The Experience in Drone Use to Evaluate the Coefficients of Turbulent Diffusion in Small Water Bodies
Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minim...
Saved in:
Published in | Water resources Vol. 50; no. 2; pp. 242 - 251 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0097-8078 1608-344X |
DOI | 10.1134/S0097807823020112 |
Cover
Abstract | Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m
2
/s. The specific features of the obtained results are discussed. |
---|---|
AbstractList | Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m
2
/s. The specific features of the obtained results are discussed. Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m²/s. The specific features of the obtained results are discussed. Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m2/s. The specific features of the obtained results are discussed. |
Author | Lepikhin, A. P. Lucnikov, A. I. Lyakhin, Yu. S. |
Author_xml | – sequence: 1 givenname: A. P. surname: Lepikhin fullname: Lepikhin, A. P. organization: Perm Federal Research Center, Ural Branch, Russian Academy of Sciences (PFRC UB RAS) – sequence: 2 givenname: Yu. S. surname: Lyakhin fullname: Lyakhin, Yu. S. email: ljahin85@mail.ru organization: Perm Federal Research Center, Ural Branch, Russian Academy of Sciences (PFRC UB RAS) – sequence: 3 givenname: A. I. surname: Lucnikov fullname: Lucnikov, A. I. organization: Kama Branch, Russian Research Institute for Integrated Use and Protection of Water Resources |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeAFy-r-dps9qi1fkDBQ1v0tqTZiaZsNzXZFf33plQQFIVAEuZ53hnmEA1a3wJCJ5ScU8rFxYyQslCkUIwTRihle2hIJVEZF-JpgIbbcratH6DDGFeEUEJUOUQwfwE8ed9AcNAawK7F1yFF40UE3Hk8edNNr7v0TtzYg7XOJLKL2Fs878Oyb9IPXztr--h8uw2YrXXT4MdkBXzlawfxCO1b3UQ4_rpHaHEzmY_vsunD7f34cpoZLsouK6WWRC-lVEYJWkgml4xrYkudczC5Usoali9LI_Na1KbW2qiiZIyDZILXBR-hs13uJvjXHmJXrV000DS6Bd_HitOcU1ESKhJ6-gNd-T60abqKKZILpdJJFN1RJvgYA9hqE9xah4-Kkmq7-OrX4pNT_HCM63SXltMF7Zp_TbYzY-rSPkP4nulv6RMIe5ZM |
CitedBy_id | crossref_primary_10_3390_drones7070412 |
Cites_doi | 10.1134/S0001437014030163 10.4319/lo.2003.48.3.0971 10.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2 10.1007/978-3-642-85132-2_4 10.1016/j.marpolbul.2016.10.026 10.5194/hess-15-3679-2011 10.1134/S0001433821050042 10.3390/w13121638 10.1016/S0380-1330(98)70854-8 10.1134/S0001433821050133 10.1016/0011-7471(76)90875-5 10.1007/s10652-016-9458-z 10.3390/w10060776 10.9753/icce.v34.management.8 10.31857/S0205-96142019536-49 10.1029/96JC01145 10.5928/kaiyou1942.24.60 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2023. ISSN 0097-8078, Water Resources, 2023, Vol. 50, No. 2, pp. 242–251. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vodnye Resursy, 2023, Vol. 50, No. 2, pp. 139–149. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 0097-8078, Water Resources, 2023, Vol. 50, No. 2, pp. 242–251. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vodnye Resursy, 2023, Vol. 50, No. 2, pp. 139–149. |
DBID | AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G 7S9 L.6 |
DOI | 10.1134/S0097807823020112 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1608-344X |
EndPage | 251 |
ExternalDocumentID | 10_1134_S0097807823020112 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV L8X LAK LK5 LK8 LLZTM M2P M4Y M7P M7R MA- ML. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7QH 7TG 7UA ABRTQ C1K F1W H96 KL. L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c349t-96a60ab668c8417626b23a0f9a53ec5888fc25b9c65d4dcdaac879223e6243d73 |
IEDL.DBID | AGYKE |
ISSN | 0097-8078 |
IngestDate | Tue Aug 05 08:38:42 EDT 2025 Fri Jul 25 19:31:02 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Tue Jul 01 02:45:14 EDT 2025 Fri Feb 21 02:43:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | field experiment Lagrangian approach reservoir coefficient of horizontal diffusion pilotless vehicle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-96a60ab668c8417626b23a0f9a53ec5888fc25b9c65d4dcdaac879223e6243d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2805488488 |
PQPubID | 54130 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3153149014 proquest_journals_2805488488 crossref_primary_10_1134_S0097807823020112 crossref_citationtrail_10_1134_S0097807823020112 springer_journals_10_1134_S0097807823020112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Water resources |
PublicationTitleAbbrev | Water Resour |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | ChechinD.G.ArtamonovA.Yu.BodunkovN.E.ZhivoglotovD.N.ZaitsevaD.V.KalyaginM.Yu.KuznetsovD.D.KunashukA.A.ShevchenkoA.M.ShestakovaA.A.Experience of studying the turbulent structure of the atmospheric boundary layer using an unmanned aerial vehicleIzv., Atmos. Ocean. Phys20215752653210.1134/S0001433821050042 Currents and water diffusion in Baikal, Tr. Limnol. Inst. SO AN SSSR, 1970, vol. 14, no. 34. Znamenskii, V.A., Gidrologicheskie protsessy i ikh rol' v formirovanii kachestva vody (Hydrological Processes and Their Role in Water Quality Formation), Leningrad: Gidrometeoizdat, 1981. PintonJ.F.SawfordB.L.Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan2012K.R., New YorkCambridge Univ. Press RichardsonL.F.StrommelH.Note on eddy diffusion in the seaJ. Meteorol.1948523824010.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2 Ozmidov, R.V., Diffuziya primesei v okeane (Diffusion of Solutes in the Ocean), Leningrad: Gidrometeoizdat, 1986. PalK.P.MurthyR.ThomsonR.E.Lagrangian measurements in Lake OntarioLakes Res19982468169710.1016/S0380-1330(98)70854-8 ButorinN.V.LitvinovA.S.Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR1968 Matsuzaki, Y. and Fujita, I., Horizontal turbulent diffusion at sea surface for oil transport simulation, Coast. Manag., Environ., and Risk, 2014, no. 34, pp. 1–10. StrommelH.Horisontal diffusion due to oceanic turbulenceJ. Marine Res.19498199225 Reference Manual “River Flow 2D Two-Dimensional River Dynamics Model,ˮ Hydronia LLC. 2016. StockeR.ImbergeJ.Horizontal transport and dispersion in the surface layer of a medium-sized lakeLimnol. Oceanogr.20034897198210.4319/lo.2003.48.3.0971 OkuboA.OzmidovR.V.Empirical relationships between horizontal diffusion coefficients and the scale of the phenomenon, Izv. Akad. Nauk SSSRFiz. Atmosf. Okeana19706534536 Lyubimova, T., Lepikhin, A., Parshakova, Y., Bogomolov, A., Lyakhin, Y., and Tiunov, A., Peculiarities of hydrodynamics of small surface water bodies in zones of active technogenesis (On the Example of the Verkhne-Zyryansk Reservoir, Russia), Water. Switzerland, 2021, vol. 13. https://doi.org/10.3390/w13121638 GolitsynG.S.Coefficient of turbulent diffusion of a solute on water surface depending on the stage of wave developmentIzv. RAN FAO201147426432 LabzovskiiN.A.Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes)1978LeningradNauka MatsuzakiY.FujitaI.In situ estimates of horizontal turbulent diffusivity at the sea surface for oil transport simulationMar. Pollution Bull2017117344010.1016/j.marpolbul.2016.10.026 Pravila ispol’zovaniya vodnykh resursov Verkhne-Zyryanskogo i Nizhne-Zyryanskogo vodokhranilishch (Regulations on the Use of Water Resources of the Verkhne-Zyryansk and Nizhne-Zyryansk Reservoirs), Ekaterinburg: RosNIIVKh, 2021. OkuboA.EbbesmeyerC.C.Determination of vorticity, divergence, and deformation rates from analysis of drogue observationsDeep Sea Res. Oceanogr. Abstr19762334935210.1016/0011-7471(76)90875-5 BergerR.C.TateJ.N.BrownG.L.SavantG.Adaptive Hydraulics (AdH). Version 4.52015 PeetersF.WuesA.PiepkeG.ImbodeD.Horizontal mixing in lakesJ. Geophys. Res. Oceans199610136137510.1029/96JC01145 Zaripov, A.S. and Luchnikov, A.I., Studying the dynamics of shore destruction in the Kamskoe and Votkinskoe reservoirs due to abrasion by aerial photograph data, Georisk, 2021, no. 1, pp. 58–66. Luchnikov, A.I., Lyakhin, Yu.S., and Lepikhin, A.P., Experience in the use of pilotless vehicles for evaluating the state of the shores of surface water bodies, Vod. Khoz. Ross., 2018, no. 1, pp. 37–46. Okubo, A., Some remarks on the importance of the “Shear effect” on horizontal Jusion, Oceanography, 1968, no. 24, pp. 60–69. Lavrova, O.Yu., Solov’ev, D.M., Strochkov, A.Ya., Nazirova, K.R., Krayushkin, E.V., and Zhuk, E.V., The use of mini-drifters for ground-truth measurements of coastal current parameters, Issled Zemli Kosmosa, 2019, no, 5, pp. 36–49. OkuboA.Some speculation on oceanic diffusion diagramsRapp. P.-V. Reun. Cons. Int. Explor. Mer.19741677785 Peeters, F., Horizontale Mischung in Seen (Horizontal Mixing in Lakes), Ph. D. Thesis, Zurich: Eidgenossische Technische Hochschule, 1994. 147 p. ShelekhovA.P.Afanas’evA.L.ShelekhovaE.A.KobzevA.A.Tel’minovA.E.MolchunovA.N.PoplevinaO.N.Using small unmanned aerial vehicles for turbulence measurements in the atmosphereIzv., Atmos. Ocean. Phys20215753354610.1134/S0001433821050133 Ozmidov, R.V., Experimental study of horizontal turbulent diffusion in sea and artificial water body with a small depth, Izv. Akad. Nauk SSSR, Ser. geofiz. no. 6, 1957, pp. 756–764. ZhurbasV.M.LyzhkovD.A.Kuz’minaN.P.Estimates of the lateral eddy diffusivity in the Indian Ocean as derived from drifter dataOeanology20141528128810.1134/S0001437014030163 KolmogorovA.N.Local turbulence structure in an incompressible fluid at very high Reynolds numbersDokl. Akad. Nauk SSSR194130299303 Imboden, D.M. and Wuest A., Mixing mechanisms in lakes, in Physics and Chemistry of Lakes, Lerman, A., Imboden, D., and Gat, J., New York: Springer-Yerlag, 1995, pp. 83–138. Delft 3D-Flow Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual, Delft Deltares, 2011. Kitaev, A.B. and Devyatkova, T.P., Specifics of the turbulent water exchange in the Kamskoe and Votkinskoe reservoirs and methods for its evaluation, Geograf. Vestn., 2006, no. 2, pp. 67–75. SuaraK.MardaniN.FairweatherH.McCallumA.AllanC.RoyS.BrownR.Observation of the dynamics and horizontal dispersion in a shallow Intermittently Closed and Open Lake and Lagoon (ICOLL)Water20181077610.3390/w10060776 SuaraK.BrownR.BorgasM.Eddy diffusivity: A single dispersion analysis of high resolution drifters in a tidal shallow estuaryEnviron., Fluid Mech20161692394310.1007/s10652-016-9458-z Metodicheskie osnovy otsenki antropogennogo vliyaniya na kachestvo poverkhnostnykh vod (Methodological Basis for Assessing the Anthropogenic Impact on the Quality of Surface Waters), Karaushev, A.V., Ed., Gidrometeoizdat, 1981. ShahaD.ChoY.K.KwakM.T.KunduS.JungK.Spatial variation of the longitudinal dispersion coefficient in an estuaryHydrol. Earth Syst. Sci.2011153679368810.5194/hess-15-3679-2011 8500_CR6 8500_CR5 D.G. Chechin (8500_CR17) 2021; 57 8500_CR4 8500_CR9 R.C. Berger (8500_CR19) 2015 8500_CR15 8500_CR16 A.P. Shelekhov (8500_CR18) 2021; 57 N.V. Butorin (8500_CR1) 1968 8500_CR10 8500_CR32 L.F. Richardson (8500_CR33) 1948; 5 8500_CR11 8500_CR12 8500_CR13 A. Okubo (8500_CR14) 1970; 6 K. Suara (8500_CR37) 2018; 10 N.A. Labzovskii (8500_CR8) 1978 A. Okubo (8500_CR26) 1974; 167 A.N. Kolmogorov (8500_CR7) 1941; 30 D. Shaha (8500_CR34) 2011; 15 A. Okubo (8500_CR27) 1976; 23 F. Peeters (8500_CR30) 1996; 101 G.S. Golitsyn (8500_CR2) 2011; 47 V.M. Zhurbas (8500_CR3) 2014; 15 Y. Matsuzaki (8500_CR24) 2017; 117 H. Strommel (8500_CR36) 1949; 8 8500_CR20 K.P. Pal (8500_CR28) 1998; 24 8500_CR25 8500_CR21 8500_CR22 K. Suara (8500_CR38) 2016; 16 8500_CR23 R. Stocke (8500_CR35) 2003; 48 J.F. Pinton (8500_CR31) 2012 8500_CR29 |
References_xml | – reference: ZhurbasV.M.LyzhkovD.A.Kuz’minaN.P.Estimates of the lateral eddy diffusivity in the Indian Ocean as derived from drifter dataOeanology20141528128810.1134/S0001437014030163 – reference: Peeters, F., Horizontale Mischung in Seen (Horizontal Mixing in Lakes), Ph. D. Thesis, Zurich: Eidgenossische Technische Hochschule, 1994. 147 p. – reference: Lyubimova, T., Lepikhin, A., Parshakova, Y., Bogomolov, A., Lyakhin, Y., and Tiunov, A., Peculiarities of hydrodynamics of small surface water bodies in zones of active technogenesis (On the Example of the Verkhne-Zyryansk Reservoir, Russia), Water. Switzerland, 2021, vol. 13. https://doi.org/10.3390/w13121638 – reference: ShahaD.ChoY.K.KwakM.T.KunduS.JungK.Spatial variation of the longitudinal dispersion coefficient in an estuaryHydrol. Earth Syst. Sci.2011153679368810.5194/hess-15-3679-2011 – reference: OkuboA.Some speculation on oceanic diffusion diagramsRapp. P.-V. Reun. Cons. Int. Explor. Mer.19741677785 – reference: Currents and water diffusion in Baikal, Tr. Limnol. Inst. SO AN SSSR, 1970, vol. 14, no. 34. – reference: Pravila ispol’zovaniya vodnykh resursov Verkhne-Zyryanskogo i Nizhne-Zyryanskogo vodokhranilishch (Regulations on the Use of Water Resources of the Verkhne-Zyryansk and Nizhne-Zyryansk Reservoirs), Ekaterinburg: RosNIIVKh, 2021. – reference: Reference Manual “River Flow 2D Two-Dimensional River Dynamics Model,ˮ Hydronia LLC. 2016. – reference: ChechinD.G.ArtamonovA.Yu.BodunkovN.E.ZhivoglotovD.N.ZaitsevaD.V.KalyaginM.Yu.KuznetsovD.D.KunashukA.A.ShevchenkoA.M.ShestakovaA.A.Experience of studying the turbulent structure of the atmospheric boundary layer using an unmanned aerial vehicleIzv., Atmos. Ocean. Phys20215752653210.1134/S0001433821050042 – reference: Delft 3D-Flow Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual, Delft Deltares, 2011. – reference: PintonJ.F.SawfordB.L.Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan2012K.R., New YorkCambridge Univ. Press – reference: StrommelH.Horisontal diffusion due to oceanic turbulenceJ. Marine Res.19498199225 – reference: GolitsynG.S.Coefficient of turbulent diffusion of a solute on water surface depending on the stage of wave developmentIzv. RAN FAO201147426432 – reference: Metodicheskie osnovy otsenki antropogennogo vliyaniya na kachestvo poverkhnostnykh vod (Methodological Basis for Assessing the Anthropogenic Impact on the Quality of Surface Waters), Karaushev, A.V., Ed., Gidrometeoizdat, 1981. – reference: Ozmidov, R.V., Experimental study of horizontal turbulent diffusion in sea and artificial water body with a small depth, Izv. Akad. Nauk SSSR, Ser. geofiz. no. 6, 1957, pp. 756–764. – reference: Kitaev, A.B. and Devyatkova, T.P., Specifics of the turbulent water exchange in the Kamskoe and Votkinskoe reservoirs and methods for its evaluation, Geograf. Vestn., 2006, no. 2, pp. 67–75. – reference: MatsuzakiY.FujitaI.In situ estimates of horizontal turbulent diffusivity at the sea surface for oil transport simulationMar. Pollution Bull2017117344010.1016/j.marpolbul.2016.10.026 – reference: KolmogorovA.N.Local turbulence structure in an incompressible fluid at very high Reynolds numbersDokl. Akad. Nauk SSSR194130299303 – reference: Lavrova, O.Yu., Solov’ev, D.M., Strochkov, A.Ya., Nazirova, K.R., Krayushkin, E.V., and Zhuk, E.V., The use of mini-drifters for ground-truth measurements of coastal current parameters, Issled Zemli Kosmosa, 2019, no, 5, pp. 36–49. – reference: OkuboA.EbbesmeyerC.C.Determination of vorticity, divergence, and deformation rates from analysis of drogue observationsDeep Sea Res. Oceanogr. Abstr19762334935210.1016/0011-7471(76)90875-5 – reference: RichardsonL.F.StrommelH.Note on eddy diffusion in the seaJ. Meteorol.1948523824010.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2 – reference: StockeR.ImbergeJ.Horizontal transport and dispersion in the surface layer of a medium-sized lakeLimnol. Oceanogr.20034897198210.4319/lo.2003.48.3.0971 – reference: SuaraK.MardaniN.FairweatherH.McCallumA.AllanC.RoyS.BrownR.Observation of the dynamics and horizontal dispersion in a shallow Intermittently Closed and Open Lake and Lagoon (ICOLL)Water20181077610.3390/w10060776 – reference: Okubo, A., Some remarks on the importance of the “Shear effect” on horizontal Jusion, Oceanography, 1968, no. 24, pp. 60–69. – reference: Luchnikov, A.I., Lyakhin, Yu.S., and Lepikhin, A.P., Experience in the use of pilotless vehicles for evaluating the state of the shores of surface water bodies, Vod. Khoz. Ross., 2018, no. 1, pp. 37–46. – reference: Matsuzaki, Y. and Fujita, I., Horizontal turbulent diffusion at sea surface for oil transport simulation, Coast. Manag., Environ., and Risk, 2014, no. 34, pp. 1–10. – reference: ShelekhovA.P.Afanas’evA.L.ShelekhovaE.A.KobzevA.A.Tel’minovA.E.MolchunovA.N.PoplevinaO.N.Using small unmanned aerial vehicles for turbulence measurements in the atmosphereIzv., Atmos. Ocean. Phys20215753354610.1134/S0001433821050133 – reference: BergerR.C.TateJ.N.BrownG.L.SavantG.Adaptive Hydraulics (AdH). Version 4.52015 – reference: Znamenskii, V.A., Gidrologicheskie protsessy i ikh rol' v formirovanii kachestva vody (Hydrological Processes and Their Role in Water Quality Formation), Leningrad: Gidrometeoizdat, 1981. – reference: SuaraK.BrownR.BorgasM.Eddy diffusivity: A single dispersion analysis of high resolution drifters in a tidal shallow estuaryEnviron., Fluid Mech20161692394310.1007/s10652-016-9458-z – reference: Imboden, D.M. and Wuest A., Mixing mechanisms in lakes, in Physics and Chemistry of Lakes, Lerman, A., Imboden, D., and Gat, J., New York: Springer-Yerlag, 1995, pp. 83–138. – reference: LabzovskiiN.A.Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes)1978LeningradNauka – reference: PalK.P.MurthyR.ThomsonR.E.Lagrangian measurements in Lake OntarioLakes Res19982468169710.1016/S0380-1330(98)70854-8 – reference: OkuboA.OzmidovR.V.Empirical relationships between horizontal diffusion coefficients and the scale of the phenomenon, Izv. Akad. Nauk SSSRFiz. Atmosf. Okeana19706534536 – reference: Ozmidov, R.V., Diffuziya primesei v okeane (Diffusion of Solutes in the Ocean), Leningrad: Gidrometeoizdat, 1986. – reference: ButorinN.V.LitvinovA.S.Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR1968 – reference: Zaripov, A.S. and Luchnikov, A.I., Studying the dynamics of shore destruction in the Kamskoe and Votkinskoe reservoirs due to abrasion by aerial photograph data, Georisk, 2021, no. 1, pp. 58–66. – reference: PeetersF.WuesA.PiepkeG.ImbodeD.Horizontal mixing in lakesJ. Geophys. Res. Oceans199610136137510.1029/96JC01145 – ident: 8500_CR16 – volume: 15 start-page: 281 year: 2014 ident: 8500_CR3 publication-title: Oeanology doi: 10.1134/S0001437014030163 – ident: 8500_CR20 – volume: 167 start-page: 77 year: 1974 ident: 8500_CR26 publication-title: Rapp. P.-V. Reun. Cons. Int. Explor. Mer. – volume: 30 start-page: 299 year: 1941 ident: 8500_CR7 publication-title: Dokl. Akad. Nauk SSSR – ident: 8500_CR29 – volume: 48 start-page: 971 year: 2003 ident: 8500_CR35 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.3.0971 – volume: 5 start-page: 238 year: 1948 ident: 8500_CR33 publication-title: J. Meteorol. doi: 10.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2 – ident: 8500_CR11 – ident: 8500_CR4 – ident: 8500_CR6 – ident: 8500_CR15 – ident: 8500_CR32 – volume-title: Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR year: 1968 ident: 8500_CR1 – ident: 8500_CR13 – ident: 8500_CR21 doi: 10.1007/978-3-642-85132-2_4 – volume: 117 start-page: 34 year: 2017 ident: 8500_CR24 publication-title: Mar. Pollution Bull doi: 10.1016/j.marpolbul.2016.10.026 – volume: 15 start-page: 3679 year: 2011 ident: 8500_CR34 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-3679-2011 – volume: 57 start-page: 526 year: 2021 ident: 8500_CR17 publication-title: Izv., Atmos. Ocean. Phys doi: 10.1134/S0001433821050042 – ident: 8500_CR22 doi: 10.3390/w13121638 – volume: 24 start-page: 681 year: 1998 ident: 8500_CR28 publication-title: Lakes Res doi: 10.1016/S0380-1330(98)70854-8 – volume: 57 start-page: 533 year: 2021 ident: 8500_CR18 publication-title: Izv., Atmos. Ocean. Phys doi: 10.1134/S0001433821050133 – volume: 23 start-page: 349 year: 1976 ident: 8500_CR27 publication-title: Deep Sea Res. Oceanogr. Abstr doi: 10.1016/0011-7471(76)90875-5 – volume-title: Adaptive Hydraulics (AdH). Version 4.5 year: 2015 ident: 8500_CR19 – volume: 8 start-page: 199 year: 1949 ident: 8500_CR36 publication-title: J. Marine Res. – volume: 6 start-page: 534 year: 1970 ident: 8500_CR14 publication-title: Fiz. Atmosf. Okeana – volume: 16 start-page: 923 year: 2016 ident: 8500_CR38 publication-title: Environ., Fluid Mech doi: 10.1007/s10652-016-9458-z – volume: 10 start-page: 776 year: 2018 ident: 8500_CR37 publication-title: Water doi: 10.3390/w10060776 – ident: 8500_CR23 doi: 10.9753/icce.v34.management.8 – volume-title: Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan year: 2012 ident: 8500_CR31 – volume: 47 start-page: 426 year: 2011 ident: 8500_CR2 publication-title: Izv. RAN FAO – ident: 8500_CR9 doi: 10.31857/S0205-96142019536-49 – volume: 101 start-page: 361 year: 1996 ident: 8500_CR30 publication-title: J. Geophys. Res. Oceans doi: 10.1029/96JC01145 – ident: 8500_CR5 – volume-title: Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes) year: 1978 ident: 8500_CR8 – ident: 8500_CR10 – ident: 8500_CR25 doi: 10.5928/kaiyou1942.24.60 – ident: 8500_CR12 |
SSID | ssj0010089 |
Score | 2.2644846 |
Snippet | Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | adverse effects Aquatic Pollution Coefficients Computation computers Diffusion Drifters Earth and Environmental Science Earth Sciences Eddy diffusion field experimentation Floats Homogeneity Horizontal diffusion hydrodynamics Hydrogeology Hydrology/Water Resources Hydrophysical Processes Isotropy Lakes Reservoirs risk Russia Theoretical analysis Turbulent diffusion Waste Water Technology water Water Management Water Pollution Control |
Title | The Experience in Drone Use to Evaluate the Coefficients of Turbulent Diffusion in Small Water Bodies |
URI | https://link.springer.com/article/10.1134/S0097807823020112 https://www.proquest.com/docview/2805488488 https://www.proquest.com/docview/3153149014 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTuMwcATlsFx47a4oL3klTqyC0sR27GOBAgItF1rBniLbcURFSVCbHODrGTdJK54SUg6WbE-czHgenvEMwD5LVCKdpaqZ5B6VCluR4F4kA0N1KqXx3d3hf1f8fEAvbtltfY970kS7Ny7JKaeu6o5Qd6fXZcuJnGfISS3ku0usI6RowVL37P9lb-Y8QLFWab3SMeBI1M7MD4G8FkdzHfONW3QqbU5Xod-sswoyuT8sC31ont-kcPzmh6zBSq19km5FLuuwYLMN-FEXQr97-gkWyYbM0x-TYUZOxnlmyWBiSZGTXpUcHNs47ji30wQULhaD5Cnpl4giJ8XIyTBNS3cO5wBcP6jRiNzgrDE5yl3U4i8YnPb6x-deXYnBMyGVhSe54r7SnAsjaAf5J9dBqPxUKhZaw9CKTk3AtDScJTQxiVJGILaD0PKAhkkU_oZWhovdBJKqIEq573oZRfKRyiAAJjtUU-1L1Qa_QUhs6jTlrlrGKJ6aKyGN3_2_NhzMpjxWOTq-GrzTYDmut-skDgRqrkLg04Y_s27caM57ojKbl5M4RNmA5iSalG342yB2DuLTF259a_Q2LLuC9lVs0A60inFpd1HtKfReTeZ7sDgIui8xTvSl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwLEJwGBfEUwwGBIkTqFJpkzQ5AmMar11YBbcqTVMxabRo3Q78PXYfm3hKSD1EiuNWduNH7NiEnPBEJwo91Zgr4TClYRRI4QTKMyxOlTIu3h1-GIh-yG6f-XN9j7tost2bkGQpqau-Iwzv9GK1nAAjQ6i1QO6ugC0gsW1B6F3MQweg1CqbV6H4DWQdyvwRxWdltLAwvwRFS13TWydrtZFILyqubpAlm22SVt2v_OV9i1jgLl1UKaajjHYneWZpWFg6zel1VcMbxgB3lduyTgSmTNA8pcMZUBKVDe2O0nSGx2WI4PFVj8f0CVZN6GWOyYXbJOxdD6_6Tt0wwTE-U1NHCS1cHQshjWTnIOZE7PnaTZXmvjUcnN3UeDxWRvCEJSbR2khgiudb4TE_CfwdspzBx-4SmmovSIWLs5wBl5U2gICrcxaz2FW6TdyGcpGpq4ljU4txVHoVPou-EbtNTudL3qpSGn8Bdxp2RPWuKiJPgoEpJTxtcjyfhv2AQQ6d2XxWRD6IcPD6wPNrk7OGjQsUv75w71_QR6TVHz7cR_c3g7t9soo96Kt0ng5Znk5m9gAslWl8WP6ZH8772eY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL6InzidGsEnpdi1Sdo8zn3g5xDc0LeSpgkKs5Wte_C_925tN_wEoQ-BJNeSS-6jd_kdISc8UYlETzXmUjhMKmgFoXAC6WkWWym1i3eH73ricsCun_hTWed0XGW7VyHJ4k4DojSl-flbYssaJAzv9yJyToBRItRgIIOXQBo3cKMPvOYsjAAKrrB_JYriICzDmj-S-KyY5tbmlwDpVO9018laaTDSZsHhDbJg0k2yUtYuf37fIgY4TeeIxfQlpe1Rlho6GBuaZ7RT4HlDG8a1MjPFjMD0CZpZ2p_AqqLioe0Xayf46wwJPLyq4ZA-wqwRvcgw0XCbDLqdfuvSKYsnONpnMnekUMJVsRChDlkDRJ6IPV-5ViruG83B8bXa47HUgics0YlSOgQGeb4RHvOTwN8hiyl87C6hVnmBFS72cgYcl0oDAS4bLGaxK1WNuNXKRbpEFscCF8No6mH4LPq22DVyOpvyVsBq_DW4XrEjKk_YOPJCMDbDEJ4aOZ51w9nAgIdKTTYZRz6Ic_AAwQuskbOKjXMSv75w71-jj8jyfbsb3V71bvbJKpajLzJ76mQxH03MARgteXw43ZgfvzzeIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Experience+in+Drone+Use+to+Evaluate+the+Coefficients+of+Turbulent+Diffusion+in+Small+Water+Bodies&rft.jtitle=Water+resources&rft.au=Lepikhin%2C+A.+P.&rft.au=Lyakhin%2C+Yu.+S.&rft.au=Lucnikov%2C+A.+I.&rft.date=2023-04-01&rft.issn=0097-8078&rft.eissn=1608-344X&rft.volume=50&rft.issue=2&rft.spage=242&rft.epage=251&rft_id=info:doi/10.1134%2FS0097807823020112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0097807823020112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8078&client=summon |