Adaptively Weighted k-Tuple Metric Network for Kinship Verification

Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance betw...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 10; pp. 6173 - 6186
Main Authors Huang, Sheng, Lin, Jingkai, Huangfu, Luwen, Xing, Yun, Hu, Junlin, Zeng, Daniel Dajun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-tuple metric network (AW<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AW<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.<xref ref-type="fn" rid="fn1">1
AbstractList Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-tuple metric network (AW<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AW<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.<xref ref-type="fn" rid="fn1">1
Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k-tuple metric network (AWk-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AWk-TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.
Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k -tuple metric network (AW k -TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k -tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AW k -TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted k -tuple metric network (AW k -TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on k -tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AW k -TMN approach compared with several state-of-the-art approaches. The source codes and models are released.1.
Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images has a kin relation is to train a model that can enlarge the margin between the faces that have no kin relation while reducing the distance between faces that have a kin relation. Most existing approaches primarily exploit duplet (i.e., two input samples without cross pair) or triplet (i.e., single negative pair for each positive pair with low-order cross pair) information, omitting discriminative features from multiple negative pairs. These approaches suffer from weak generalizability, resulting in unsatisfactory performance. Inspired by human visual systems that incorporate both low-order and high-order cross-pair information from local and global perspectives, we propose to leverage high-order cross-pair features and develop a novel end-to-end deep learning model called the adaptively weighted [Formula Omitted]-tuple metric network (AW[Formula Omitted]-TMN). Our main contributions are three-fold. First, a novel cross-pair metric learning loss based on [Formula Omitted]-tuplet loss is introduced. It naturally captures both the low-order and high-order discriminative features from multiple negative pairs. Second, an adaptively weighted scheme is formulated to better highlight hard negative examples among multiple negative pairs, leading to enhanced performance. Third, the model utilizes multiple levels of convolutional features and jointly optimizes feature and metric learning to further exploit the low-order and high-order representational power. Extensive experimental results on three popular kinship verification datasets demonstrate the effectiveness of our proposed AW[Formula Omitted]-TMN approach compared with several state-of-the-art approaches. The source codes and models are released. 1
Author Huang, Sheng
Xing, Yun
Huangfu, Luwen
Hu, Junlin
Zeng, Daniel Dajun
Lin, Jingkai
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0001-5610-0826
  surname: Huang
  fullname: Huang, Sheng
  email: huangsheng@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, and the School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Jingkai
  surname: Lin
  fullname: Lin, Jingkai
  email: linjingkai@cqu.edu.cn
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Luwen
  orcidid: 0000-0003-3926-7901
  surname: Huangfu
  fullname: Huangfu, Luwen
  email: lhuangfu@sdsu.edu
  organization: Fowler College of Business and the Center for Human Dynamics in the Mobile Age, San Diego State University, San Diego, CA, USA
– sequence: 4
  givenname: Yun
  surname: Xing
  fullname: Xing, Yun
  email: yxing@cqu.edu.cn
  organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Junlin
  orcidid: 0000-0002-0117-3494
  surname: Hu
  fullname: Hu, Junlin
  email: hujunlin@buaa.edu.cn
  organization: School of Software, Beihang University, Beijing, China
– sequence: 6
  givenname: Daniel Dajun
  surname: Zeng
  fullname: Zeng, Daniel Dajun
  email: dajun.zeng@ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35439158$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq0KVEKaH1AhVStx4bLBH7v2-ggRtAhoL2mrnqy1PQGHze5ie6n493VIwiGHzmVGo-cdzcx7jA7argWEPhM8JQTL8_nsz-WUYkqnjHAmsPiARpTwKqdUlAfvNRdHaBLCEqeoUktWH9ERKwsmSVmN0OzC1n10L9C8Zr_BPTxGsNlTPh_6BrJ7iN6Z7DvEv51_yhadz25dGx5dn_0C7xbO1NF17Sd0uKibAJNtHqOf11fz2bf87sfXm9nFXW5YIWNeF9oWhBNjGOelxRpXkppSg2ZgwAIRzEpdayoNYOCFlYIzjTUrSkq0NWyMzjZze989DxCiWrlgoGnqFrohKMpLWvFCViKhp3vosht8m7ZTCSmxpJhUifqypQa9Aqt671a1f1W79yRAbADjuxA8LJRx8e3m6GvXKILV2gu19kKtvVBbL5KS7Cl3w_-nOdloHAC88-kLmArK_gGB9pLd
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s11042_024_18879_5
crossref_primary_10_1007_s00371_024_03318_1
crossref_primary_10_1016_j_eswa_2024_124815
crossref_primary_10_1002_elps_202300169
crossref_primary_10_1007_s00371_024_03493_1
Cites_doi 10.1007/s11042-018-6517-0
10.1142/S0218001415560017
10.1016/j.neucom.2019.10.055
10.1145/2964284.2967219
10.1109/CVPR.2018.00231
10.1016/j.neucom.2019.09.089
10.1007/s10489-019-01489-2
10.1016/j.patcog.2020.107342
10.1109/WIFS.2016.7823901
10.5244/C.29.148
10.1109/FG.2011.5771466
10.1109/ICCV.2019.00140
10.1145/2393347.2396297
10.1109/MMUL.2012.4
10.1109/CVPR.2015.7298682
10.1109/ICCV.2019.00659
10.1109/ICIP.2016.7532894
10.1016/j.ins.2017.11.048
10.1016/j.patcog.2020.107541
10.1016/j.patrec.2018.05.027
10.1007/978-3-030-01261-8_28
10.1109/CVPR.2017.145
10.1145/3134421.3134425
10.1016/j.inffus.2018.07.011
10.1109/CVPRW.2014.8
10.1109/CVPR.2018.00131
10.1109/TIFS.2014.2327757
10.1109/SIPROCESS.2018.8600423
10.1109/CVPR.2014.220
10.1007/978-3-030-01231-1_17
10.1007/s00371-013-0884-3
10.1109/FG47880.2020.00127
10.1109/TCYB.2019.2959403
10.1109/TPAMI.2013.134
10.1167/6.12.2
10.1109/ICCV.2019.00109
10.1109/ICME46284.2020.9102823
10.1109/TPAMI.2012.70
10.1109/TIP.2016.2605922
10.1007/978-981-10-7299-4_47
10.1109/CVPR.2016.90
10.1109/ICME46284.2020.9102891
10.1016/j.visres.2008.09.025
10.1109/TIP.2017.2717505
10.1109/TCYB.2014.2376934
10.1109/WACV.2016.7477557
10.1109/BTAS.2015.7358768
10.1109/TMM.2015.2461462
10.1016/j.patrec.2020.06.019
10.1109/CVPR.2014.242
10.1109/TAFFC.2018.2828819
10.1109/BTAS.2012.6374564
10.1109/TIP.2018.2875346
10.1109/TIP.2019.2959253
10.1016/j.inffus.2015.08.006
10.1109/TMM.2020.2972125
10.1109/TPAMI.2019.2906588
10.1109/CVPR.2017.243
10.1109/CVPR.2014.227
10.1109/FG.2019.8756528
10.1109/CVPR.2019.00860
10.1109/ICCV.2017.31
10.1109/ICPR.2014.735
10.1109/FG.2015.7284834
10.1007/s00371-017-1442-1
10.1109/TCSVT.2017.2691801
10.1109/TCYB.2017.2739338
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3163707
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 6186
ExternalDocumentID 35439158
10_1109_TCYB_2022_3163707
9760272
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62176030
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Chongqing
  grantid: cstc2021jcyj-msxmX0568
  funderid: 10.13039/501100005230
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a4bd4161cc3665d0b0892c5beb3ecede173d9bab29ce0e64d9763b0b34521bdc3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 11:53:17 EDT 2025
Mon Jun 30 05:56:54 EDT 2025
Thu Jan 02 22:54:03 EST 2025
Thu Apr 24 23:06:10 EDT 2025
Tue Jul 01 05:12:33 EDT 2025
Wed Aug 27 02:04:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a4bd4161cc3665d0b0892c5beb3ecede173d9bab29ce0e64d9763b0b34521bdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0117-3494
0000-0003-3926-7901
0000-0001-5610-0826
PMID 35439158
PQID 2865092018
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_35439158
crossref_citationtrail_10_1109_TCYB_2022_3163707
ieee_primary_9760272
proquest_miscellaneous_2652864987
proquest_journals_2865092018
crossref_primary_10_1109_TCYB_2022_3163707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref59
ref14
ref58
sohn (ref33) 2016
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
lu (ref25) 2014; 36
lu (ref62) 2015; 1
ref51
ref50
ref46
ref45
kumar (ref27) 2016; 4
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
hermans (ref40) 2017
ref6
deb (ref13) 2019
zhou (ref5) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref74
ref32
ref2
ref1
ref39
ref38
hu (ref26) 2014
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
ref60
ref61
References_xml – ident: ref47
  doi: 10.1007/s11042-018-6517-0
– ident: ref43
  doi: 10.1142/S0218001415560017
– year: 2020
  ident: ref5
  article-title: Facial depression recognition by deep joint label distribution and metric learning
  publication-title: IEEE Trans Affective Comput
– ident: ref68
  doi: 10.1016/j.neucom.2019.10.055
– ident: ref56
  doi: 10.1145/2964284.2967219
– ident: ref10
  doi: 10.1109/CVPR.2018.00231
– ident: ref17
  doi: 10.1016/j.neucom.2019.09.089
– ident: ref66
  doi: 10.1007/s10489-019-01489-2
– ident: ref67
  doi: 10.1016/j.patcog.2020.107342
– ident: ref63
  doi: 10.1109/WIFS.2016.7823901
– ident: ref44
  doi: 10.5244/C.29.148
– ident: ref3
  doi: 10.1109/FG.2011.5771466
– ident: ref61
  doi: 10.1109/ICCV.2019.00140
– ident: ref41
  doi: 10.1145/2393347.2396297
– ident: ref16
  doi: 10.1109/MMUL.2012.4
– ident: ref39
  doi: 10.1109/CVPR.2015.7298682
– ident: ref59
  doi: 10.1109/ICCV.2019.00659
– ident: ref22
  doi: 10.1109/ICIP.2016.7532894
– ident: ref65
  doi: 10.1016/j.ins.2017.11.048
– ident: ref49
  doi: 10.1016/j.patcog.2020.107541
– ident: ref69
  doi: 10.1016/j.patrec.2018.05.027
– ident: ref55
  doi: 10.1007/978-3-030-01261-8_28
– ident: ref32
  doi: 10.1109/CVPR.2017.145
– ident: ref58
  doi: 10.1145/3134421.3134425
– ident: ref31
  doi: 10.1016/j.inffus.2018.07.011
– ident: ref4
  doi: 10.1109/CVPRW.2014.8
– start-page: 252
  year: 2014
  ident: ref26
  article-title: Large margin multi-metric learning for face and kinship verification in the wild
  publication-title: Proc Asian Conf Comput Vis
– ident: ref34
  doi: 10.1109/CVPR.2018.00131
– ident: ref52
  doi: 10.1109/TIFS.2014.2327757
– ident: ref64
  doi: 10.1109/SIPROCESS.2018.8600423
– ident: ref8
  doi: 10.1109/CVPR.2014.220
– ident: ref54
  doi: 10.1007/978-3-030-01231-1_17
– ident: ref46
  doi: 10.1007/s00371-013-0884-3
– ident: ref57
  doi: 10.1109/FG47880.2020.00127
– ident: ref18
  doi: 10.1109/TCYB.2019.2959403
– year: 2017
  ident: ref40
  article-title: In defense of the triplet loss for person re-identification
  publication-title: arXiv 1703 07737
– volume: 36
  start-page: 331
  year: 2014
  ident: ref25
  article-title: Neighborhood repulsed metric learning for kinship verification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.134
– ident: ref11
  doi: 10.1167/6.12.2
– ident: ref36
  doi: 10.1109/ICCV.2019.00109
– ident: ref72
  doi: 10.1109/ICME46284.2020.9102823
– ident: ref1
  doi: 10.1109/TPAMI.2012.70
– ident: ref21
  doi: 10.1109/TIP.2016.2605922
– ident: ref23
  doi: 10.1007/978-981-10-7299-4_47
– ident: ref60
  doi: 10.1109/CVPR.2016.90
– ident: ref71
  doi: 10.1109/ICME46284.2020.9102891
– ident: ref12
  doi: 10.1016/j.visres.2008.09.025
– ident: ref29
  doi: 10.1109/TIP.2017.2717505
– year: 2019
  ident: ref13
  article-title: Finding missing children: Aging deep face features
  publication-title: arXiv 1911 07538
– ident: ref19
  doi: 10.1109/TCYB.2014.2376934
– ident: ref9
  doi: 10.1109/WACV.2016.7477557
– ident: ref20
  doi: 10.1109/BTAS.2015.7358768
– ident: ref14
  doi: 10.1109/TMM.2015.2461462
– ident: ref70
  doi: 10.1016/j.patrec.2020.06.019
– ident: ref2
  doi: 10.1109/CVPR.2014.242
– ident: ref6
  doi: 10.1109/TAFFC.2018.2828819
– ident: ref50
  doi: 10.1109/BTAS.2012.6374564
– ident: ref30
  doi: 10.1109/TIP.2018.2875346
– ident: ref37
  doi: 10.1109/TIP.2019.2959253
– ident: ref51
  doi: 10.1016/j.inffus.2015.08.006
– ident: ref74
  doi: 10.1109/TMM.2020.2972125
– ident: ref48
  doi: 10.1109/TPAMI.2019.2906588
– ident: ref73
  doi: 10.1109/CVPR.2017.243
– start-page: 1857
  year: 2016
  ident: ref33
  article-title: Improved deep metric learning with multi-class N-pair loss objective
  publication-title: Advances in neural information processing systems
– ident: ref45
  doi: 10.1109/CVPR.2014.227
– volume: 4
  start-page: 29
  year: 2016
  ident: ref27
  article-title: Harmonic rule for measuring the facial similarities among relatives
  publication-title: Trans Mach Learn Artif Intell
– ident: ref53
  doi: 10.1109/FG.2019.8756528
– ident: ref35
  doi: 10.1109/CVPR.2019.00860
– ident: ref38
  doi: 10.1109/ICCV.2017.31
– ident: ref15
  doi: 10.1109/ICPR.2014.735
– ident: ref42
  doi: 10.1109/FG.2015.7284834
– ident: ref24
  doi: 10.1007/s00371-017-1442-1
– ident: ref28
  doi: 10.1109/TCSVT.2017.2691801
– ident: ref7
  doi: 10.1109/TCYB.2017.2739338
– volume: 1
  start-page: 1
  year: 2015
  ident: ref62
  article-title: The FG 2015 kinship verification in the wild evaluation
  publication-title: Proc IEEE Int Conf Workshops Autom Face Gest Recognit
SSID ssj0000816898
Score 2.3884907
Snippet Facial image-based kinship verification is a rapidly growing field in computer vision and biometrics. The key to determining whether a pair of facial images...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6173
SubjectTerms Computer vision
Convolutional neural networks
Deep learning
Faces
Feature extraction
Genetics
Human performance
kinship verification
Measurement
metric learning
Performance enhancement
relation network (RN)
Task analysis
triplet loss
Verification
Title Adaptively Weighted k-Tuple Metric Network for Kinship Verification
URI https://ieeexplore.ieee.org/document/9760272
https://www.ncbi.nlm.nih.gov/pubmed/35439158
https://www.proquest.com/docview/2865092018
https://www.proquest.com/docview/2652864987
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxELaAUy9QSoEUWrkSB4rq4Ky9Dx9p1ChqFU6hpaeVHxMJESURZA_013fG66wq1Fa9rbSzXj_G9jf2zHyMnSlnfCilFISdhbZmIJwpjADEDk5XdmCBApwn18X4Rn-5zW-32McuFgYAovMZ9Okx3uWHpW_oqOwSt060onDB3UbDrY3V6s5TIoFEpL7N8EEgqijTJeZAmsvp8McnNAazDG3UQpWSuPdUTlGnxPX-244UKVb-jjbjrjPaY5NNfVtnk_t-s3Z9__NZKsf_bdBLtpvgJ79q9WWfbcHiFdtPE_yRn6cs1B8O2PAq2BWthfMn_j2en0Lg92LarObAJ8TD5fl160POEfjyr3fR8Yt_Q5WepYPA1-xm9Hk6HIvEuCC80mYtrHaBLB7vVVHkQTpZmcznDi1u8BBgUKpgnHWZ8SCh0AEboJx0SiMKcMGrQ7azWC7gmPEZIscCSlABjJ5ZZ30J2hlTqqoM1lc9Jje9XvuUjpxYMeZ1NEukqWnMahqzOo1Zj110n6zaXBz_Ej6g_u4EU1f32OlmaOs0Wx9ris6VBqEQ1up99xrnGV2e2AUsG5QpchTTpsKSj1qV6MreaNKbP__zhL0gkvrWBfCU7awfGniLUGbt3kUd_gVCa-wu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V7YFegNICKQWM1ENBOHXW3oePJaIKtMkphXJa-TGRUKMkotlD--sZe50VQoC4rbSzXj_Gnm_sGX8Ax9Jq50sheMDOXBk94FYXmiNhB6sqMzAYEpzHk2J0pT5f59db8L7LhUHEGHyG_fAYz_L90jVhq-yUTCd5UbTg7pDdz7M2W6vbUYkUEpH8NqMHTriiTMeYA6FPp8NvH8gdzDLyUgtZisC-J_OQdxrY3n-xSZFk5e94M9qd80cw3tS4DTe56Tdr23f3v13m-L9NegwPEwBlZ63G7MEWLp7AXprit-wk3UP9dh-GZ96swmo4v2Nf4w4qenbDp81qjmwcmLgcm7RR5IygL7v4HkO_2BdS6lnaCjyAq_OP0-GIJ84F7qTSa26U9cHncU4WRe6FFZXOXG7J50aHHgel9Noam2mHAgvlqQHSCisV4QDrnXwK24vlAp8DmxF2LLBE6VGrmbHGlais1qWsSm9c1QOx6fXapQvJAy_GvI6OidB1GLM6jFmdxqwH77pPVu1tHP8S3g_93Qmmru7B0WZo6zRfb-uQnys0gSGq1ZvuNc20cHxiFrhsSKbISUzpikp-1qpEV_ZGkw7__M_X8GA0HV_Wl58mFy9gN1DWtwGBR7C9_tHgSwI2a_sq6vNPwBzveA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptively+Weighted+k-Tuple+Metric+Network+for+Kinship+Verification&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Huang%2C+Sheng&rft.au=Lin%2C+Jingkai&rft.au=Huangfu%2C+Luwen&rft.au=Xing%2C+Yun&rft.date=2023-10-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=53&rft.issue=10&rft.spage=6173&rft.epage=6186&rft_id=info:doi/10.1109%2FTCYB.2022.3163707&rft_id=info%3Apmid%2F35439158&rft.externalDocID=9760272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon