Characterization of the ELM-free negative triangularity edge on DIII-D
Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity ( δ < δ crit ≃ − 0.12 ) is found to be inherently free of edge local...
Saved in:
Published in | Plasma physics and controlled fusion Vol. 66; no. 10; pp. 105014 - 105029 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.10.2024
IOP Science |
Subjects | |
Online Access | Get full text |
ISSN | 0741-3335 1361-6587 |
DOI | 10.1088/1361-6587/ad6a83 |
Cover
Abstract | Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity (
δ
<
δ
crit
≃
−
0.12
) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM-free state at weaker average triangularities, provided that at least one of the two
x
-points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite-
n
ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L-mode plasmas. Furthermore, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs. |
---|---|
AbstractList | Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity (
δ
<
δ
crit
≃
−
0.12
) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM-free state at weaker average triangularities, provided that at least one of the two
x
-points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite-
n
ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L-mode plasmas. Furthermore, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs. Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity (δ < δcrit ≃ -0.12) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM free state at weaker average triangularities provided that at least one of the two x-points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite-n ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L mode plasmas. Further, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs. |
Author | Barr, J L Paz-Soldan, C Austin, M E Wehner, W P Parisi, J F Thome, K E Nelson, A O Neiser, T Wilcox, R Marinoni, A Schmitz, L Wilks, T M Scotti, F Richner, N Hyatt, A Welander, A S Osborne, T Yang, J Leuthold, N Cote, T Stewart, S |
Author_xml | – sequence: 1 givenname: A O orcidid: 0000-0002-9612-1936 surname: Nelson fullname: Nelson, A O organization: Columbia University , New York City, NY, United States of America – sequence: 2 givenname: L orcidid: 0000-0003-1346-0914 surname: Schmitz fullname: Schmitz, L organization: University of California—Los Angeles , Los Angeles, CA, United States of America – sequence: 3 givenname: T orcidid: 0000-0002-6020-7113 surname: Cote fullname: Cote, T organization: General Atomics , San Diego, CA, United States of America – sequence: 4 givenname: J F orcidid: 0000-0003-1328-7154 surname: Parisi fullname: Parisi, J F organization: Princeton Plasma Physics Laboratory , Princeton, NJ, United States of America – sequence: 5 givenname: S orcidid: 0000-0002-9146-1544 surname: Stewart fullname: Stewart, S organization: University of Wisconsin—Madison , Madison, WI, United States of America – sequence: 6 givenname: C orcidid: 0000-0001-5069-4934 surname: Paz-Soldan fullname: Paz-Soldan, C organization: Columbia University , New York City, NY, United States of America – sequence: 7 givenname: K E orcidid: 0000-0002-4801-3922 surname: Thome fullname: Thome, K E organization: General Atomics , San Diego, CA, United States of America – sequence: 8 givenname: M E surname: Austin fullname: Austin, M E organization: University of Texas—Austin , Austin, TX, United States of America – sequence: 9 givenname: F surname: Scotti fullname: Scotti, F organization: Lawrence Livermore National Laboratory , Livermore, CA, United States of America – sequence: 10 givenname: J L orcidid: 0000-0001-7768-5931 surname: Barr fullname: Barr, J L organization: General Atomics , San Diego, CA, United States of America – sequence: 11 givenname: A surname: Hyatt fullname: Hyatt, A organization: General Atomics , San Diego, CA, United States of America – sequence: 12 givenname: N surname: Leuthold fullname: Leuthold, N organization: Columbia University , New York City, NY, United States of America – sequence: 13 givenname: A orcidid: 0000-0003-1004-5782 surname: Marinoni fullname: Marinoni, A organization: University of California—San Diego , La Jolla, CA, United States of America – sequence: 14 givenname: T surname: Neiser fullname: Neiser, T organization: General Atomics , San Diego, CA, United States of America – sequence: 15 givenname: T orcidid: 0000-0003-2641-4597 surname: Osborne fullname: Osborne, T organization: General Atomics , San Diego, CA, United States of America – sequence: 16 givenname: N surname: Richner fullname: Richner, N organization: Oak Ridge Associated Universities , Oak Ridge, TN, United States of America – sequence: 17 givenname: A S surname: Welander fullname: Welander, A S organization: General Atomics , San Diego, CA, United States of America – sequence: 18 givenname: W P surname: Wehner fullname: Wehner, W P organization: General Atomics , San Diego, CA, United States of America – sequence: 19 givenname: R orcidid: 0000-0003-1369-1739 surname: Wilcox fullname: Wilcox, R organization: Oak Ridge National Laboratory , Oak Ridge, TN, United States of America – sequence: 20 givenname: T M surname: Wilks fullname: Wilks, T M organization: Massachusetts Institute of Technology , Cambridge, MA, United States of America – sequence: 21 givenname: J orcidid: 0000-0001-8422-8464 surname: Yang fullname: Yang, J organization: Princeton Plasma Physics Laboratory , Princeton, NJ, United States of America |
BackLink | https://www.osti.gov/servlets/purl/2440719$$D View this record in Osti.gov |
BookMark | eNp9kM1LAzEQxYNUsK3ePS6eXZs02U1ylH7oQsWLnkOanW1TalKyqVD_erOueBD0NMPM7w3z3ggNnHeA0DXBdwQLMSG0JHlZCD7RdakFPUPDn9EADTFnJKeUFhdo1LY7jAkR03KIlrOtDtpECPZDR-td5pssbiFbrJ7yJgBkDjZp8Q5ZDFa7zXGvg42nDOoNZAmfV1WVzy_ReaP3LVx91zF6XS5eZo_56vmhmt2vckOZjLk0XFKJaWOKqdS11Ou6K0bogrP0dSEZcC5Ti5ls6jWTXNSCl8ANmGLN6Bjd9Hd9G61qjY1gtsY7ByaqKWOYE5mgsodM8G0boFGJ-zIXg7Z7RbDqIlNdPqrLR_WRJSH-JTwE-6bD6T_JbS-x_qB2_hhcsv83_gnMC31b |
CODEN | PLPHBZ |
CitedBy_id | crossref_primary_10_1088_1361_6587_adb5ba crossref_primary_10_1088_1741_4326_ad89db crossref_primary_10_1088_1361_6587_ad867a crossref_primary_10_1088_1361_6587_ad9be5 crossref_primary_10_1088_1361_6587_ad6f40 |
Cites_doi | 10.1063/1.3495759 10.1063/5.0190818 10.1088/0029-5515/51/10/103016 10.1088/1741-4326/ad2abc 10.1088/1741-4326/ad0605 10.1088/0029-5515/22/8/007 10.1088/1741-4326/ac62f6 10.1088/0741-3335/38/2/001 10.1088/1741-4326/ad39fb 10.1088/1361-6587/acbe65 10.1007/s41614-021-00054-0 10.1103/PhysRevLett.72.222 10.1088/1741-4326/aa5e2a 10.1088/0029-5515/51/8/083007 10.1088/1361-6587/aa7ac0 10.1088/1741-4326/ad69a4 10.1088/0029-5515/49/8/085035 10.1088/0029-5515/41/12/306 10.1088/1741-4326/ad5f41 10.1088/0741-3335/40/5/028 10.1088/0029-5515/56/8/086003 10.1063/1.5091802 10.1088/1361-6587/ac3fec 10.1088/0029-5515/39/12/302 10.1088/0741-3335/49/12B/S01 10.1088/1741-4326/ac945e 10.1088/1361-6587/abe39d 10.1088/0029-5515/55/8/083008 10.1063/1.5131157 10.1063/1.4872033 10.1088/1741-4326/ab5e65 10.1063/1.3699623 10.1088/1741-4326/ac4369 10.1088/0029-5515/55/6/063013 10.1016/j.fusengdes.2020.112163 10.1088/1741-4326/ac95ac 10.1088/0029-5515/47/7/002 10.1088/0741-3335/57/5/054010 10.1088/1741-4326/ac27ca 10.1063/1.1149416 10.1088/0029-5515/42/5/313 10.1088/1742-6596/123/1/012033 10.1103/PhysRevLett.90.185006 10.1088/0741-3335/53/11/115010 10.1063/1.4958915 10.1063/1.1537038 10.1088/0741-3335/58/4/045020 10.1088/0741-3335/51/5/055016 10.1088/0029-5515/39/11Y/321 10.1088/1741-4326/ac1f60 10.1088/0029-5515/49/8/085037 10.1063/1.4738656 10.1088/1741-4326/ad1b94 10.1103/PhysRevLett.122.115001 10.1088/1741-4326/ac8064 10.1088/1361-6587/ad6708 10.1088/1361-6587/ac1ea4 10.1088/0029-5515/39/9Y/309 10.1063/1.4876612 10.1088/1361-6587/ad27f1 10.1088/1361-6587/ad4175 10.1088/0741-3335/39/12/008 10.1016/j.cpc.2009.02.008 10.1088/1361-6587/ad867a 10.1088/0029-5515/54/11/116001 10.1103/PhysRevLett.131.195101 10.1016/j.nme.2022.101308 10.1103/PhysRevLett.128.185003 10.1088/1361-6587/ac048b 10.1063/1.1449463 10.1063/5.0144711 10.1088/1741-4326/acd564 10.1088/1741-4326/ac8563 10.1088/0029-5515/50/10/105005 10.1088/1741-4326/ab076d |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd |
CorporateAuthor | the DIII-D Team Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) |
CorporateAuthor_xml | – name: the DIII-D Team – name: Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States) |
DBID | O3W TSCCA AAYXX CITATION OIOZB OTOTI |
DOI | 10.1088/1361-6587/ad6a83 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-6587 |
ExternalDocumentID | 2440719 10_1088_1361_6587_ad6a83 ppcfad6a83 |
GrantInformation_xml | – fundername: Fusion Energy Sciences grantid: DE- FG02-08ER54999; DE-AC02-09CH11466; DE-AC05-00OR22725; DE-AC52-07NA27344; DE-FC02-04ER54698; DE-FG02-97ER54415; DE-SC0014264; DE-SC0020287; DE-SC0022270; DE-SC0022272 funderid: http://dx.doi.org/10.13039/100006207 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX CITATION AEINN OIOZB OTOTI |
ID | FETCH-LOGICAL-c349t-9c793903fc529ad9abd9ad9c8a5746a8594e77946a049fdb4978d876e7cec5b43 |
IEDL.DBID | IOP |
ISSN | 0741-3335 |
IngestDate | Mon Sep 08 02:21:59 EDT 2025 Tue Jul 01 02:47:52 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 Wed Sep 11 03:59:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-9c793903fc529ad9abd9ad9c8a5746a8594e77946a049fdb4978d876e7cec5b43 |
Notes | PPCF-104643.R1 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) USDOE Office of Science (SC), Fusion Energy Sciences (FES) None SC0022270; SC0022272; SC0020287; FC02-04ER54698; AC02-09CH11466; FG02-08ER54999; FG02-97ER54415; AC52-07NA27344; AC05-00OR22725; SC0014264; AC02-09CH11466 |
ORCID | 0000-0002-6020-7113 0000-0001-8422-8464 0000-0001-7768-5931 0000-0002-9146-1544 0000-0003-1328-7154 0000-0002-9612-1936 0000-0003-2641-4597 0000-0003-1346-0914 0000-0002-4801-3922 0000-0003-1004-5782 0000-0003-1369-1739 0000-0001-5069-4934 0000000150694934 0000000313287154 0000000291461544 0000000326414597 0000000296121936 0000000310045782 0000000313691739 0000000248013922 0000000260207113 0000000313460914 0000000177685931 0000000184228464 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6587/ad6a83 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_1088_1361_6587_ad6a83 osti_scitechconnect_2440719 crossref_citationtrail_10_1088_1361_6587_ad6a83 crossref_primary_10_1088_1361_6587_ad6a83 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plasma physics and controlled fusion |
PublicationTitleAbbrev | PPCF |
PublicationTitleAlternate | Plasma Phys. Control. Fusion |
PublicationYear | 2024 |
Publisher | IOP Publishing IOP Science |
Publisher_xml | – name: IOP Publishing – name: IOP Science |
References | Martin (ppcfad6a83bib44) 2008; 123 Boyes (ppcfad6a83bib78) 2023; 63 Viezzer (ppcfad6a83bib19) 2023-03; 34 Groebner (ppcfad6a83bib71) 2009; 49 Marinoni (ppcfad6a83bib72) 2009; 51 Groebner (ppcfad6a83bib70) 2001; 41 Kim (ppcfad6a83bib49) 2003; 90 Coda (ppcfad6a83bib15) 2022; 64 Chrystal (ppcfad6a83bib34) 2016; 87 Nelson (ppcfad6a83bib14) 2022; 62 Dickinson (ppcfad6a83bib53) 2024; 53 ITER Physics Expert Group on Confinement and Transport (ppcfad6a83bib62) 1999; 39 Saarelma (ppcfad6a83bib13) 2021; 63 Giacomin (ppcfad6a83bib63) 2022; 128 Camenen (ppcfad6a83bib8) 2007; 47 Singh (ppcfad6a83bib41) 2022; 62 Leonard (ppcfad6a83bib2) 2014; 21 Frank (ppcfad6a83bib21) 2022; 62 Nelson (ppcfad6a83bib28) 2023b; 65 Zohm (ppcfad6a83bib48) 1994; 72 Merlo (ppcfad6a83bib73) 2021; 63 Merle (ppcfad6a83bib9) 2017; 59 Paz-Soldan (ppcfad6a83bib18) 2021; 63 Overview of ASDEX upgrade results (ppcfad6a83bib75) 1999; 39 Meneghini (ppcfad6a83bib82) 2015; 55 Rutherford and (ppcfad6a83bib23) 2024; 66 Guizzo (ppcfad6a83bib24) 2024; 66 Colchin (ppcfad6a83bib35) 2003; 74 Snyder (ppcfad6a83bib69) 2012-05; 19 Thomas (ppcfad6a83bib45) 1998; 40 McKee (ppcfad6a83bib81) 1999; 70 Xing (ppcfad6a83bib61) 2021; 163 Snyder (ppcfad6a83bib68) 2011; 51 Nelson (ppcfad6a83bib5) 2020; 60 Luxon (ppcfad6a83bib26) 2002; 42 Paz-Soldan (ppcfad6a83bib29) 2024; 64 Tang (ppcfad6a83bib57) 1982; 22 Hughes (ppcfad6a83bib77) 2011; 51 Thome and (ppcfad6a83bib27) 2024 Kim (ppcfad6a83bib46) 2022; 62 Pochelon (ppcfad6a83bib7) 1999; 39 Austin (ppcfad6a83bib10) 2019; 122 Whyte (ppcfad6a83bib66) 2010; 50 Parisi (ppcfad6a83bib54) 2024; 64 Schwartz (ppcfad6a83bib22) 2022; 62 Yu (ppcfad6a83bib39) 2023; 30 Hubbard (ppcfad6a83bib67) 2016; 56 Marinoni (ppcfad6a83bib37) 2021; 5 Singh (ppcfad6a83bib42) 2023; 63 Kramer (ppcfad6a83bib43) 2024; vol 2023 Parisi (ppcfad6a83bib55) 2024; 31 Aiba (ppcfad6a83bib59) 2016; 58 Nelson (ppcfad6a83bib50) 2021; 61 Gunn (ppcfad6a83bib17) 2017; 57 Hong (ppcfad6a83bib64) 2023 Ponce-Marquez (ppcfad6a83bib32) 2010; 81 Nishimura (ppcfad6a83bib40) 2020; 27 Urano (ppcfad6a83bib4) 2014; 54 Marinoni (ppcfad6a83bib11) 2019; 26 Eldon (ppcfad6a83bib33) 2012; 83 Merlo (ppcfad6a83bib38) 2015; 57 Zhang (ppcfad6a83bib52) 2024; 64 Miller (ppcfad6a83bib25) 2024 Cote and (ppcfad6a83bib79) 2024 Snyder (ppcfad6a83bib3) 2009; 49 Scotti (ppcfad6a83bib30) 2024; 64 Zhao and (ppcfad6a83bib31) 2024; 66 Sauter (ppcfad6a83bib65) 2014; 21 Medvedev (ppcfad6a83bib20) 2015; 55 the DIII-D Team (ppcfad6a83bib12) 2021; 61 Wagner (ppcfad6a83bib1) 2007; 49 Nelson (ppcfad6a83bib16) 2023a; 131 Aiba (ppcfad6a83bib58) 2009-08; 180 T. ASDEX Upgrade Team (ppcfad6a83bib51) 2022; 63 Stewart and (ppcfad6a83bib80) 2024 Azumi (ppcfad6a83bib56) 1981 Kikuchi (ppcfad6a83bib6) 2019; 59 Suttrop (ppcfad6a83bib76) 1997; 39 Mariani (ppcfad6a83bib74) 2024; 64 Sauter (ppcfad6a83bib47) 2023 Zohm (ppcfad6a83bib36) 1996; 38 Snyder (ppcfad6a83bib60) 2002; 9 |
References_xml | – volume: 81 start-page: 10D525 year: 2010 ident: ppcfad6a83bib32 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3495759 – volume: 31 year: 2024 ident: ppcfad6a83bib55 publication-title: Phys. Plasmas doi: 10.1063/5.0190818 – volume: 51 year: 2011 ident: ppcfad6a83bib68 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/10/103016 – volume: 64 year: 2024 ident: ppcfad6a83bib74 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad2abc – year: 2023 ident: ppcfad6a83bib64 article-title: Characterization of density limit in negative triangularity plasmas on DIII-d Tokamak – year: 2023 ident: ppcfad6a83bib47 – volume: 63 year: 2023 ident: ppcfad6a83bib42 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad0605 – volume: 22 start-page: 1079 year: 1982 ident: ppcfad6a83bib57 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/22/8/007 – volume: 62 year: 2022 ident: ppcfad6a83bib22 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac62f6 – volume: 38 start-page: 105 year: 1996 ident: ppcfad6a83bib36 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/38/2/001 – volume: 64 year: 2024 ident: ppcfad6a83bib54 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad39fb – volume: 65 year: 2023b ident: ppcfad6a83bib28 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/acbe65 – volume: 5 start-page: 6 year: 2021 ident: ppcfad6a83bib37 publication-title: Rev. Mod. Plasma Phys. doi: 10.1007/s41614-021-00054-0 – volume: 72 start-page: 222 year: 1994 ident: ppcfad6a83bib48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.222 – volume: 57 year: 2017 ident: ppcfad6a83bib17 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/aa5e2a – volume: 51 year: 2011 ident: ppcfad6a83bib77 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/51/8/083007 – volume: 59 year: 2017 ident: ppcfad6a83bib9 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/aa7ac0 – volume: 64 year: 2024 ident: ppcfad6a83bib29 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad69a4 – volume: 49 year: 2009 ident: ppcfad6a83bib3 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/8/085035 – volume: 41 start-page: 1789 year: 2001 ident: ppcfad6a83bib70 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/41/12/306 – volume: 64 year: 2024 ident: ppcfad6a83bib30 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad5f41 – volume: 40 start-page: 707 year: 1998 ident: ppcfad6a83bib45 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/40/5/028 – volume: 56 year: 2016 ident: ppcfad6a83bib67 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/8/086003 – volume: 26 year: 2019 ident: ppcfad6a83bib11 publication-title: Phys. Plasmas doi: 10.1063/1.5091802 – volume: 64 year: 2022 ident: ppcfad6a83bib15 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac3fec – volume: 39 start-page: 2175 year: 1999 ident: ppcfad6a83bib62 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/12/302 – volume: 49 start-page: B1 year: 2007 ident: ppcfad6a83bib1 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/49/12B/S01 – volume: 62 year: 2022 ident: ppcfad6a83bib41 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac945e – volume: 63 year: 2021 ident: ppcfad6a83bib73 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/abe39d – volume: 55 year: 2015 ident: ppcfad6a83bib82 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/8/083008 – volume: vol 2023 year: 2024 ident: ppcfad6a83bib43 article-title: Full orbit calculations show that the negative triangularity and H-mode plasma edge are equivalent publication-title: APS Division of Plasma Physics Meeting Abstracts – volume: 27 year: 2020 ident: ppcfad6a83bib40 publication-title: Phys. Plasmas doi: 10.1063/1.5131157 – volume: 21 year: 2014 ident: ppcfad6a83bib2 publication-title: Phys. Plasmas doi: 10.1063/1.4872033 – volume: 60 year: 2020 ident: ppcfad6a83bib5 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab5e65 – year: 2024 ident: ppcfad6a83bib27 article-title: Overview of results from the 2023DIII-D negative triangularity campaign publication-title: Plasma Phys. Control. Fusion – volume: 19 year: 2012-05 ident: ppcfad6a83bib69 publication-title: Phys. Plasmas doi: 10.1063/1.3699623 – volume: 62 year: 2022 ident: ppcfad6a83bib46 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac4369 – volume: 55 year: 2015 ident: ppcfad6a83bib20 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/55/6/063013 – volume: 163 year: 2021 ident: ppcfad6a83bib61 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2020.112163 – volume: 62 year: 2022 ident: ppcfad6a83bib21 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac95ac – year: 2024 ident: ppcfad6a83bib79 article-title: First observations of edge instabilities in strongly shaped negative triangularly plasmas onDIII-D publication-title: Plasma Phys. Control. Fusion – volume: 47 start-page: 510 year: 2007 ident: ppcfad6a83bib8 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/47/7/002 – volume: 57 year: 2015 ident: ppcfad6a83bib38 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/57/5/054010 – volume: 61 year: 2021 ident: ppcfad6a83bib50 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac27ca – volume: 70 start-page: 913 year: 1999 ident: ppcfad6a83bib81 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1149416 – volume: 42 start-page: 614 year: 2002 ident: ppcfad6a83bib26 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/42/5/313 – volume: 123 year: 2008 ident: ppcfad6a83bib44 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/123/1/012033 – volume: 90 year: 2003 ident: ppcfad6a83bib49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.185006 – volume: 53 year: 2024 ident: ppcfad6a83bib53 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/53/11/115010 – volume: 87 start-page: 11E512 year: 2016 ident: ppcfad6a83bib34 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4958915 – volume: 74 start-page: 2068 year: 2003 ident: ppcfad6a83bib35 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1537038 – volume: 58 year: 2016 ident: ppcfad6a83bib59 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/58/4/045020 – volume: 51 year: 2009 ident: ppcfad6a83bib72 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/51/5/055016 – volume: 39 start-page: 1807 year: 1999 ident: ppcfad6a83bib7 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/11Y/321 – volume: 61 year: 2021 ident: ppcfad6a83bib12 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac1f60 – volume: 49 year: 2009 ident: ppcfad6a83bib71 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/49/8/085037 – volume: 83 start-page: 10E343 year: 2012 ident: ppcfad6a83bib33 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4738656 – volume: 64 year: 2024 ident: ppcfad6a83bib52 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ad1b94 – volume: 122 year: 2019 ident: ppcfad6a83bib10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.115001 – volume: 62 year: 2022 ident: ppcfad6a83bib14 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac8064 – volume: 66 year: 2024 ident: ppcfad6a83bib23 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad6708 – volume: 63 year: 2021 ident: ppcfad6a83bib13 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac1ea4 – volume: 39 start-page: 1321 year: 1999 ident: ppcfad6a83bib75 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/9Y/309 – start-page: submitted year: 2024 ident: ppcfad6a83bib80 article-title: Characterization of turbulence properties in negative TriangularityDIII-D plasmas publication-title: Plasma Phys. Control. Fusion – volume: 21 year: 2014 ident: ppcfad6a83bib65 publication-title: Phys. Plasmas doi: 10.1063/1.4876612 – volume: 66 year: 2024 ident: ppcfad6a83bib31 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad27f1 – volume: 66 year: 2024 ident: ppcfad6a83bib24 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad4175 – volume: 39 start-page: 2051 year: 1997 ident: ppcfad6a83bib76 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/39/12/008 – volume: 180 start-page: 1282 year: 2009-08 ident: ppcfad6a83bib58 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.008 – year: 2024 ident: ppcfad6a83bib25 article-title: Power handling solutions for a negative triangularity radiative L-mode pilot plant publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ad867a – volume: 54 year: 2014 ident: ppcfad6a83bib4 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/11/116001 – volume: 131 year: 2023a ident: ppcfad6a83bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.195101 – volume: 34 year: 2023-03 ident: ppcfad6a83bib19 publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2022.101308 – volume: 128 year: 2022 ident: ppcfad6a83bib63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.185003 – volume: 63 year: 2021 ident: ppcfad6a83bib18 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/1361-6587/ac048b – volume: 9 start-page: 2037 year: 2002 ident: ppcfad6a83bib60 publication-title: Phys. Plasmas doi: 10.1063/1.1449463 – volume: 30 year: 2023 ident: ppcfad6a83bib39 publication-title: Phys. Plasmas doi: 10.1063/5.0144711 – volume: 63 year: 2023 ident: ppcfad6a83bib78 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/acd564 – volume: 63 year: 2022 ident: ppcfad6a83bib51 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ac8563 – year: 1981 ident: ppcfad6a83bib56 article-title: Evolution of stable high-beta Tokamak equilibria – volume: 50 year: 2010 ident: ppcfad6a83bib66 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/50/10/105005 – volume: 59 year: 2019 ident: ppcfad6a83bib6 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab076d |
SSID | ssj0011826 |
Score | 2.4615352 |
Snippet | Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 105014 |
SubjectTerms | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY negative triangularity pedestal Tokamak |
Title | Characterization of the ELM-free negative triangularity edge on DIII-D |
URI | https://iopscience.iop.org/article/10.1088/1361-6587/ad6a83 https://www.osti.gov/servlets/purl/2440719 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZaEBILb8RbHmBgcF-2E1tMiLaiCCgDFR2QIsd2GEApounCr-euDhUgVCGWJMPFcc6P-84-f0fIcYY-g3OaCa88E6mMWRqDl-LA-hnVyFRk8ezwzW10ORBXQzmskLPZWZjRazn11-AxEAUHFZYBcare5FGTgeGM68ZFRvEqWcTEldi9e_272RYCAufAwdlknHNZ7lH-VsI3m1SF78L8PIIR9sXSdFfJ42cdQ4DJc21SpDX7_oO-8Z8_sUZWSgRKz4PoOqn4fIMsTSNB7XiTdC9mFM7hhCYdZRRQIu1c37DszXua-6cpWzjFjB85prLHBHgUF-YoiLd7vR5rb5FBt3N_ccnKZAvMcqELpi2MVN3gmZUtbZw2qcObVUbGAmootfAxstEb8Ckyl2JmOgdTqY-ttzIVfJss5KPc7xCqwM20kZMC0JHQDWd8lHqAXZk0GdLx7JL6p7oTWzKRY0KMl2S6I65UgtpJUDtJ0M4uOZ298RpYOObInoDSk3IojufI7WMbJ9BSSJdrMa7IFgnAHUBdeu-PpeyT5RbAnBDed0AWireJPwSYUqRH0-4I1z5_-ADYiN2l |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCMSCeIpSHh5gYDBtsZ3YI6KtWmiBgYpuluMHC0orWv4_d0moQEKIKRkuTnKx7z7H5-8j5DzinMF7zURQgYlMpixLYZbiIftZ1Yoqcbh3ePSQ9MfibiInlc5psRdmOqtC_xWclkTBpQurgjjVbPOkzSBxpk3rE6t4c-bjKlmTPJFInv_IX5bLCAieSx7ONuOcy2qd8rdWfuSlVbg3xOgpjLJv2aa3TbYqmEhvyofaISsh3yXrRbmmm--R3u2SZ7ncRkmnkQKUo93hiMX3EGgeXgtKb4qyHDnqzaNKHcW_ZxTMO4PBgHX2ybjXfb7ts0oRgTku9IJpB8NJt3h08lpbr23m8eCUlamAt5BahBQp4y0A_-gzlI_zEO9C6oKTmeAHpJZP83BIqIK5oEu8FABhhG55G5IsADaK0kbkzKmT5pc_jKvowlG14s0Uy9ZKGfSgQQ-a0oN1crm8YlZSZfxhewEuNtV4mf9h18CPYKBPIKetw-IftzCASQAa6aN_tnJGNp46PTMcPNw3yOY1wJKyHO-Y1BbvH-EEYMUiOy26zicVnsFk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+ELM-free+negative+triangularity+edge+on+DIII-D&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Nelson%2C+A.+O.&rft.au=Schmitz%2C+L.&rft.au=Cote%2C+T.&rft.au=Parisi%2C+J.+F.&rft.date=2024-10-01&rft.pub=IOP+Science&rft.issn=0741-3335&rft.volume=66&rft.issue=10&rft_id=info:doi/10.1088%2F1361-6587%2Fad6a83&rft.externalDocID=2440719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon |