Characterization of the ELM-free negative triangularity edge on DIII-D

Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity ( δ < δ crit ≃ − 0.12 ) is found to be inherently free of edge local...

Full description

Saved in:
Bibliographic Details
Published inPlasma physics and controlled fusion Vol. 66; no. 10; pp. 105014 - 105029
Main Authors Nelson, A O, Schmitz, L, Cote, T, Parisi, J F, Stewart, S, Paz-Soldan, C, Thome, K E, Austin, M E, Scotti, F, Barr, J L, Hyatt, A, Leuthold, N, Marinoni, A, Neiser, T, Osborne, T, Richner, N, Welander, A S, Wehner, W P, Wilcox, R, Wilks, T M, Yang, J
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.10.2024
IOP Science
Subjects
Online AccessGet full text
ISSN0741-3335
1361-6587
DOI10.1088/1361-6587/ad6a83

Cover

Abstract Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity ( δ < δ crit ≃ − 0.12 ) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM-free state at weaker average triangularities, provided that at least one of the two x -points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite- n ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L-mode plasmas. Furthermore, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs.
AbstractList Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity ( δ < δ crit ≃ − 0.12 ) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM-free state at weaker average triangularities, provided that at least one of the two x -points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite- n ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L-mode plasmas. Furthermore, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs.
Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode plasmas. On DIII-D, every plasma with sufficiently negative triangularity (δ < δcrit ≃ -0.12) is found to be inherently free of edge localized modes (ELMs), even at injected powers well above the predicted L-H power threshold. It is also possible to access an ELM free state at weaker average triangularities provided that at least one of the two x-points is still sufficiently negative. Access to the ELM-free NT scenario is found to coincide with the closure of the second stability region for infinite-n ballooning modes, suggesting that ballooning stability may play a role in limiting the accessible pressure gradient in NT plasmas. Despite this, NT plasmas are able to support small pedestals and are typically characterized by an enhancement of edge pressure gradients beyond those found in traditional L mode plasmas. Further, the pressure gradient inside of this small pedestal is unusually steep, allowing access to high core performance that is competitive with other ELM-free regimes previously achieved on DIII-D. Since ELM-free operation in NT is linked directly to the magnetic geometry, NT fusion pilot plants are predicted to maintain advantageous edge conditions even in burning plasma regimes, potentially eliminating reactor core-integration issues caused by ELMs.
Author Barr, J L
Paz-Soldan, C
Austin, M E
Wehner, W P
Parisi, J F
Thome, K E
Nelson, A O
Neiser, T
Wilcox, R
Marinoni, A
Schmitz, L
Wilks, T M
Scotti, F
Richner, N
Hyatt, A
Welander, A S
Osborne, T
Yang, J
Leuthold, N
Cote, T
Stewart, S
Author_xml – sequence: 1
  givenname: A O
  orcidid: 0000-0002-9612-1936
  surname: Nelson
  fullname: Nelson, A O
  organization: Columbia University , New York City, NY, United States of America
– sequence: 2
  givenname: L
  orcidid: 0000-0003-1346-0914
  surname: Schmitz
  fullname: Schmitz, L
  organization: University of California—Los Angeles , Los Angeles, CA, United States of America
– sequence: 3
  givenname: T
  orcidid: 0000-0002-6020-7113
  surname: Cote
  fullname: Cote, T
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 4
  givenname: J F
  orcidid: 0000-0003-1328-7154
  surname: Parisi
  fullname: Parisi, J F
  organization: Princeton Plasma Physics Laboratory , Princeton, NJ, United States of America
– sequence: 5
  givenname: S
  orcidid: 0000-0002-9146-1544
  surname: Stewart
  fullname: Stewart, S
  organization: University of Wisconsin—Madison , Madison, WI, United States of America
– sequence: 6
  givenname: C
  orcidid: 0000-0001-5069-4934
  surname: Paz-Soldan
  fullname: Paz-Soldan, C
  organization: Columbia University , New York City, NY, United States of America
– sequence: 7
  givenname: K E
  orcidid: 0000-0002-4801-3922
  surname: Thome
  fullname: Thome, K E
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 8
  givenname: M E
  surname: Austin
  fullname: Austin, M E
  organization: University of Texas—Austin , Austin, TX, United States of America
– sequence: 9
  givenname: F
  surname: Scotti
  fullname: Scotti, F
  organization: Lawrence Livermore National Laboratory , Livermore, CA, United States of America
– sequence: 10
  givenname: J L
  orcidid: 0000-0001-7768-5931
  surname: Barr
  fullname: Barr, J L
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 11
  givenname: A
  surname: Hyatt
  fullname: Hyatt, A
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 12
  givenname: N
  surname: Leuthold
  fullname: Leuthold, N
  organization: Columbia University , New York City, NY, United States of America
– sequence: 13
  givenname: A
  orcidid: 0000-0003-1004-5782
  surname: Marinoni
  fullname: Marinoni, A
  organization: University of California—San Diego , La Jolla, CA, United States of America
– sequence: 14
  givenname: T
  surname: Neiser
  fullname: Neiser, T
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 15
  givenname: T
  orcidid: 0000-0003-2641-4597
  surname: Osborne
  fullname: Osborne, T
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 16
  givenname: N
  surname: Richner
  fullname: Richner, N
  organization: Oak Ridge Associated Universities , Oak Ridge, TN, United States of America
– sequence: 17
  givenname: A S
  surname: Welander
  fullname: Welander, A S
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 18
  givenname: W P
  surname: Wehner
  fullname: Wehner, W P
  organization: General Atomics , San Diego, CA, United States of America
– sequence: 19
  givenname: R
  orcidid: 0000-0003-1369-1739
  surname: Wilcox
  fullname: Wilcox, R
  organization: Oak Ridge National Laboratory , Oak Ridge, TN, United States of America
– sequence: 20
  givenname: T M
  surname: Wilks
  fullname: Wilks, T M
  organization: Massachusetts Institute of Technology , Cambridge, MA, United States of America
– sequence: 21
  givenname: J
  orcidid: 0000-0001-8422-8464
  surname: Yang
  fullname: Yang, J
  organization: Princeton Plasma Physics Laboratory , Princeton, NJ, United States of America
BackLink https://www.osti.gov/servlets/purl/2440719$$D View this record in Osti.gov
BookMark eNp9kM1LAzEQxYNUsK3ePS6eXZs02U1ylH7oQsWLnkOanW1TalKyqVD_erOueBD0NMPM7w3z3ggNnHeA0DXBdwQLMSG0JHlZCD7RdakFPUPDn9EADTFnJKeUFhdo1LY7jAkR03KIlrOtDtpECPZDR-td5pssbiFbrJ7yJgBkDjZp8Q5ZDFa7zXGvg42nDOoNZAmfV1WVzy_ReaP3LVx91zF6XS5eZo_56vmhmt2vckOZjLk0XFKJaWOKqdS11Ou6K0bogrP0dSEZcC5Ti5ls6jWTXNSCl8ANmGLN6Bjd9Hd9G61qjY1gtsY7ByaqKWOYE5mgsodM8G0boFGJ-zIXg7Z7RbDqIlNdPqrLR_WRJSH-JTwE-6bD6T_JbS-x_qB2_hhcsv83_gnMC31b
CODEN PLPHBZ
CitedBy_id crossref_primary_10_1088_1361_6587_adb5ba
crossref_primary_10_1088_1741_4326_ad89db
crossref_primary_10_1088_1361_6587_ad867a
crossref_primary_10_1088_1361_6587_ad9be5
crossref_primary_10_1088_1361_6587_ad6f40
Cites_doi 10.1063/1.3495759
10.1063/5.0190818
10.1088/0029-5515/51/10/103016
10.1088/1741-4326/ad2abc
10.1088/1741-4326/ad0605
10.1088/0029-5515/22/8/007
10.1088/1741-4326/ac62f6
10.1088/0741-3335/38/2/001
10.1088/1741-4326/ad39fb
10.1088/1361-6587/acbe65
10.1007/s41614-021-00054-0
10.1103/PhysRevLett.72.222
10.1088/1741-4326/aa5e2a
10.1088/0029-5515/51/8/083007
10.1088/1361-6587/aa7ac0
10.1088/1741-4326/ad69a4
10.1088/0029-5515/49/8/085035
10.1088/0029-5515/41/12/306
10.1088/1741-4326/ad5f41
10.1088/0741-3335/40/5/028
10.1088/0029-5515/56/8/086003
10.1063/1.5091802
10.1088/1361-6587/ac3fec
10.1088/0029-5515/39/12/302
10.1088/0741-3335/49/12B/S01
10.1088/1741-4326/ac945e
10.1088/1361-6587/abe39d
10.1088/0029-5515/55/8/083008
10.1063/1.5131157
10.1063/1.4872033
10.1088/1741-4326/ab5e65
10.1063/1.3699623
10.1088/1741-4326/ac4369
10.1088/0029-5515/55/6/063013
10.1016/j.fusengdes.2020.112163
10.1088/1741-4326/ac95ac
10.1088/0029-5515/47/7/002
10.1088/0741-3335/57/5/054010
10.1088/1741-4326/ac27ca
10.1063/1.1149416
10.1088/0029-5515/42/5/313
10.1088/1742-6596/123/1/012033
10.1103/PhysRevLett.90.185006
10.1088/0741-3335/53/11/115010
10.1063/1.4958915
10.1063/1.1537038
10.1088/0741-3335/58/4/045020
10.1088/0741-3335/51/5/055016
10.1088/0029-5515/39/11Y/321
10.1088/1741-4326/ac1f60
10.1088/0029-5515/49/8/085037
10.1063/1.4738656
10.1088/1741-4326/ad1b94
10.1103/PhysRevLett.122.115001
10.1088/1741-4326/ac8064
10.1088/1361-6587/ad6708
10.1088/1361-6587/ac1ea4
10.1088/0029-5515/39/9Y/309
10.1063/1.4876612
10.1088/1361-6587/ad27f1
10.1088/1361-6587/ad4175
10.1088/0741-3335/39/12/008
10.1016/j.cpc.2009.02.008
10.1088/1361-6587/ad867a
10.1088/0029-5515/54/11/116001
10.1103/PhysRevLett.131.195101
10.1016/j.nme.2022.101308
10.1103/PhysRevLett.128.185003
10.1088/1361-6587/ac048b
10.1063/1.1449463
10.1063/5.0144711
10.1088/1741-4326/acd564
10.1088/1741-4326/ac8563
10.1088/0029-5515/50/10/105005
10.1088/1741-4326/ab076d
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
CorporateAuthor the DIII-D Team
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
CorporateAuthor_xml – name: the DIII-D Team
– name: Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
DBID O3W
TSCCA
AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1088/1361-6587/ad6a83
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-6587
ExternalDocumentID 2440719
10_1088_1361_6587_ad6a83
ppcfad6a83
GrantInformation_xml – fundername: Fusion Energy Sciences
  grantid: DE- FG02-08ER54999; DE-AC02-09CH11466; DE-AC05-00OR22725; DE-AC52-07NA27344; DE-FC02-04ER54698; DE-FG02-97ER54415; DE-SC0014264; DE-SC0020287; DE-SC0022270; DE-SC0022272
  funderid: http://dx.doi.org/10.13039/100006207
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
CITATION
AEINN
OIOZB
OTOTI
ID FETCH-LOGICAL-c349t-9c793903fc529ad9abd9ad9c8a5746a8594e77946a049fdb4978d876e7cec5b43
IEDL.DBID IOP
ISSN 0741-3335
IngestDate Mon Sep 08 02:21:59 EDT 2025
Tue Jul 01 02:47:52 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Wed Sep 11 03:59:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-9c793903fc529ad9abd9ad9c8a5746a8594e77946a049fdb4978d876e7cec5b43
Notes PPCF-104643.R1
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
None
SC0022270; SC0022272; SC0020287; FC02-04ER54698; AC02-09CH11466; FG02-08ER54999; FG02-97ER54415; AC52-07NA27344; AC05-00OR22725; SC0014264; AC02-09CH11466
ORCID 0000-0002-6020-7113
0000-0001-8422-8464
0000-0001-7768-5931
0000-0002-9146-1544
0000-0003-1328-7154
0000-0002-9612-1936
0000-0003-2641-4597
0000-0003-1346-0914
0000-0002-4801-3922
0000-0003-1004-5782
0000-0003-1369-1739
0000-0001-5069-4934
0000000150694934
0000000313287154
0000000291461544
0000000326414597
0000000296121936
0000000310045782
0000000313691739
0000000248013922
0000000260207113
0000000313460914
0000000177685931
0000000184228464
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6587/ad6a83
PageCount 16
ParticipantIDs iop_journals_10_1088_1361_6587_ad6a83
osti_scitechconnect_2440719
crossref_citationtrail_10_1088_1361_6587_ad6a83
crossref_primary_10_1088_1361_6587_ad6a83
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plasma physics and controlled fusion
PublicationTitleAbbrev PPCF
PublicationTitleAlternate Plasma Phys. Control. Fusion
PublicationYear 2024
Publisher IOP Publishing
IOP Science
Publisher_xml – name: IOP Publishing
– name: IOP Science
References Martin (ppcfad6a83bib44) 2008; 123
Boyes (ppcfad6a83bib78) 2023; 63
Viezzer (ppcfad6a83bib19) 2023-03; 34
Groebner (ppcfad6a83bib71) 2009; 49
Marinoni (ppcfad6a83bib72) 2009; 51
Groebner (ppcfad6a83bib70) 2001; 41
Kim (ppcfad6a83bib49) 2003; 90
Coda (ppcfad6a83bib15) 2022; 64
Chrystal (ppcfad6a83bib34) 2016; 87
Nelson (ppcfad6a83bib14) 2022; 62
Dickinson (ppcfad6a83bib53) 2024; 53
ITER Physics Expert Group on Confinement and Transport (ppcfad6a83bib62) 1999; 39
Saarelma (ppcfad6a83bib13) 2021; 63
Giacomin (ppcfad6a83bib63) 2022; 128
Camenen (ppcfad6a83bib8) 2007; 47
Singh (ppcfad6a83bib41) 2022; 62
Leonard (ppcfad6a83bib2) 2014; 21
Frank (ppcfad6a83bib21) 2022; 62
Nelson (ppcfad6a83bib28) 2023b; 65
Zohm (ppcfad6a83bib48) 1994; 72
Merlo (ppcfad6a83bib73) 2021; 63
Merle (ppcfad6a83bib9) 2017; 59
Paz-Soldan (ppcfad6a83bib18) 2021; 63
Overview of ASDEX upgrade results (ppcfad6a83bib75) 1999; 39
Meneghini (ppcfad6a83bib82) 2015; 55
Rutherford and (ppcfad6a83bib23) 2024; 66
Guizzo (ppcfad6a83bib24) 2024; 66
Colchin (ppcfad6a83bib35) 2003; 74
Snyder (ppcfad6a83bib69) 2012-05; 19
Thomas (ppcfad6a83bib45) 1998; 40
McKee (ppcfad6a83bib81) 1999; 70
Xing (ppcfad6a83bib61) 2021; 163
Snyder (ppcfad6a83bib68) 2011; 51
Nelson (ppcfad6a83bib5) 2020; 60
Luxon (ppcfad6a83bib26) 2002; 42
Paz-Soldan (ppcfad6a83bib29) 2024; 64
Tang (ppcfad6a83bib57) 1982; 22
Hughes (ppcfad6a83bib77) 2011; 51
Thome and (ppcfad6a83bib27) 2024
Kim (ppcfad6a83bib46) 2022; 62
Pochelon (ppcfad6a83bib7) 1999; 39
Austin (ppcfad6a83bib10) 2019; 122
Whyte (ppcfad6a83bib66) 2010; 50
Parisi (ppcfad6a83bib54) 2024; 64
Schwartz (ppcfad6a83bib22) 2022; 62
Yu (ppcfad6a83bib39) 2023; 30
Hubbard (ppcfad6a83bib67) 2016; 56
Marinoni (ppcfad6a83bib37) 2021; 5
Singh (ppcfad6a83bib42) 2023; 63
Kramer (ppcfad6a83bib43) 2024; vol 2023
Parisi (ppcfad6a83bib55) 2024; 31
Aiba (ppcfad6a83bib59) 2016; 58
Nelson (ppcfad6a83bib50) 2021; 61
Gunn (ppcfad6a83bib17) 2017; 57
Hong (ppcfad6a83bib64) 2023
Ponce-Marquez (ppcfad6a83bib32) 2010; 81
Nishimura (ppcfad6a83bib40) 2020; 27
Urano (ppcfad6a83bib4) 2014; 54
Marinoni (ppcfad6a83bib11) 2019; 26
Eldon (ppcfad6a83bib33) 2012; 83
Merlo (ppcfad6a83bib38) 2015; 57
Zhang (ppcfad6a83bib52) 2024; 64
Miller (ppcfad6a83bib25) 2024
Cote and (ppcfad6a83bib79) 2024
Snyder (ppcfad6a83bib3) 2009; 49
Scotti (ppcfad6a83bib30) 2024; 64
Zhao and (ppcfad6a83bib31) 2024; 66
Sauter (ppcfad6a83bib65) 2014; 21
Medvedev (ppcfad6a83bib20) 2015; 55
the DIII-D Team (ppcfad6a83bib12) 2021; 61
Wagner (ppcfad6a83bib1) 2007; 49
Nelson (ppcfad6a83bib16) 2023a; 131
Aiba (ppcfad6a83bib58) 2009-08; 180
T. ASDEX Upgrade Team (ppcfad6a83bib51) 2022; 63
Stewart and (ppcfad6a83bib80) 2024
Azumi (ppcfad6a83bib56) 1981
Kikuchi (ppcfad6a83bib6) 2019; 59
Suttrop (ppcfad6a83bib76) 1997; 39
Mariani (ppcfad6a83bib74) 2024; 64
Sauter (ppcfad6a83bib47) 2023
Zohm (ppcfad6a83bib36) 1996; 38
Snyder (ppcfad6a83bib60) 2002; 9
References_xml – volume: 81
  start-page: 10D525
  year: 2010
  ident: ppcfad6a83bib32
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3495759
– volume: 31
  year: 2024
  ident: ppcfad6a83bib55
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0190818
– volume: 51
  year: 2011
  ident: ppcfad6a83bib68
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/10/103016
– volume: 64
  year: 2024
  ident: ppcfad6a83bib74
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad2abc
– year: 2023
  ident: ppcfad6a83bib64
  article-title: Characterization of density limit in negative triangularity plasmas on DIII-d Tokamak
– year: 2023
  ident: ppcfad6a83bib47
– volume: 63
  year: 2023
  ident: ppcfad6a83bib42
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad0605
– volume: 22
  start-page: 1079
  year: 1982
  ident: ppcfad6a83bib57
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/22/8/007
– volume: 62
  year: 2022
  ident: ppcfad6a83bib22
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac62f6
– volume: 38
  start-page: 105
  year: 1996
  ident: ppcfad6a83bib36
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/38/2/001
– volume: 64
  year: 2024
  ident: ppcfad6a83bib54
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad39fb
– volume: 65
  year: 2023b
  ident: ppcfad6a83bib28
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/acbe65
– volume: 5
  start-page: 6
  year: 2021
  ident: ppcfad6a83bib37
  publication-title: Rev. Mod. Plasma Phys.
  doi: 10.1007/s41614-021-00054-0
– volume: 72
  start-page: 222
  year: 1994
  ident: ppcfad6a83bib48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.222
– volume: 57
  year: 2017
  ident: ppcfad6a83bib17
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/aa5e2a
– volume: 51
  year: 2011
  ident: ppcfad6a83bib77
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/51/8/083007
– volume: 59
  year: 2017
  ident: ppcfad6a83bib9
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/aa7ac0
– volume: 64
  year: 2024
  ident: ppcfad6a83bib29
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad69a4
– volume: 49
  year: 2009
  ident: ppcfad6a83bib3
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/8/085035
– volume: 41
  start-page: 1789
  year: 2001
  ident: ppcfad6a83bib70
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/41/12/306
– volume: 64
  year: 2024
  ident: ppcfad6a83bib30
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad5f41
– volume: 40
  start-page: 707
  year: 1998
  ident: ppcfad6a83bib45
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/40/5/028
– volume: 56
  year: 2016
  ident: ppcfad6a83bib67
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/8/086003
– volume: 26
  year: 2019
  ident: ppcfad6a83bib11
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5091802
– volume: 64
  year: 2022
  ident: ppcfad6a83bib15
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac3fec
– volume: 39
  start-page: 2175
  year: 1999
  ident: ppcfad6a83bib62
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/12/302
– volume: 49
  start-page: B1
  year: 2007
  ident: ppcfad6a83bib1
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/49/12B/S01
– volume: 62
  year: 2022
  ident: ppcfad6a83bib41
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac945e
– volume: 63
  year: 2021
  ident: ppcfad6a83bib73
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/abe39d
– volume: 55
  year: 2015
  ident: ppcfad6a83bib82
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/8/083008
– volume: vol 2023
  year: 2024
  ident: ppcfad6a83bib43
  article-title: Full orbit calculations show that the negative triangularity and H-mode plasma edge are equivalent
  publication-title: APS Division of Plasma Physics Meeting Abstracts
– volume: 27
  year: 2020
  ident: ppcfad6a83bib40
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5131157
– volume: 21
  year: 2014
  ident: ppcfad6a83bib2
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4872033
– volume: 60
  year: 2020
  ident: ppcfad6a83bib5
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab5e65
– year: 2024
  ident: ppcfad6a83bib27
  article-title: Overview of results from the 2023DIII-D negative triangularity campaign
  publication-title: Plasma Phys. Control. Fusion
– volume: 19
  year: 2012-05
  ident: ppcfad6a83bib69
  publication-title: Phys. Plasmas
  doi: 10.1063/1.3699623
– volume: 62
  year: 2022
  ident: ppcfad6a83bib46
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac4369
– volume: 55
  year: 2015
  ident: ppcfad6a83bib20
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/6/063013
– volume: 163
  year: 2021
  ident: ppcfad6a83bib61
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2020.112163
– volume: 62
  year: 2022
  ident: ppcfad6a83bib21
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac95ac
– year: 2024
  ident: ppcfad6a83bib79
  article-title: First observations of edge instabilities in strongly shaped negative triangularly plasmas onDIII-D
  publication-title: Plasma Phys. Control. Fusion
– volume: 47
  start-page: 510
  year: 2007
  ident: ppcfad6a83bib8
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/47/7/002
– volume: 57
  year: 2015
  ident: ppcfad6a83bib38
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/57/5/054010
– volume: 61
  year: 2021
  ident: ppcfad6a83bib50
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac27ca
– volume: 70
  start-page: 913
  year: 1999
  ident: ppcfad6a83bib81
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1149416
– volume: 42
  start-page: 614
  year: 2002
  ident: ppcfad6a83bib26
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/42/5/313
– volume: 123
  year: 2008
  ident: ppcfad6a83bib44
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/123/1/012033
– volume: 90
  year: 2003
  ident: ppcfad6a83bib49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.185006
– volume: 53
  year: 2024
  ident: ppcfad6a83bib53
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/53/11/115010
– volume: 87
  start-page: 11E512
  year: 2016
  ident: ppcfad6a83bib34
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4958915
– volume: 74
  start-page: 2068
  year: 2003
  ident: ppcfad6a83bib35
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1537038
– volume: 58
  year: 2016
  ident: ppcfad6a83bib59
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/58/4/045020
– volume: 51
  year: 2009
  ident: ppcfad6a83bib72
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/51/5/055016
– volume: 39
  start-page: 1807
  year: 1999
  ident: ppcfad6a83bib7
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/11Y/321
– volume: 61
  year: 2021
  ident: ppcfad6a83bib12
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac1f60
– volume: 49
  year: 2009
  ident: ppcfad6a83bib71
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/49/8/085037
– volume: 83
  start-page: 10E343
  year: 2012
  ident: ppcfad6a83bib33
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4738656
– volume: 64
  year: 2024
  ident: ppcfad6a83bib52
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ad1b94
– volume: 122
  year: 2019
  ident: ppcfad6a83bib10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.115001
– volume: 62
  year: 2022
  ident: ppcfad6a83bib14
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac8064
– volume: 66
  year: 2024
  ident: ppcfad6a83bib23
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ad6708
– volume: 63
  year: 2021
  ident: ppcfad6a83bib13
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac1ea4
– volume: 39
  start-page: 1321
  year: 1999
  ident: ppcfad6a83bib75
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/9Y/309
– start-page: submitted
  year: 2024
  ident: ppcfad6a83bib80
  article-title: Characterization of turbulence properties in negative TriangularityDIII-D plasmas
  publication-title: Plasma Phys. Control. Fusion
– volume: 21
  year: 2014
  ident: ppcfad6a83bib65
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4876612
– volume: 66
  year: 2024
  ident: ppcfad6a83bib31
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ad27f1
– volume: 66
  year: 2024
  ident: ppcfad6a83bib24
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ad4175
– volume: 39
  start-page: 2051
  year: 1997
  ident: ppcfad6a83bib76
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/39/12/008
– volume: 180
  start-page: 1282
  year: 2009-08
  ident: ppcfad6a83bib58
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.02.008
– year: 2024
  ident: ppcfad6a83bib25
  article-title: Power handling solutions for a negative triangularity radiative L-mode pilot plant
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ad867a
– volume: 54
  year: 2014
  ident: ppcfad6a83bib4
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/11/116001
– volume: 131
  year: 2023a
  ident: ppcfad6a83bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.195101
– volume: 34
  year: 2023-03
  ident: ppcfad6a83bib19
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2022.101308
– volume: 128
  year: 2022
  ident: ppcfad6a83bib63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.185003
– volume: 63
  year: 2021
  ident: ppcfad6a83bib18
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/ac048b
– volume: 9
  start-page: 2037
  year: 2002
  ident: ppcfad6a83bib60
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1449463
– volume: 30
  year: 2023
  ident: ppcfad6a83bib39
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0144711
– volume: 63
  year: 2023
  ident: ppcfad6a83bib78
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/acd564
– volume: 63
  year: 2022
  ident: ppcfad6a83bib51
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ac8563
– year: 1981
  ident: ppcfad6a83bib56
  article-title: Evolution of stable high-beta Tokamak equilibria
– volume: 50
  year: 2010
  ident: ppcfad6a83bib66
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/50/10/105005
– volume: 59
  year: 2019
  ident: ppcfad6a83bib6
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/ab076d
SSID ssj0011826
Score 2.4615352
Snippet Tokamak plasmas with strong negative triangularity (NT) shaping typically exhibit fundamentally different edge behavior than conventional L-mode or H-mode...
SourceID osti
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105014
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
negative triangularity
pedestal
Tokamak
Title Characterization of the ELM-free negative triangularity edge on DIII-D
URI https://iopscience.iop.org/article/10.1088/1361-6587/ad6a83
https://www.osti.gov/servlets/purl/2440719
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZaEBILb8RbHmBgcF-2E1tMiLaiCCgDFR2QIsd2GEApounCr-euDhUgVCGWJMPFcc6P-84-f0fIcYY-g3OaCa88E6mMWRqDl-LA-hnVyFRk8ezwzW10ORBXQzmskLPZWZjRazn11-AxEAUHFZYBcare5FGTgeGM68ZFRvEqWcTEldi9e_272RYCAufAwdlknHNZ7lH-VsI3m1SF78L8PIIR9sXSdFfJ42cdQ4DJc21SpDX7_oO-8Z8_sUZWSgRKz4PoOqn4fIMsTSNB7XiTdC9mFM7hhCYdZRRQIu1c37DszXua-6cpWzjFjB85prLHBHgUF-YoiLd7vR5rb5FBt3N_ccnKZAvMcqELpi2MVN3gmZUtbZw2qcObVUbGAmootfAxstEb8Ckyl2JmOgdTqY-ttzIVfJss5KPc7xCqwM20kZMC0JHQDWd8lHqAXZk0GdLx7JL6p7oTWzKRY0KMl2S6I65UgtpJUDtJ0M4uOZ298RpYOObInoDSk3IojufI7WMbJ9BSSJdrMa7IFgnAHUBdeu-PpeyT5RbAnBDed0AWireJPwSYUqRH0-4I1z5_-ADYiN2l
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCMSCeIpSHh5gYDBtsZ3YI6KtWmiBgYpuluMHC0orWv4_d0moQEKIKRkuTnKx7z7H5-8j5DzinMF7zURQgYlMpixLYZbiIftZ1Yoqcbh3ePSQ9MfibiInlc5psRdmOqtC_xWclkTBpQurgjjVbPOkzSBxpk3rE6t4c-bjKlmTPJFInv_IX5bLCAieSx7ONuOcy2qd8rdWfuSlVbg3xOgpjLJv2aa3TbYqmEhvyofaISsh3yXrRbmmm--R3u2SZ7ncRkmnkQKUo93hiMX3EGgeXgtKb4qyHDnqzaNKHcW_ZxTMO4PBgHX2ybjXfb7ts0oRgTku9IJpB8NJt3h08lpbr23m8eCUlamAt5BahBQp4y0A_-gzlI_zEO9C6oKTmeAHpJZP83BIqIK5oEu8FABhhG55G5IsADaK0kbkzKmT5pc_jKvowlG14s0Uy9ZKGfSgQQ-a0oN1crm8YlZSZfxhewEuNtV4mf9h18CPYKBPIKetw-IftzCASQAa6aN_tnJGNp46PTMcPNw3yOY1wJKyHO-Y1BbvH-EEYMUiOy26zicVnsFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+ELM-free+negative+triangularity+edge+on+DIII-D&rft.jtitle=Plasma+physics+and+controlled+fusion&rft.au=Nelson%2C+A.+O.&rft.au=Schmitz%2C+L.&rft.au=Cote%2C+T.&rft.au=Parisi%2C+J.+F.&rft.date=2024-10-01&rft.pub=IOP+Science&rft.issn=0741-3335&rft.volume=66&rft.issue=10&rft_id=info:doi/10.1088%2F1361-6587%2Fad6a83&rft.externalDocID=2440719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3335&client=summon