012-9338-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2909806
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 5112
ExternalDocumentID 10_1109_TCYB_2019_2909806
31021815
8698315
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a4da3660df9301a7ae664541e8b4b0b2810f7ab8fc63841e05c9110250c7a6043
IEDL.DBID RIE
ISSN 2168-2267
IngestDate Thu Jul 25 07:38:22 EDT 2024
Thu Oct 10 16:22:11 EDT 2024
Fri Aug 23 01:28:26 EDT 2024
Sat Sep 28 08:27:24 EDT 2024
Wed Jun 26 19:26:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a4da3660df9301a7ae664541e8b4b0b2810f7ab8fc63841e05c9110250c7a6043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6802-2463
0000-0003-2946-6974
0000-0003-1364-5046
PMID 31021815
PQID 2468752347
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_31021815
crossref_primary_10_1109_TCYB_2019_2909806
proquest_miscellaneous_2216286281
proquest_journals_2468752347
ieee_primary_8698315
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
yang (ref45) 2007
ref52
ref55
ref11
ref54
kaisa (ref2) 1999; 12
mori (ref43) 1998
ref16
ng (ref23) 2014
ref19
ref18
grefenstette (ref35) 1992
zeevi (ref30) 1997
ref51
ref50
raquel (ref10) 2013
zhou (ref41) 2007
goh (ref42) 2009; 13
ref46
ref48
ref47
ref44
ref49
ref8
ref7
ref4
deb (ref6) 2007
ref3
ref5
ref40
deb (ref1) 2001
ref34
ref37
ref36
ref33
shazeer (ref27) 2017
ref32
deb (ref9) 2011
ref39
ref38
cacciatore (ref31) 1994
ref24
ref26
ref25
ref20
ref22
ref21
jacobs (ref17) 1991
ref28
ref29
References_xml – volume: 13
  start-page: 103
  year: 2009
  ident: ref42
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.920671
  contributor:
    fullname: goh
– start-page: 309
  year: 1997
  ident: ref30
  article-title: Time series prediction using mixtures of experts
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: zeevi
– ident: ref54
  doi: 10.1109/TEVC.2006.882428
– ident: ref14
  doi: 10.1109/TCYB.2015.2490738
– ident: ref56
  doi: 10.1007/s12293-012-0090-2
– ident: ref20
  doi: 10.1109/TNNLS.2012.2200299
– ident: ref48
  doi: 10.1109/CEC.2009.4983004
– start-page: 149
  year: 1998
  ident: ref43
  publication-title: Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm
  contributor:
    fullname: mori
– ident: ref24
  doi: 10.1109/ISCAS.2015.7168936
– ident: ref4
  doi: 10.1007/978-3-662-06560-0
– ident: ref44
  doi: 10.1007/s00500-004-0422-3
– ident: ref15
  doi: 10.1109/TEVC.2016.2574621
– start-page: 719
  year: 1994
  ident: ref31
  article-title: Mixtures of controllers for jump linear and non-linear plants
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: cacciatore
– ident: ref49
  doi: 10.1109/CEC.2009.4982978
– ident: ref40
  doi: 10.1109/CEC.2005.1554987
– ident: ref25
  doi: 10.1109/72.857774
– ident: ref12
  doi: 10.1145/1143997.1144187
– ident: ref57
  doi: 10.1007/978-3-642-37192-9_62
– ident: ref46
  doi: 10.1109/CEC.2011.5949865
– ident: ref37
  doi: 10.1609/aaai.v33i01.33012354
– ident: ref29
  doi: 10.1142/S0129065795000251
– ident: ref22
  doi: 10.1109/NNSP.1994.366050
– start-page: 1
  year: 1991
  ident: ref17
  article-title: A competitive modular connectionist architecture
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: jacobs
– ident: ref5
  doi: 10.1007/978-3-540-95976-2_5
– ident: ref26
  doi: 10.1016/j.neucom.2007.08.021
– ident: ref53
  doi: 10.1145/2517649
– start-page: 627
  year: 2007
  ident: ref45
  publication-title: Genetic Algorithms With Elitism-Based Immigrants for Changing Optimization Problems
  contributor:
    fullname: yang
– ident: ref34
  doi: 10.1109/TEVC.2008.925798
– ident: ref36
  doi: 10.1016/j.tcs.2019.03.003
– year: 2011
  ident: ref9
  publication-title: Multi-objective Optimization Using Evolutionary Algorithms An Introduction
  contributor:
    fullname: deb
– year: 2017
  ident: ref27
  article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
  publication-title: arXiv preprint arXiv 1701 06190
  contributor:
    fullname: shazeer
– year: 2001
  ident: ref1
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
  contributor:
    fullname: deb
– ident: ref11
  doi: 10.1007/s12293-009-0026-7
– ident: ref50
  doi: 10.1007/s12293-009-0012-0
– ident: ref7
  doi: 10.1109/CEC.2017.7969510
– ident: ref33
  doi: 10.1109/TEVC.2007.892759
– ident: ref18
  doi: 10.1162/neco.1991.3.1.79
– start-page: 803
  year: 2007
  ident: ref6
  publication-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II A case study on hydro-thermal power scheduling
  contributor:
    fullname: deb
– ident: ref51
  doi: 10.1109/TEVC.2016.2567644
– ident: ref3
  doi: 10.1007/1-84628-137-7_2
– ident: ref21
  doi: 10.1109/3477.584952
– volume: 12
  year: 1999
  ident: ref2
  publication-title: Nonlinear Multiobjective Optimization
  contributor:
    fullname: kaisa
– ident: ref16
  doi: 10.1109/CEC.2016.7744267
– ident: ref47
  doi: 10.1109/CEC.1999.785502
– ident: ref39
  doi: 10.21236/ADA229159
– ident: ref32
  doi: 10.1142/S1469026801000135
– start-page: 137
  year: 1992
  ident: ref35
  publication-title: Genetic Algorithms for Changing Environments
  contributor:
    fullname: grefenstette
– ident: ref38
  doi: 10.1109/TEVC.2017.2669638
– ident: ref58
  doi: 10.1109/TEVC.2014.2377125
– ident: ref8
  doi: 10.1109/TEVC.2004.831456
– ident: ref55
  doi: 10.1109/CEC.2010.5586024
– start-page: 832
  year: 2007
  ident: ref41
  publication-title: Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization
  contributor:
    fullname: zhou
– ident: ref28
  doi: 10.1109/SBRN.2002.1181463
– ident: ref52
  doi: 10.1109/4235.996017
– start-page: 85
  year: 2013
  ident: ref10
  publication-title: Dynamic Multi-Objective Optimization A Survey of the State-of-the-Art
  contributor:
    fullname: raquel
– ident: ref13
  doi: 10.1109/TCYB.2013.2245892
– ident: ref19
  doi: 10.1007/s10462-012-9338-y
– year: 2014
  ident: ref23
  article-title: Hierarchical mixture-of-experts model for large-scale Gaussian process regression
  publication-title: arXiv preprint arXiv 1412 3078
  contributor:
    fullname: ng
SSID ssj0000816898
Score 2.5097327
Snippet Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5099
SubjectTerms Changing environments
Dynamic multiobjective optimization
evolutionary algorithms (EAs)
Evolutionary computation
Heuristic algorithms
mixture-of-experts (MoE)
Multiple objective analysis
Optical fibers
Optimization
Pareto optimization
Robustness
Sociology
Statistics
Switches
Title A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/8698315
https://www.ncbi.nlm.nih.gov/pubmed/31021815
https://www.proquest.com/docview/2468752347
https://search.proquest.com/docview/2216286281
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH6inLi0LF3SAnKlHtqqHpzETuwj2whVou0BJHppZDuOBKgTNJOpgF_Ps-NEoqJSb5FjZfFb_D2_DeCD5blFoOGoYMxSXqQ1NY1rqBRGoU7OcTQEyH4rTs751wtxsQJfxlwY51wIPnMTfxl8-XVrl_6obE8WSuY-o_xZqVSfqzWep4QGEqH1bYYXFFFFGZ2YKVN7Z4c_D3wcl5pkiinJfOeiPA37m3i0I4UWK_9Gm2HXmb6A0-F7-2CT68myMxN7_1cpx__9oXV4HuEn2e_5ZQNW3GwTNqKAL8jHWIX60yaseRjaV3Hegl_75PTy1jsbaNvQUB65W5Afc-_l8ZQl0yHGiyAIJsd_IkPr-R056nvek5Dq25qrXsOS76irfsck0JdwPj0-OzyhsTMDtTlXHdW81nlRsLpRqCB0qV3hK4OlThpumMlkyppSG9lYFG8cZsKiUvVwy5a6YDx_BauzdubeABGNcpoh6mGu5EJxI5yVonZpo1XmyjqBzwN1qpu-AEcVDBemKk_VylO1ilRNYMsv8jgxrm8C2wM9qyiiiyrjBdpqWc7LBN6Pt1G4vMdEz1y7xDnISxnafDJN4HXPB-OzB_Z5-_Q738Fa5k3zEPmyDavdfOl2EL90Zjcw7gMBCeoV
link.rule.ids 315,783,787,799,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5UAvQFsegQJG4gAIb53ETuxjKV0t0C0ctlK5ENmOI0HVDdrNIuDXM3acSCCQuEWOlYfn4W88L4CnlucWgYajgjFLeZHW1DSuoVIYhTo5x9EQIHtWzM752wtxsQUvx1wY51wIPnMTfxl8-XVrN_6o7FAWSuY-o_wa4mpZ9tla44lKaCERmt9meEERV5TRjZkydbg4_vjKR3KpSaaYksz3LsrTsMOJ3_ak0GTl33gz7DvTmzAfvrgPN7mcbDozsT__KOb4v790C25EAEqOeo7ZhS233IPdKOJr8izWoX6-BzseiPZ1nPfh0xGZf_7u3Q20bWgokNytyYeV9_N42pLpEOVFEAaTk2-RpfXqB3ndd70nIdm3NV96HUveo7a6immgt-F8erI4ntHYm4HanKuOal7rvChY3ShUEbrUrvC1wVInDTfMZDJlTamNbCwKOA4zYVGtesBlS10wnt-B7WW7dPeAiEY5zRD3MFdyobgRzkpRu7TRKnNlncCLgTrV174ERxVMF6YqT9XKU7WKVE1g3y_yODGubwIHAz2rKKTrKuMFWmtZzssEnoy3Uby8z0QvXbvBOchLGVp9Mk3gbs8H47MH9rn_93c-huuzxfy0On1z9u4B7GTeUA9xMAew3a027iGimc48Ckz8C2gd7WE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixture-of-Experts+Prediction+Framework+for+Evolutionary+Dynamic+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Rambabu%2C+Rethnaraj&rft.au=Vadakkepat%2C+Prahlad&rft.au=Tan%2C+Kay+Chen&rft.au=Jiang%2C+Min&rft.date=2020-12-01&rft.eissn=2168-2275&rft.volume=50&rft.issue=12&rft.spage=5099&rft.epage=5112&rft_id=info:doi/10.1109%2FTCYB.2019.2909806&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon