A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization
Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward th...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 12; pp. 5099 - 5112 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward the true POS. To achieve a robust prediction of POS, a mixture-of-experts-based ensemble framework is proposed. Unlike existing approaches, the framework utilizes multiple prediction mechanisms to improve the overall prediction. A gating network is applied to manage switching among the various predictors based on performance of the predictors at different time intervals of the optimization process. The efficacy of the proposed framework is validated through experimental studies based on 13 dynamic multiobjective benchmark optimization problems. The simulation results show that the proposed framework improves the dynamic optimization performance significantly, particularly for: 1) problems with distinct dynamic POS in decision space over time and 2) problems with highly nonlinear decision variable linkages. |
---|---|
AbstractList | Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected in the environment, prediction mechanisms estimate the POS by utilizing information from previous populations to accelerate search toward the true POS. To achieve a robust prediction of POS, a mixture-of-experts-based ensemble framework is proposed. Unlike existing approaches, the framework utilizes multiple prediction mechanisms to improve the overall prediction. A gating network is applied to manage switching among the various predictors based on performance of the predictors at different time intervals of the optimization process. The efficacy of the proposed framework is validated through experimental studies based on 13 dynamic multiobjective benchmark optimization problems. The simulation results show that the proposed framework improves the dynamic optimization performance significantly, particularly for: 1) problems with distinct dynamic POS in decision space over time and 2) problems with highly nonlinear decision variable linkages. |
Author | Tan, Kay Chen Jiang, Min Vadakkepat, Prahlad Rambabu, Rethnaraj |
Author_xml | – sequence: 1 givenname: Rethnaraj orcidid: 0000-0003-1364-5046 surname: Rambabu fullname: Rambabu, Rethnaraj email: rethnaraj@u.nus.edu organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 2 givenname: Prahlad surname: Vadakkepat fullname: Vadakkepat, Prahlad organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore – sequence: 3 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaytan@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 4 givenname: Min orcidid: 0000-0003-2946-6974 surname: Jiang fullname: Jiang, Min email: minjiang@xmu.edu.cn organization: Department of Cognitive Science and Technology, Xiamen University, Xiamen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31021815$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE9LwzAYh4NM3NR9ABGk4MVLZ5K2aXKcc_4BRQ_z4MWQdm8hs21m0s7NT2_K5g6GQMLvfd6X5DlGvdrUgNAZwSNCsLieTd5vRhQTMaICC47ZARpQwnhIaZr09neW9tHQuQX2i_tI8CPUjwimhJNkgD7GwbNeN62F0BThdL0E27jg1cJc5402dXBnVQXfxn4GhbHBdGXKtsuV3QS3m1pVOg-e29JH2QJ8xwqCl2WjK_2jOuwUHRaqdDDcnSfo7W46mzyETy_3j5PxU5hHsWhCFc9VxBieFyLCRKUKGIuTmADP4gxnlBNcpCrjRc4i7mOc5MJLoAnOU8VwHJ2gq-3cpTVfLbhGVtrlUJaqBtM6Sb0Nyv0mHr38hy5Ma2v_OkljxtOERnHqKbKlcmucs1DIpdWV_7UkWHb-Zedfdv7lzr_vudhNbrMK5vuOP9seON8CGgD2Zc4Ej3z1F0rUio8 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TETCI_2023_3336918 crossref_primary_10_1016_j_asoc_2020_107027 crossref_primary_10_1016_j_ins_2022_05_050 crossref_primary_10_1016_j_ins_2021_08_027 crossref_primary_10_1016_j_swevo_2022_101041 crossref_primary_10_1016_j_ins_2023_03_100 crossref_primary_10_1016_j_swevo_2023_101284 crossref_primary_10_3390_math9040420 crossref_primary_10_1016_j_ins_2023_119627 crossref_primary_10_1109_TCYB_2021_3070434 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1109_TEVC_2023_3234113 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_3934_mbe_2024156 crossref_primary_10_1109_TEVC_2022_3222844 crossref_primary_10_1016_j_asoc_2023_110359 crossref_primary_10_1109_TEVC_2022_3144180 crossref_primary_10_1049_ntw2_12059 crossref_primary_10_1109_TEVC_2021_3051172 crossref_primary_10_1016_j_asoc_2022_109892 crossref_primary_10_1109_TEVC_2022_3193287 crossref_primary_10_1016_j_eswa_2024_123344 crossref_primary_10_1007_s11071_021_07180_x crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_1109_TR_2023_3295012 crossref_primary_10_1371_journal_pone_0254839 crossref_primary_10_1109_TCYB_2020_3017017 crossref_primary_10_1109_TCYB_2021_3059252 crossref_primary_10_1016_j_energy_2023_128344 crossref_primary_10_1016_j_ins_2021_05_064 crossref_primary_10_1109_TEVC_2021_3135020 crossref_primary_10_1109_TEVC_2022_3233642 crossref_primary_10_1016_j_ins_2022_09_022 crossref_primary_10_1109_TSMC_2023_3298804 crossref_primary_10_1109_ACCESS_2020_2974324 crossref_primary_10_1016_j_ins_2021_04_055 crossref_primary_10_1109_TCYB_2021_3128584 crossref_primary_10_1016_j_eswa_2023_120951 crossref_primary_10_1016_j_isatra_2022_03_015 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1016_j_swevo_2024_101468 |
Cites_doi | 10.1109/TEVC.2008.920671 10.1109/TEVC.2006.882428 10.1109/TCYB.2015.2490738 10.1007/s12293-012-0090-2 10.1109/TNNLS.2012.2200299 10.1109/CEC.2009.4983004 10.1109/ISCAS.2015.7168936 10.1007/978-3-662-06560-0 10.1007/s00500-004-0422-3 10.1109/TEVC.2016.2574621 10.1109/CEC.2009.4982978 10.1109/CEC.2005.1554987 10.1109/72.857774 10.1145/1143997.1144187 10.1007/978-3-642-37192-9_62 10.1109/CEC.2011.5949865 10.1609/aaai.v33i01.33012354 10.1142/S0129065795000251 10.1109/NNSP.1994.366050 10.1007/978-3-540-95976-2_5 10.1016/j.neucom.2007.08.021 10.1145/2517649 10.1109/TEVC.2008.925798 10.1016/j.tcs.2019.03.003 10.1007/s12293-009-0026-7 10.1007/s12293-009-0012-0 10.1109/CEC.2017.7969510 10.1109/TEVC.2007.892759 10.1162/neco.1991.3.1.79 10.1109/TEVC.2016.2567644 10.1007/1-84628-137-7_2 10.1109/3477.584952 10.1109/CEC.2016.7744267 10.1109/CEC.1999.785502 10.21236/ADA229159 10.1142/S1469026801000135 10.1109/TEVC.2017.2669638 10.1109/TEVC.2014.2377125 10.1109/TEVC.2004.831456 10.1109/CEC.2010.5586024 10.1109/SBRN.2002.1181463 10.1109/4235.996017 10.1109/TCYB.2013.2245892 10.1007/s10462-012-9338-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2909806 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Sciences (General) |
EISSN | 2168-2275 |
EndPage | 5112 |
ExternalDocumentID | 10_1109_TCYB_2019_2909806 31021815 8698315 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-a4da3660df9301a7ae664541e8b4b0b2810f7ab8fc63841e05c9110250c7a6043 |
IEDL.DBID | RIE |
ISSN | 2168-2267 |
IngestDate | Thu Jul 25 07:38:22 EDT 2024 Thu Oct 10 16:22:11 EDT 2024 Fri Aug 23 01:28:26 EDT 2024 Sat Sep 28 08:27:24 EDT 2024 Wed Jun 26 19:26:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-a4da3660df9301a7ae664541e8b4b0b2810f7ab8fc63841e05c9110250c7a6043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6802-2463 0000-0003-2946-6974 0000-0003-1364-5046 |
PMID | 31021815 |
PQID | 2468752347 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_31021815 crossref_primary_10_1109_TCYB_2019_2909806 proquest_miscellaneous_2216286281 proquest_journals_2468752347 ieee_primary_8698315 |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 yang (ref45) 2007 ref52 ref55 ref11 ref54 kaisa (ref2) 1999; 12 mori (ref43) 1998 ref16 ng (ref23) 2014 ref19 ref18 grefenstette (ref35) 1992 zeevi (ref30) 1997 ref51 ref50 raquel (ref10) 2013 zhou (ref41) 2007 goh (ref42) 2009; 13 ref46 ref48 ref47 ref44 ref49 ref8 ref7 ref4 deb (ref6) 2007 ref3 ref5 ref40 deb (ref1) 2001 ref34 ref37 ref36 ref33 shazeer (ref27) 2017 ref32 deb (ref9) 2011 ref39 ref38 cacciatore (ref31) 1994 ref24 ref26 ref25 ref20 ref22 ref21 jacobs (ref17) 1991 ref28 ref29 |
References_xml | – volume: 13 start-page: 103 year: 2009 ident: ref42 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.920671 contributor: fullname: goh – start-page: 309 year: 1997 ident: ref30 article-title: Time series prediction using mixtures of experts publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: zeevi – ident: ref54 doi: 10.1109/TEVC.2006.882428 – ident: ref14 doi: 10.1109/TCYB.2015.2490738 – ident: ref56 doi: 10.1007/s12293-012-0090-2 – ident: ref20 doi: 10.1109/TNNLS.2012.2200299 – ident: ref48 doi: 10.1109/CEC.2009.4983004 – start-page: 149 year: 1998 ident: ref43 publication-title: Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm contributor: fullname: mori – ident: ref24 doi: 10.1109/ISCAS.2015.7168936 – ident: ref4 doi: 10.1007/978-3-662-06560-0 – ident: ref44 doi: 10.1007/s00500-004-0422-3 – ident: ref15 doi: 10.1109/TEVC.2016.2574621 – start-page: 719 year: 1994 ident: ref31 article-title: Mixtures of controllers for jump linear and non-linear plants publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: cacciatore – ident: ref49 doi: 10.1109/CEC.2009.4982978 – ident: ref40 doi: 10.1109/CEC.2005.1554987 – ident: ref25 doi: 10.1109/72.857774 – ident: ref12 doi: 10.1145/1143997.1144187 – ident: ref57 doi: 10.1007/978-3-642-37192-9_62 – ident: ref46 doi: 10.1109/CEC.2011.5949865 – ident: ref37 doi: 10.1609/aaai.v33i01.33012354 – ident: ref29 doi: 10.1142/S0129065795000251 – ident: ref22 doi: 10.1109/NNSP.1994.366050 – start-page: 1 year: 1991 ident: ref17 article-title: A competitive modular connectionist architecture publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: jacobs – ident: ref5 doi: 10.1007/978-3-540-95976-2_5 – ident: ref26 doi: 10.1016/j.neucom.2007.08.021 – ident: ref53 doi: 10.1145/2517649 – start-page: 627 year: 2007 ident: ref45 publication-title: Genetic Algorithms With Elitism-Based Immigrants for Changing Optimization Problems contributor: fullname: yang – ident: ref34 doi: 10.1109/TEVC.2008.925798 – ident: ref36 doi: 10.1016/j.tcs.2019.03.003 – year: 2011 ident: ref9 publication-title: Multi-objective Optimization Using Evolutionary Algorithms An Introduction contributor: fullname: deb – year: 2017 ident: ref27 article-title: Outrageously large neural networks: The sparsely-gated mixture-of-experts layer publication-title: arXiv preprint arXiv 1701 06190 contributor: fullname: shazeer – year: 2001 ident: ref1 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms contributor: fullname: deb – ident: ref11 doi: 10.1007/s12293-009-0026-7 – ident: ref50 doi: 10.1007/s12293-009-0012-0 – ident: ref7 doi: 10.1109/CEC.2017.7969510 – ident: ref33 doi: 10.1109/TEVC.2007.892759 – ident: ref18 doi: 10.1162/neco.1991.3.1.79 – start-page: 803 year: 2007 ident: ref6 publication-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II A case study on hydro-thermal power scheduling contributor: fullname: deb – ident: ref51 doi: 10.1109/TEVC.2016.2567644 – ident: ref3 doi: 10.1007/1-84628-137-7_2 – ident: ref21 doi: 10.1109/3477.584952 – volume: 12 year: 1999 ident: ref2 publication-title: Nonlinear Multiobjective Optimization contributor: fullname: kaisa – ident: ref16 doi: 10.1109/CEC.2016.7744267 – ident: ref47 doi: 10.1109/CEC.1999.785502 – ident: ref39 doi: 10.21236/ADA229159 – ident: ref32 doi: 10.1142/S1469026801000135 – start-page: 137 year: 1992 ident: ref35 publication-title: Genetic Algorithms for Changing Environments contributor: fullname: grefenstette – ident: ref38 doi: 10.1109/TEVC.2017.2669638 – ident: ref58 doi: 10.1109/TEVC.2014.2377125 – ident: ref8 doi: 10.1109/TEVC.2004.831456 – ident: ref55 doi: 10.1109/CEC.2010.5586024 – start-page: 832 year: 2007 ident: ref41 publication-title: Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization contributor: fullname: zhou – ident: ref28 doi: 10.1109/SBRN.2002.1181463 – ident: ref52 doi: 10.1109/4235.996017 – start-page: 85 year: 2013 ident: ref10 publication-title: Dynamic Multi-Objective Optimization A Survey of the State-of-the-Art contributor: fullname: raquel – ident: ref13 doi: 10.1109/TCYB.2013.2245892 – ident: ref19 doi: 10.1007/s10462-012-9338-y – year: 2014 ident: ref23 article-title: Hierarchical mixture-of-experts model for large-scale Gaussian process regression publication-title: arXiv preprint arXiv 1412 3078 contributor: fullname: ng |
SSID | ssj0000816898 |
Score | 2.5097327 |
Snippet | Dynamic multiobjective optimization requires the robust tracking of varying Pareto-optimal solutions (POS) in a changing environment. When a change is detected... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5099 |
SubjectTerms | Changing environments Dynamic multiobjective optimization evolutionary algorithms (EAs) Evolutionary computation Heuristic algorithms mixture-of-experts (MoE) Multiple objective analysis Optical fibers Optimization Pareto optimization Robustness Sociology Statistics Switches |
Title | A Mixture-of-Experts Prediction Framework for Evolutionary Dynamic Multiobjective Optimization |
URI | https://ieeexplore.ieee.org/document/8698315 https://www.ncbi.nlm.nih.gov/pubmed/31021815 https://www.proquest.com/docview/2468752347 https://search.proquest.com/docview/2216286281 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH6inLi0LF3SAnKlHtqqHpzETuwj2whVou0BJHppZDuOBKgTNJOpgF_Ps-NEoqJSb5FjZfFb_D2_DeCD5blFoOGoYMxSXqQ1NY1rqBRGoU7OcTQEyH4rTs751wtxsQJfxlwY51wIPnMTfxl8-XVrl_6obE8WSuY-o_xZqVSfqzWep4QGEqH1bYYXFFFFGZ2YKVN7Z4c_D3wcl5pkiinJfOeiPA37m3i0I4UWK_9Gm2HXmb6A0-F7-2CT68myMxN7_1cpx__9oXV4HuEn2e_5ZQNW3GwTNqKAL8jHWIX60yaseRjaV3Hegl_75PTy1jsbaNvQUB65W5Afc-_l8ZQl0yHGiyAIJsd_IkPr-R056nvek5Dq25qrXsOS76irfsck0JdwPj0-OzyhsTMDtTlXHdW81nlRsLpRqCB0qV3hK4OlThpumMlkyppSG9lYFG8cZsKiUvVwy5a6YDx_BauzdubeABGNcpoh6mGu5EJxI5yVonZpo1XmyjqBzwN1qpu-AEcVDBemKk_VylO1ilRNYMsv8jgxrm8C2wM9qyiiiyrjBdpqWc7LBN6Pt1G4vMdEz1y7xDnISxnafDJN4HXPB-OzB_Z5-_Q738Fa5k3zEPmyDavdfOl2EL90Zjcw7gMBCeoV |
link.rule.ids | 315,783,787,799,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5UAvQFsegQJG4gAIb53ETuxjKV0t0C0ctlK5ENmOI0HVDdrNIuDXM3acSCCQuEWOlYfn4W88L4CnlucWgYajgjFLeZHW1DSuoVIYhTo5x9EQIHtWzM752wtxsQUvx1wY51wIPnMTfxl8-XVrN_6o7FAWSuY-o_wa4mpZ9tla44lKaCERmt9meEERV5TRjZkydbg4_vjKR3KpSaaYksz3LsrTsMOJ3_ak0GTl33gz7DvTmzAfvrgPN7mcbDozsT__KOb4v790C25EAEqOeo7ZhS233IPdKOJr8izWoX6-BzseiPZ1nPfh0xGZf_7u3Q20bWgokNytyYeV9_N42pLpEOVFEAaTk2-RpfXqB3ndd70nIdm3NV96HUveo7a6immgt-F8erI4ntHYm4HanKuOal7rvChY3ShUEbrUrvC1wVInDTfMZDJlTamNbCwKOA4zYVGtesBlS10wnt-B7WW7dPeAiEY5zRD3MFdyobgRzkpRu7TRKnNlncCLgTrV174ERxVMF6YqT9XKU7WKVE1g3y_yODGubwIHAz2rKKTrKuMFWmtZzssEnoy3Uby8z0QvXbvBOchLGVp9Mk3gbs8H47MH9rn_93c-huuzxfy0On1z9u4B7GTeUA9xMAew3a027iGimc48Ckz8C2gd7WE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixture-of-Experts+Prediction+Framework+for+Evolutionary+Dynamic+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Rambabu%2C+Rethnaraj&rft.au=Vadakkepat%2C+Prahlad&rft.au=Tan%2C+Kay+Chen&rft.au=Jiang%2C+Min&rft.date=2020-12-01&rft.eissn=2168-2275&rft.volume=50&rft.issue=12&rft.spage=5099&rft.epage=5112&rft_id=info:doi/10.1109%2FTCYB.2019.2909806&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |