Palladium nanoneedle “highways” for fast hydrogen transport in magnesium nanoparticle assembled films

The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be us...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 60; no. 12; pp. 5415 - 5426
Main Authors Schieck, Katrina E., Pedicone, Luca, Crespi, Stefania, Di Vece, Marcel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be used for hydrogen storage is the high temperature for release, making it impracticable. However, nanoscale magnesium shows promising hydrogen desorption temperatures, which is employed in the form of nanoparticles in this work. A palladium “nanoneedle” network was used to speed up hydrogen transport to and from the magnesium nanoparticles in a matter of minutes. By using the optical changes that accompany the presence of hydrogen in magnesium, hydrogen transport was studied. The palladium nanoneedle “highways” improved the (de-) hydrogenation of magnesium nanoparticles by at least a factor two, which could be a template for further improvements in hydrogen storage systems.
AbstractList The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be used for hydrogen storage is the high temperature for release, making it impracticable. However, nanoscale magnesium shows promising hydrogen desorption temperatures, which is employed in the form of nanoparticles in this work. A palladium “nanoneedle” network was used to speed up hydrogen transport to and from the magnesium nanoparticles in a matter of minutes. By using the optical changes that accompany the presence of hydrogen in magnesium, hydrogen transport was studied. The palladium nanoneedle “highways” improved the (de-) hydrogenation of magnesium nanoparticles by at least a factor two, which could be a template for further improvements in hydrogen storage systems.
Author Pedicone, Luca
Crespi, Stefania
Schieck, Katrina E.
Di Vece, Marcel
Author_xml – sequence: 1
  givenname: Katrina E.
  surname: Schieck
  fullname: Schieck, Katrina E.
  organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano
– sequence: 2
  givenname: Luca
  surname: Pedicone
  fullname: Pedicone, Luca
  organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano
– sequence: 3
  givenname: Stefania
  surname: Crespi
  fullname: Crespi, Stefania
  organization: Dipartimento Di Scienze Della Terra “Ardito Desio”, Università degli Studi di Milano
– sequence: 4
  givenname: Marcel
  orcidid: 0000-0002-0041-4348
  surname: Di Vece
  fullname: Di Vece, Marcel
  email: marcel.divece@unimi.it
  organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano
BookMark eNp9kMtK9EAQhRtRcLy8gKsGN_8mWn2bJEsRbyDoQtdNp1M9E0k6Y1cGmZ0Poi_nk5hxlB9cuKrNdz7qnD22HfuIjB0JOBEA-SkJKIzKQJpMQJ7rDLbYRJhcZboAtc0mAFJmUk_FLtsjegIAk0sxYc29a1tXN8uOR7eWYt0i_3h9mzez-Ytb0cfrOw994sHRwOerOvUzjHxILtKiTwNvIu_cLCL9KBYuDY0fJY4Iu6rFmoem7eiA7QTXEh5-3332eHnxcH6d3d5d3Zyf3WZe6XLIytKZ2jtUqkAdQDvwZRVABeVAS68qVZS1wcJDaaTzlRn7y1CiroSaCqHUPvu38S5S_7xEGmzXkMexZcR-SVZJmErIhZYjevwLfeqXKY7fWSUKaXIjp2tKbiifeqKEwS5S07m0sgLsen27Wd-O69uv9S2MIbUJ0QjHGab_6j9Snxl1jF4
Cites_doi 10.1016/j.ijhydene.2013.04.031
10.1126/sciadv.aaz0566
10.1021/jp507568p
10.1002/celc.202201109
10.1116/1.577853
10.1557/JMR.2008.0063
10.1116/1.578967
10.1016/j.surfcoat.2010.12.027
10.3390/s19204478
10.1016/j.ijhydene.2013.02.012
10.1016/0360-3199(86)90082-0
10.1039/C4NR06758D
10.1016/j.ijhydene.2006.09.019
10.1063/1.1499765
10.1016/j.jpowsour.2003.11.013
10.1103/PhysRevLett.108.106102
10.1016/S0013-4686(99)00025-0
10.1103/PhysRevB.68.115112
10.3390/met11091409
10.1016/j.nanoen.2016.02.044
10.1063/1.2358860
10.1016/j.compstruct.2004.04.052
10.1016/j.actamat.2008.11.016
10.1038/380231a0
10.1016/j.ijhydene.2019.09.017
10.1016/j.ijhydene.2014.03.125
10.1016/0925-8388(94)01348-9
10.1038/nature01557
10.1016/j.ijhydene.2009.03.059
10.1016/j.ijhydene.2011.05.086
10.1016/S0925-8388(96)02891-5
10.1038/35104634
10.1063/1.1446993
10.1016/j.jallcom.2015.05.039
10.1039/c1ee01297e
10.1021/acs.jpcc.5b05754
10.1016/j.jssc.2005.04.036
10.1016/j.memsci.2012.08.002
10.1016/j.actamat.2009.06.058
10.1016/j.ijhydene.2022.08.044
10.1134/S0031918X06100097
10.1038/29250
10.1016/j.ijhydene.2010.12.052
10.1063/1.3077186
10.1364/OE.20.027327
10.1557/PROC-776-Q11.7
10.1016/j.susc.2004.06.115
10.1016/j.rser.2017.01.107
10.1021/ja908398u
10.1063/1.3210791
10.1063/1.119169
10.1063/1.124912
10.1016/j.ijhydene.2008.01.043
10.1016/j.surfcoat.2012.10.012
10.1103/PhysRevB.94.064303
10.1103/PhysRevLett.35.165
10.1016/j.jallcom.2005.12.087
10.1088/2516-1083/ac7190
10.1149/2.023304jes
10.1007/s10853-014-8042-5
10.1016/j.apsusc.2016.10.101
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Mar 2025
DBID C6C
AAYXX
CITATION
7S9
L.6
DOI 10.1007/s10853-025-10774-0
DatabaseName Springer Nature OA Free Journals
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 5426
ExternalDocumentID 10_1007_s10853_025_10774_0
GrantInformation_xml – fundername: Università degli Studi di Milano
GroupedDBID -XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PHGZT
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAYXX
ABBRH
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c349t-99a5dcae338e4f04a0c9bf03f3a042c3b389d5e8c0952acb51002f9e4b1361133
IEDL.DBID U2A
ISSN 0022-2461
IngestDate Wed Jul 02 03:01:26 EDT 2025
Sat Aug 23 13:24:50 EDT 2025
Tue Jul 01 05:13:43 EDT 2025
Sat Mar 29 01:22:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-99a5dcae338e4f04a0c9bf03f3a042c3b389d5e8c0952acb51002f9e4b1361133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0041-4348
OpenAccessLink https://link.springer.com/10.1007/s10853-025-10774-0
PQID 3182575262
PQPubID 2043599
PageCount 12
ParticipantIDs proquest_miscellaneous_3206207142
proquest_journals_3182575262
crossref_primary_10_1007_s10853_025_10774_0
springer_journals_10_1007_s10853_025_10774_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Baldi (10774_CR43) 2009; 95
A Marek (10774_CR55) 2011; 205
M Di Vece (10774_CR65) 2002; 81
P van der Sluis (10774_CR25) 1997; 70
M Kofu (10774_CR36) 2016; 94
Y Liu (10774_CR17) 2013; 38
C Zlotea (10774_CR19) 2015; 119
10774_CR46
H Haberland (10774_CR48) 1994; 12
10774_CR3
H Haberland (10774_CR50) 1992; 10
10774_CR2
MD Vece (10774_CR44) 2003; 776
M Lai (10774_CR51) 2004; 66
K-J Jeon (10774_CR9) 2007; 32
IAME Giebels (10774_CR28) 2002; 80
JN Huiberts (10774_CR22) 1996; 380
10774_CR57
E Hadjixenophontos (10774_CR42) 2019; 44
SS Makridis (10774_CR16) 2013; 38
YS Au (10774_CR11) 2014; 118
M Paskevicius (10774_CR20) 2010; 132
P Vermeulen (10774_CR23) 2009; 57
T Sadhasivam (10774_CR47) 2017; 72
EFW Seymour (10774_CR30) 1975; 35
L Schlapbach (10774_CR4) 2001; 414
M Ganeva (10774_CR58) 2012; 213
L Pasquini (10774_CR56) 2009; 94
CA Owen (10774_CR38) 2022; 47
10774_CR63
L Zaluski (10774_CR5) 1995; 217
C-J Chung (10774_CR40) 2012; 108
MD Vece (10774_CR45) 2012; 20
L Pasquini (10774_CR12) 2022; 4
HK Raut (10774_CR64) 2011; 4
FJA den Broeder (10774_CR60) 1998; 394
RA Varin (10774_CR13) 2006; 424
GE Johnson (10774_CR53) 2015; 7
CX Shang (10774_CR6) 2004; 129
BJ Kooi (10774_CR49) 2006; 89
R Griessen (10774_CR24) 1997; 253–254
P Selvam (10774_CR1) 1986; 11
M Polanski (10774_CR14) 2008; 33
CC Ndaya (10774_CR59) 2019
L Zhang (10774_CR62) 2016; 29
DG Nagengast (10774_CR27) 1999; 75
X Yao (10774_CR32) 2008; 23
H Shao (10774_CR7) 2005; 178
X Zhang (10774_CR15) 2011; 36
T Mitsui (10774_CR34) 2003; 422
K Yoshimura (10774_CR41) 2004; 566–568
K Klyukin (10774_CR31) 2015; 644
G Siviero (10774_CR39) 2009; 34
J Isidorsson (10774_CR66) 2003; 68
K von Rottkay (10774_CR26) 1999; 44
H Gasan (10774_CR10) 2012; 37
O Polonskyi (10774_CR54) 2014; 49
Z Han (10774_CR29) 2017; 394
10774_CR33
R Gremaud (10774_CR61) 2009; 57
S Hara (10774_CR37) 2012; 421–422
VN Kudiyarov (10774_CR52) 2021
NV Mushnikov (10774_CR8) 2006; 102
L Moumaneix (10774_CR35) 2023; 10
M Kappes (10774_CR21) 2013; 160
T Liu (10774_CR18) 2014; 39
References_xml – volume: 38
  start-page: 11530
  year: 2013
  ident: 10774_CR16
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.031
– ident: 10774_CR33
  doi: 10.1126/sciadv.aaz0566
– ident: 10774_CR3
– volume: 118
  start-page: 20832
  year: 2014
  ident: 10774_CR11
  publication-title: J Phys Chem C
  doi: 10.1021/jp507568p
– volume: 10
  start-page: e202201109
  year: 2023
  ident: 10774_CR35
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202201109
– volume: 10
  start-page: 3266
  year: 1992
  ident: 10774_CR50
  publication-title: J Vac Sci Technol, A: Vac, Surf Films
  doi: 10.1116/1.577853
– volume: 23
  start-page: 336
  year: 2008
  ident: 10774_CR32
  publication-title: J Mater Res
  doi: 10.1557/JMR.2008.0063
– volume: 12
  start-page: 2925
  year: 1994
  ident: 10774_CR48
  publication-title: J Vac Sci Technol, A: Vac, Surf Films
  doi: 10.1116/1.578967
– volume: 205
  start-page: S573
  year: 2011
  ident: 10774_CR55
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2010.12.027
– year: 2019
  ident: 10774_CR59
  publication-title: Sensors
  doi: 10.3390/s19204478
– volume: 38
  start-page: 5302
  year: 2013
  ident: 10774_CR17
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.02.012
– volume: 11
  start-page: 169
  year: 1986
  ident: 10774_CR1
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/0360-3199(86)90082-0
– volume: 7
  start-page: 3491
  year: 2015
  ident: 10774_CR53
  publication-title: Nanoscale
  doi: 10.1039/C4NR06758D
– volume: 32
  start-page: 1860
  year: 2007
  ident: 10774_CR9
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.09.019
– volume: 81
  start-page: 1213
  year: 2002
  ident: 10774_CR65
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1499765
– volume: 129
  start-page: 73
  year: 2004
  ident: 10774_CR6
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2003.11.013
– volume: 108
  start-page: 106102
  year: 2012
  ident: 10774_CR40
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.108.106102
– volume: 44
  start-page: 3093
  year: 1999
  ident: 10774_CR26
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(99)00025-0
– volume: 68
  year: 2003
  ident: 10774_CR66
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.68.115112
– year: 2021
  ident: 10774_CR52
  publication-title: Metals
  doi: 10.3390/met11091409
– volume: 29
  start-page: 198
  year: 2016
  ident: 10774_CR62
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.044
– volume: 89
  start-page: 161914
  year: 2006
  ident: 10774_CR49
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2358860
– volume: 66
  start-page: 301
  year: 2004
  ident: 10774_CR51
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2004.04.052
– volume: 57
  start-page: 1209
  year: 2009
  ident: 10774_CR61
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.11.016
– volume: 380
  start-page: 231
  year: 1996
  ident: 10774_CR22
  publication-title: Nature
  doi: 10.1038/380231a0
– volume: 44
  start-page: 27862
  year: 2019
  ident: 10774_CR42
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.017
– volume: 39
  start-page: 14262
  year: 2014
  ident: 10774_CR18
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.125
– volume: 217
  start-page: 245
  year: 1995
  ident: 10774_CR5
  publication-title: J Alloy Compd
  doi: 10.1016/0925-8388(94)01348-9
– volume: 422
  start-page: 705
  year: 2003
  ident: 10774_CR34
  publication-title: Nature
  doi: 10.1038/nature01557
– volume: 34
  start-page: 4817
  year: 2009
  ident: 10774_CR39
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.03.059
– volume: 37
  start-page: 1912
  year: 2012
  ident: 10774_CR10
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.086
– volume: 253–254
  start-page: 44
  year: 1997
  ident: 10774_CR24
  publication-title: J Alloy Compd
  doi: 10.1016/S0925-8388(96)02891-5
– volume: 414
  start-page: 353
  year: 2001
  ident: 10774_CR4
  publication-title: Nature
  doi: 10.1038/35104634
– volume: 80
  start-page: 1343
  year: 2002
  ident: 10774_CR28
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1446993
– volume: 644
  start-page: 371
  year: 2015
  ident: 10774_CR31
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2015.05.039
– volume: 4
  start-page: 3779
  year: 2011
  ident: 10774_CR64
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01297e
– volume: 119
  start-page: 18091
  year: 2015
  ident: 10774_CR19
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b05754
– ident: 10774_CR57
– volume: 178
  start-page: 2211
  year: 2005
  ident: 10774_CR7
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2005.04.036
– volume: 421–422
  start-page: 355
  year: 2012
  ident: 10774_CR37
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.08.002
– volume: 57
  start-page: 4967
  year: 2009
  ident: 10774_CR23
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.06.058
– volume: 47
  start-page: 34594
  year: 2022
  ident: 10774_CR38
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.044
– volume: 102
  start-page: 421
  year: 2006
  ident: 10774_CR8
  publication-title: Phys Metals Metallogr
  doi: 10.1134/S0031918X06100097
– volume: 394
  start-page: 656
  year: 1998
  ident: 10774_CR60
  publication-title: Nature
  doi: 10.1038/29250
– volume: 36
  start-page: 4967
  year: 2011
  ident: 10774_CR15
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.052
– volume: 94
  year: 2009
  ident: 10774_CR56
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3077186
– volume: 20
  start-page: 27327
  year: 2012
  ident: 10774_CR45
  publication-title: Opt Express, OE
  doi: 10.1364/OE.20.027327
– volume: 776
  start-page: 7
  issue: Q11
  year: 2003
  ident: 10774_CR44
  publication-title: MRS Proc
  doi: 10.1557/PROC-776-Q11.7
– volume: 566–568
  start-page: 751
  year: 2004
  ident: 10774_CR41
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2004.06.115
– ident: 10774_CR2
– volume: 72
  start-page: 523
  year: 2017
  ident: 10774_CR47
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.107
– volume: 132
  start-page: 5077
  year: 2010
  ident: 10774_CR20
  publication-title: J Am Chem Soc
  doi: 10.1021/ja908398u
– volume: 95
  year: 2009
  ident: 10774_CR43
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3210791
– volume: 70
  start-page: 3356
  year: 1997
  ident: 10774_CR25
  publication-title: Appl Phys Lett
  doi: 10.1063/1.119169
– volume: 75
  start-page: 2050
  year: 1999
  ident: 10774_CR27
  publication-title: Appl Phys Lett
  doi: 10.1063/1.124912
– volume: 33
  start-page: 1859
  year: 2008
  ident: 10774_CR14
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.043
– volume: 213
  start-page: 41
  year: 2012
  ident: 10774_CR58
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2012.10.012
– volume: 94
  start-page: 064303
  year: 2016
  ident: 10774_CR36
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.94.064303
– volume: 35
  start-page: 165
  year: 1975
  ident: 10774_CR30
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.35.165
– volume: 424
  start-page: 356
  year: 2006
  ident: 10774_CR13
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2005.12.087
– volume: 4
  year: 2022
  ident: 10774_CR12
  publication-title: Prog Energy
  doi: 10.1088/2516-1083/ac7190
– ident: 10774_CR46
– ident: 10774_CR63
– volume: 160
  start-page: C168
  year: 2013
  ident: 10774_CR21
  publication-title: J Electrochem Soc
  doi: 10.1149/2.023304jes
– volume: 49
  start-page: 3352
  year: 2014
  ident: 10774_CR54
  publication-title: J Mater Sci
  doi: 10.1007/s10853-014-8042-5
– volume: 394
  start-page: 371
  year: 2017
  ident: 10774_CR29
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.10.101
SSID ssj0005721
Score 2.4564316
Snippet The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 5415
SubjectTerms Applications programs
Atoms & subatomic particles
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composites & Nanocomposites
Crystallography and Scattering Methods
desorption
Electric properties
Glass substrates
High temperature
Hydrogen
Hydrogen storage
Hydrogenation
Magnesium
Materials Science
Mobile computing
Nanoparticles
Nanostructured materials
Oxidation
Palladium
Polymer Sciences
renewable energy sources
Roads & highways
Solid Mechanics
Storage systems
temperature
Title Palladium nanoneedle “highways” for fast hydrogen transport in magnesium nanoparticle assembled films
URI https://link.springer.com/article/10.1007/s10853-025-10774-0
https://www.proquest.com/docview/3182575262
https://www.proquest.com/docview/3206207142
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqJQKiOxQSTXcR4e26oFgagYqFSmyK9ApaZFJB269YfAn-OXcA4JKQgGpkTKybHO57vvbN9nhM4o1yFnVDqce8RhKpBOKLVyKKdahwIwQWBrh2_7_tWAXQ-9YVEUlpan3cstydxTLxW7QWhx7PWrkLIEzIFEfd2zuTtY8YC2qoMdAW2WHOGWLa0olfm9je_hqMKYP7ZF82jT20ZbBUzErc9x3UErZrKLNpfIA_fQ6M6ugevRLMETAUk8hKGxwe-L15yBWMzT98UbBkiKY5Fm-GmuX6ZgLDgr2czxaIIT8QiurmziuTAjDIDaJHJsNI5H4yTdR4Ne975z5RQXJzjKZTwDvQtPK2Eg_TQsJkwQxWVM3NgVMEeVKwGlaM-ECvAVFUp6loc15obJpus3IWs9QGu234cIE59KiPAk0H7IOHGl8n3iasnhRXqK19B5qb_o-ZMfI6qYkK22I9B2lGs7IjVUL1UcFXMljcCrgN_wqE9r6PTrM1i53boQEzOdgQyFjthaK5C5KIemauLvPx79T_wYbVBrHfkhszpay15m5gRQRyYbaL3Va7f79nn5cNNtoNWO32nkpvcB1EvUUg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHtSD8RlR1Jp4001Kt_vo0RANKhAPkHDb9LVKAguB5cCNH6J_jl_idNkVJXrwtslOus102vlmZ-YrQteU65AzKh3OPeIwFUgnlFo5lFOtQwGYILC9w82WX--wp67XzWlybC_MWv7etriBQ3HspasQqATMgfB8k0GkbMv3an5tVc4R0GrBDG450vIGmd_H-OmEVshyLRma-ZiHPbSbg0N8t1zNfbRhkgO0840y8BD1Xuyfb92bDnAiIHQH59M3eDF_z3iHxWyymH9gAKI4FpMUv830eAgmgtOCwxz3EjwQr3DAFUOMcuPBAKPNQPaNxnGvP5gcoc7DfbtWd_LrEhzlMp6CtoWnlTAQdBoWEyaI4jImbuwK2JnKlYBNtGdCBaiKCiU9y74ac8Nk1fWrEKseo5Kd9wnCxKcS_DoJtB8yTlypfJ-4WnJ4kJ7iZXRT6C8aLVkxohX_sdV2BNqOMm1HpIwqhYqjfIdMIjhL4LTwqE_L6OrrNdi2TViIxAynIENhIrbDCmRui6VZDfH3F0__J36JturtZiNqPLaez9A2tZaSlZlVUCkdT8054I5UXmQG9wlPss83
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGK16greNHS72Tz2KNXis3hQ8Bb2FS20aTHpwVt_iP65_hJn08RU0YO3QIbNMjs7801m51uEjinXIWdUOpx7xGEqkE4otXIop1qHAjBBYHuH77r-5SO7fvKe5rr489PuZUly1tNgWZqSrDnScXOu8Q3CjGOvYoX0JWAOJO2LkKnkhdq2364OeQS0VfKFW-a0om3m9zG-h6YKb_4okeaRp7OGVgvIiM9ma7yOFkyygVbmiAQ3Ue_e_g_XvfEAJwISeghJfYOnk_ecjVi8pdPJBwZ4imORZvjlTb8OwXBwVjKb416CB-IZ3F45xKgwKQzg2gxk32gc9_qDdAs9di4e2pdOcYmCo1zGM1gD4WklDKSihsWECaK4jIkbuwL2q3IlIBbtmVAB1qJCSc9yssbcMNly_RZksNuoZue9gzDxqYRoTwLth4wTVyrfJ66WHB6kp3gdnZT6i0YzroyoYkW22o5A21Gu7YjUUaNUcVTsmzQCDwM-xKM-raOjr9dg8baMIRIzHIMMhYnYviuQOS2Xphri7y_u_k_8EC3dn3ei26vuzR5aptZQ8rNnDVTLXsdmH8BIJg9ye_sE3_LXfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium+nanoneedle+%22highways%22+for+fast+hydrogen+transport+in+magnesium+nanoparticle+assembled+films&rft.jtitle=Journal+of+materials+science&rft.au=Schieck%2C+Katrina+E&rft.au=Pedicone%2C+Luca&rft.au=Crespi%2C+Stefania&rft.au=Di+Vece%2C+Marcel&rft.date=2025-03-01&rft.issn=0022-2461&rft.volume=60&rft.issue=12+p.5415-5426&rft.spage=5415&rft.epage=5426&rft_id=info:doi/10.1007%2Fs10853-025-10774-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon