Palladium nanoneedle “highways” for fast hydrogen transport in magnesium nanoparticle assembled films
The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be us...
Saved in:
Published in | Journal of materials science Vol. 60; no. 12; pp. 5415 - 5426 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be used for hydrogen storage is the high temperature for release, making it impracticable. However, nanoscale magnesium shows promising hydrogen desorption temperatures, which is employed in the form of nanoparticles in this work. A palladium “nanoneedle” network was used to speed up hydrogen transport to and from the magnesium nanoparticles in a matter of minutes. By using the optical changes that accompany the presence of hydrogen in magnesium, hydrogen transport was studied. The palladium nanoneedle “highways” improved the (de-) hydrogenation of magnesium nanoparticles by at least a factor two, which could be a template for further improvements in hydrogen storage systems. |
---|---|
AbstractList | The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable material for hydrogen storage by insertion, because of its low weight, abundance, and non-toxicity. A major obstacle for magnesium hydrides to be used for hydrogen storage is the high temperature for release, making it impracticable. However, nanoscale magnesium shows promising hydrogen desorption temperatures, which is employed in the form of nanoparticles in this work. A palladium “nanoneedle” network was used to speed up hydrogen transport to and from the magnesium nanoparticles in a matter of minutes. By using the optical changes that accompany the presence of hydrogen in magnesium, hydrogen transport was studied. The palladium nanoneedle “highways” improved the (de-) hydrogenation of magnesium nanoparticles by at least a factor two, which could be a template for further improvements in hydrogen storage systems. |
Author | Pedicone, Luca Crespi, Stefania Schieck, Katrina E. Di Vece, Marcel |
Author_xml | – sequence: 1 givenname: Katrina E. surname: Schieck fullname: Schieck, Katrina E. organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano – sequence: 2 givenname: Luca surname: Pedicone fullname: Pedicone, Luca organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano – sequence: 3 givenname: Stefania surname: Crespi fullname: Crespi, Stefania organization: Dipartimento Di Scienze Della Terra “Ardito Desio”, Università degli Studi di Milano – sequence: 4 givenname: Marcel orcidid: 0000-0002-0041-4348 surname: Di Vece fullname: Di Vece, Marcel email: marcel.divece@unimi.it organization: Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department “Aldo Pontremoli”, Università degli Studi di Milano |
BookMark | eNp9kMtK9EAQhRtRcLy8gKsGN_8mWn2bJEsRbyDoQtdNp1M9E0k6Y1cGmZ0Poi_nk5hxlB9cuKrNdz7qnD22HfuIjB0JOBEA-SkJKIzKQJpMQJ7rDLbYRJhcZboAtc0mAFJmUk_FLtsjegIAk0sxYc29a1tXN8uOR7eWYt0i_3h9mzez-Ytb0cfrOw994sHRwOerOvUzjHxILtKiTwNvIu_cLCL9KBYuDY0fJY4Iu6rFmoem7eiA7QTXEh5-3332eHnxcH6d3d5d3Zyf3WZe6XLIytKZ2jtUqkAdQDvwZRVABeVAS68qVZS1wcJDaaTzlRn7y1CiroSaCqHUPvu38S5S_7xEGmzXkMexZcR-SVZJmErIhZYjevwLfeqXKY7fWSUKaXIjp2tKbiifeqKEwS5S07m0sgLsen27Wd-O69uv9S2MIbUJ0QjHGab_6j9Snxl1jF4 |
Cites_doi | 10.1016/j.ijhydene.2013.04.031 10.1126/sciadv.aaz0566 10.1021/jp507568p 10.1002/celc.202201109 10.1116/1.577853 10.1557/JMR.2008.0063 10.1116/1.578967 10.1016/j.surfcoat.2010.12.027 10.3390/s19204478 10.1016/j.ijhydene.2013.02.012 10.1016/0360-3199(86)90082-0 10.1039/C4NR06758D 10.1016/j.ijhydene.2006.09.019 10.1063/1.1499765 10.1016/j.jpowsour.2003.11.013 10.1103/PhysRevLett.108.106102 10.1016/S0013-4686(99)00025-0 10.1103/PhysRevB.68.115112 10.3390/met11091409 10.1016/j.nanoen.2016.02.044 10.1063/1.2358860 10.1016/j.compstruct.2004.04.052 10.1016/j.actamat.2008.11.016 10.1038/380231a0 10.1016/j.ijhydene.2019.09.017 10.1016/j.ijhydene.2014.03.125 10.1016/0925-8388(94)01348-9 10.1038/nature01557 10.1016/j.ijhydene.2009.03.059 10.1016/j.ijhydene.2011.05.086 10.1016/S0925-8388(96)02891-5 10.1038/35104634 10.1063/1.1446993 10.1016/j.jallcom.2015.05.039 10.1039/c1ee01297e 10.1021/acs.jpcc.5b05754 10.1016/j.jssc.2005.04.036 10.1016/j.memsci.2012.08.002 10.1016/j.actamat.2009.06.058 10.1016/j.ijhydene.2022.08.044 10.1134/S0031918X06100097 10.1038/29250 10.1016/j.ijhydene.2010.12.052 10.1063/1.3077186 10.1364/OE.20.027327 10.1557/PROC-776-Q11.7 10.1016/j.susc.2004.06.115 10.1016/j.rser.2017.01.107 10.1021/ja908398u 10.1063/1.3210791 10.1063/1.119169 10.1063/1.124912 10.1016/j.ijhydene.2008.01.043 10.1016/j.surfcoat.2012.10.012 10.1103/PhysRevB.94.064303 10.1103/PhysRevLett.35.165 10.1016/j.jallcom.2005.12.087 10.1088/2516-1083/ac7190 10.1149/2.023304jes 10.1007/s10853-014-8042-5 10.1016/j.apsusc.2016.10.101 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | C6C AAYXX CITATION 7S9 L.6 |
DOI | 10.1007/s10853-025-10774-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 5426 |
ExternalDocumentID | 10_1007_s10853_025_10774_0 |
GrantInformation_xml | – fundername: Università degli Studi di Milano |
GroupedDBID | -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDEX ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PHGZT PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAYXX ABBRH ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c349t-99a5dcae338e4f04a0c9bf03f3a042c3b389d5e8c0952acb51002f9e4b1361133 |
IEDL.DBID | U2A |
ISSN | 0022-2461 |
IngestDate | Wed Jul 02 03:01:26 EDT 2025 Sat Aug 23 13:24:50 EDT 2025 Tue Jul 01 05:13:43 EDT 2025 Sat Mar 29 01:22:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-99a5dcae338e4f04a0c9bf03f3a042c3b389d5e8c0952acb51002f9e4b1361133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0041-4348 |
OpenAccessLink | https://link.springer.com/10.1007/s10853-025-10774-0 |
PQID | 3182575262 |
PQPubID | 2043599 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3206207142 proquest_journals_3182575262 crossref_primary_10_1007_s10853_025_10774_0 springer_journals_10_1007_s10853_025_10774_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | A Baldi (10774_CR43) 2009; 95 A Marek (10774_CR55) 2011; 205 M Di Vece (10774_CR65) 2002; 81 P van der Sluis (10774_CR25) 1997; 70 M Kofu (10774_CR36) 2016; 94 Y Liu (10774_CR17) 2013; 38 C Zlotea (10774_CR19) 2015; 119 10774_CR46 H Haberland (10774_CR48) 1994; 12 10774_CR3 H Haberland (10774_CR50) 1992; 10 10774_CR2 MD Vece (10774_CR44) 2003; 776 M Lai (10774_CR51) 2004; 66 K-J Jeon (10774_CR9) 2007; 32 IAME Giebels (10774_CR28) 2002; 80 JN Huiberts (10774_CR22) 1996; 380 10774_CR57 E Hadjixenophontos (10774_CR42) 2019; 44 SS Makridis (10774_CR16) 2013; 38 YS Au (10774_CR11) 2014; 118 M Paskevicius (10774_CR20) 2010; 132 P Vermeulen (10774_CR23) 2009; 57 T Sadhasivam (10774_CR47) 2017; 72 EFW Seymour (10774_CR30) 1975; 35 L Schlapbach (10774_CR4) 2001; 414 M Ganeva (10774_CR58) 2012; 213 L Pasquini (10774_CR56) 2009; 94 CA Owen (10774_CR38) 2022; 47 10774_CR63 L Zaluski (10774_CR5) 1995; 217 C-J Chung (10774_CR40) 2012; 108 MD Vece (10774_CR45) 2012; 20 L Pasquini (10774_CR12) 2022; 4 HK Raut (10774_CR64) 2011; 4 FJA den Broeder (10774_CR60) 1998; 394 RA Varin (10774_CR13) 2006; 424 GE Johnson (10774_CR53) 2015; 7 CX Shang (10774_CR6) 2004; 129 BJ Kooi (10774_CR49) 2006; 89 R Griessen (10774_CR24) 1997; 253–254 P Selvam (10774_CR1) 1986; 11 M Polanski (10774_CR14) 2008; 33 CC Ndaya (10774_CR59) 2019 L Zhang (10774_CR62) 2016; 29 DG Nagengast (10774_CR27) 1999; 75 X Yao (10774_CR32) 2008; 23 H Shao (10774_CR7) 2005; 178 X Zhang (10774_CR15) 2011; 36 T Mitsui (10774_CR34) 2003; 422 K Yoshimura (10774_CR41) 2004; 566–568 K Klyukin (10774_CR31) 2015; 644 G Siviero (10774_CR39) 2009; 34 J Isidorsson (10774_CR66) 2003; 68 K von Rottkay (10774_CR26) 1999; 44 H Gasan (10774_CR10) 2012; 37 O Polonskyi (10774_CR54) 2014; 49 Z Han (10774_CR29) 2017; 394 10774_CR33 R Gremaud (10774_CR61) 2009; 57 S Hara (10774_CR37) 2012; 421–422 VN Kudiyarov (10774_CR52) 2021 NV Mushnikov (10774_CR8) 2006; 102 L Moumaneix (10774_CR35) 2023; 10 M Kappes (10774_CR21) 2013; 160 T Liu (10774_CR18) 2014; 39 |
References_xml | – volume: 38 start-page: 11530 year: 2013 ident: 10774_CR16 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.031 – ident: 10774_CR33 doi: 10.1126/sciadv.aaz0566 – ident: 10774_CR3 – volume: 118 start-page: 20832 year: 2014 ident: 10774_CR11 publication-title: J Phys Chem C doi: 10.1021/jp507568p – volume: 10 start-page: e202201109 year: 2023 ident: 10774_CR35 publication-title: ChemElectroChem doi: 10.1002/celc.202201109 – volume: 10 start-page: 3266 year: 1992 ident: 10774_CR50 publication-title: J Vac Sci Technol, A: Vac, Surf Films doi: 10.1116/1.577853 – volume: 23 start-page: 336 year: 2008 ident: 10774_CR32 publication-title: J Mater Res doi: 10.1557/JMR.2008.0063 – volume: 12 start-page: 2925 year: 1994 ident: 10774_CR48 publication-title: J Vac Sci Technol, A: Vac, Surf Films doi: 10.1116/1.578967 – volume: 205 start-page: S573 year: 2011 ident: 10774_CR55 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2010.12.027 – year: 2019 ident: 10774_CR59 publication-title: Sensors doi: 10.3390/s19204478 – volume: 38 start-page: 5302 year: 2013 ident: 10774_CR17 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.012 – volume: 11 start-page: 169 year: 1986 ident: 10774_CR1 publication-title: Int J Hydrogen Energy doi: 10.1016/0360-3199(86)90082-0 – volume: 7 start-page: 3491 year: 2015 ident: 10774_CR53 publication-title: Nanoscale doi: 10.1039/C4NR06758D – volume: 32 start-page: 1860 year: 2007 ident: 10774_CR9 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2006.09.019 – volume: 81 start-page: 1213 year: 2002 ident: 10774_CR65 publication-title: Appl Phys Lett doi: 10.1063/1.1499765 – volume: 129 start-page: 73 year: 2004 ident: 10774_CR6 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.11.013 – volume: 108 start-page: 106102 year: 2012 ident: 10774_CR40 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.106102 – volume: 44 start-page: 3093 year: 1999 ident: 10774_CR26 publication-title: Electrochim Acta doi: 10.1016/S0013-4686(99)00025-0 – volume: 68 year: 2003 ident: 10774_CR66 publication-title: Phys Rev B doi: 10.1103/PhysRevB.68.115112 – year: 2021 ident: 10774_CR52 publication-title: Metals doi: 10.3390/met11091409 – volume: 29 start-page: 198 year: 2016 ident: 10774_CR62 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.044 – volume: 89 start-page: 161914 year: 2006 ident: 10774_CR49 publication-title: Appl Phys Lett doi: 10.1063/1.2358860 – volume: 66 start-page: 301 year: 2004 ident: 10774_CR51 publication-title: Compos Struct doi: 10.1016/j.compstruct.2004.04.052 – volume: 57 start-page: 1209 year: 2009 ident: 10774_CR61 publication-title: Acta Mater doi: 10.1016/j.actamat.2008.11.016 – volume: 380 start-page: 231 year: 1996 ident: 10774_CR22 publication-title: Nature doi: 10.1038/380231a0 – volume: 44 start-page: 27862 year: 2019 ident: 10774_CR42 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.017 – volume: 39 start-page: 14262 year: 2014 ident: 10774_CR18 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.125 – volume: 217 start-page: 245 year: 1995 ident: 10774_CR5 publication-title: J Alloy Compd doi: 10.1016/0925-8388(94)01348-9 – volume: 422 start-page: 705 year: 2003 ident: 10774_CR34 publication-title: Nature doi: 10.1038/nature01557 – volume: 34 start-page: 4817 year: 2009 ident: 10774_CR39 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.03.059 – volume: 37 start-page: 1912 year: 2012 ident: 10774_CR10 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.086 – volume: 253–254 start-page: 44 year: 1997 ident: 10774_CR24 publication-title: J Alloy Compd doi: 10.1016/S0925-8388(96)02891-5 – volume: 414 start-page: 353 year: 2001 ident: 10774_CR4 publication-title: Nature doi: 10.1038/35104634 – volume: 80 start-page: 1343 year: 2002 ident: 10774_CR28 publication-title: Appl Phys Lett doi: 10.1063/1.1446993 – volume: 644 start-page: 371 year: 2015 ident: 10774_CR31 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2015.05.039 – volume: 4 start-page: 3779 year: 2011 ident: 10774_CR64 publication-title: Energy Environ Sci doi: 10.1039/c1ee01297e – volume: 119 start-page: 18091 year: 2015 ident: 10774_CR19 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b05754 – ident: 10774_CR57 – volume: 178 start-page: 2211 year: 2005 ident: 10774_CR7 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2005.04.036 – volume: 421–422 start-page: 355 year: 2012 ident: 10774_CR37 publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.08.002 – volume: 57 start-page: 4967 year: 2009 ident: 10774_CR23 publication-title: Acta Mater doi: 10.1016/j.actamat.2009.06.058 – volume: 47 start-page: 34594 year: 2022 ident: 10774_CR38 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.044 – volume: 102 start-page: 421 year: 2006 ident: 10774_CR8 publication-title: Phys Metals Metallogr doi: 10.1134/S0031918X06100097 – volume: 394 start-page: 656 year: 1998 ident: 10774_CR60 publication-title: Nature doi: 10.1038/29250 – volume: 36 start-page: 4967 year: 2011 ident: 10774_CR15 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.052 – volume: 94 year: 2009 ident: 10774_CR56 publication-title: Appl Phys Lett doi: 10.1063/1.3077186 – volume: 20 start-page: 27327 year: 2012 ident: 10774_CR45 publication-title: Opt Express, OE doi: 10.1364/OE.20.027327 – volume: 776 start-page: 7 issue: Q11 year: 2003 ident: 10774_CR44 publication-title: MRS Proc doi: 10.1557/PROC-776-Q11.7 – volume: 566–568 start-page: 751 year: 2004 ident: 10774_CR41 publication-title: Surf Sci doi: 10.1016/j.susc.2004.06.115 – ident: 10774_CR2 – volume: 72 start-page: 523 year: 2017 ident: 10774_CR47 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.107 – volume: 132 start-page: 5077 year: 2010 ident: 10774_CR20 publication-title: J Am Chem Soc doi: 10.1021/ja908398u – volume: 95 year: 2009 ident: 10774_CR43 publication-title: Appl Phys Lett doi: 10.1063/1.3210791 – volume: 70 start-page: 3356 year: 1997 ident: 10774_CR25 publication-title: Appl Phys Lett doi: 10.1063/1.119169 – volume: 75 start-page: 2050 year: 1999 ident: 10774_CR27 publication-title: Appl Phys Lett doi: 10.1063/1.124912 – volume: 33 start-page: 1859 year: 2008 ident: 10774_CR14 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.043 – volume: 213 start-page: 41 year: 2012 ident: 10774_CR58 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2012.10.012 – volume: 94 start-page: 064303 year: 2016 ident: 10774_CR36 publication-title: Phys Rev B doi: 10.1103/PhysRevB.94.064303 – volume: 35 start-page: 165 year: 1975 ident: 10774_CR30 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.35.165 – volume: 424 start-page: 356 year: 2006 ident: 10774_CR13 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2005.12.087 – volume: 4 year: 2022 ident: 10774_CR12 publication-title: Prog Energy doi: 10.1088/2516-1083/ac7190 – ident: 10774_CR46 – ident: 10774_CR63 – volume: 160 start-page: C168 year: 2013 ident: 10774_CR21 publication-title: J Electrochem Soc doi: 10.1149/2.023304jes – volume: 49 start-page: 3352 year: 2014 ident: 10774_CR54 publication-title: J Mater Sci doi: 10.1007/s10853-014-8042-5 – volume: 394 start-page: 371 year: 2017 ident: 10774_CR29 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.10.101 |
SSID | ssj0005721 |
Score | 2.4564316 |
Snippet | The importance of hydrogen storage for mobile applications remains a timely subject with respect to a sustainable energy economy. Magnesium is a viable... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5415 |
SubjectTerms | Applications programs Atoms & subatomic particles Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composites & Nanocomposites Crystallography and Scattering Methods desorption Electric properties Glass substrates High temperature Hydrogen Hydrogen storage Hydrogenation Magnesium Materials Science Mobile computing Nanoparticles Nanostructured materials Oxidation Palladium Polymer Sciences renewable energy sources Roads & highways Solid Mechanics Storage systems temperature |
Title | Palladium nanoneedle “highways” for fast hydrogen transport in magnesium nanoparticle assembled films |
URI | https://link.springer.com/article/10.1007/s10853-025-10774-0 https://www.proquest.com/docview/3182575262 https://www.proquest.com/docview/3206207142 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqJQKiOxQSTXcR4e26oFgagYqFSmyK9ApaZFJB269YfAn-OXcA4JKQgGpkTKybHO57vvbN9nhM4o1yFnVDqce8RhKpBOKLVyKKdahwIwQWBrh2_7_tWAXQ-9YVEUlpan3cstydxTLxW7QWhx7PWrkLIEzIFEfd2zuTtY8YC2qoMdAW2WHOGWLa0olfm9je_hqMKYP7ZF82jT20ZbBUzErc9x3UErZrKLNpfIA_fQ6M6ugevRLMETAUk8hKGxwe-L15yBWMzT98UbBkiKY5Fm-GmuX6ZgLDgr2czxaIIT8QiurmziuTAjDIDaJHJsNI5H4yTdR4Ne975z5RQXJzjKZTwDvQtPK2Eg_TQsJkwQxWVM3NgVMEeVKwGlaM-ECvAVFUp6loc15obJpus3IWs9QGu234cIE59KiPAk0H7IOHGl8n3iasnhRXqK19B5qb_o-ZMfI6qYkK22I9B2lGs7IjVUL1UcFXMljcCrgN_wqE9r6PTrM1i53boQEzOdgQyFjthaK5C5KIemauLvPx79T_wYbVBrHfkhszpay15m5gRQRyYbaL3Va7f79nn5cNNtoNWO32nkpvcB1EvUUg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MHtSD8RlR1Jp4001Kt_vo0RANKhAPkHDb9LVKAguB5cCNH6J_jl_idNkVJXrwtslOus102vlmZ-YrQteU65AzKh3OPeIwFUgnlFo5lFOtQwGYILC9w82WX--wp67XzWlybC_MWv7etriBQ3HspasQqATMgfB8k0GkbMv3an5tVc4R0GrBDG450vIGmd_H-OmEVshyLRma-ZiHPbSbg0N8t1zNfbRhkgO0840y8BD1Xuyfb92bDnAiIHQH59M3eDF_z3iHxWyymH9gAKI4FpMUv830eAgmgtOCwxz3EjwQr3DAFUOMcuPBAKPNQPaNxnGvP5gcoc7DfbtWd_LrEhzlMp6CtoWnlTAQdBoWEyaI4jImbuwK2JnKlYBNtGdCBaiKCiU9y74ac8Nk1fWrEKseo5Kd9wnCxKcS_DoJtB8yTlypfJ-4WnJ4kJ7iZXRT6C8aLVkxohX_sdV2BNqOMm1HpIwqhYqjfIdMIjhL4LTwqE_L6OrrNdi2TViIxAynIENhIrbDCmRui6VZDfH3F0__J36JturtZiNqPLaez9A2tZaSlZlVUCkdT8054I5UXmQG9wlPss83 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kguhBfGK16greNHS72Tz2KNXis3hQ8Bb2FS20aTHpwVt_iP65_hJn08RU0YO3QIbNMjs7801m51uEjinXIWdUOpx7xGEqkE4otXIop1qHAjBBYHuH77r-5SO7fvKe5rr489PuZUly1tNgWZqSrDnScXOu8Q3CjGOvYoX0JWAOJO2LkKnkhdq2364OeQS0VfKFW-a0om3m9zG-h6YKb_4okeaRp7OGVgvIiM9ma7yOFkyygVbmiAQ3Ue_e_g_XvfEAJwISeghJfYOnk_ecjVi8pdPJBwZ4imORZvjlTb8OwXBwVjKb416CB-IZ3F45xKgwKQzg2gxk32gc9_qDdAs9di4e2pdOcYmCo1zGM1gD4WklDKSihsWECaK4jIkbuwL2q3IlIBbtmVAB1qJCSc9yssbcMNly_RZksNuoZue9gzDxqYRoTwLth4wTVyrfJ66WHB6kp3gdnZT6i0YzroyoYkW22o5A21Gu7YjUUaNUcVTsmzQCDwM-xKM-raOjr9dg8baMIRIzHIMMhYnYviuQOS2Xphri7y_u_k_8EC3dn3ei26vuzR5aptZQ8rNnDVTLXsdmH8BIJg9ye_sE3_LXfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Palladium+nanoneedle+%22highways%22+for+fast+hydrogen+transport+in+magnesium+nanoparticle+assembled+films&rft.jtitle=Journal+of+materials+science&rft.au=Schieck%2C+Katrina+E&rft.au=Pedicone%2C+Luca&rft.au=Crespi%2C+Stefania&rft.au=Di+Vece%2C+Marcel&rft.date=2025-03-01&rft.issn=0022-2461&rft.volume=60&rft.issue=12+p.5415-5426&rft.spage=5415&rft.epage=5426&rft_id=info:doi/10.1007%2Fs10853-025-10774-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |