The Experience in Drone Use to Evaluate the Coefficients of Turbulent Diffusion in Small Water Bodies

Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minim...

Full description

Saved in:
Bibliographic Details
Published inWater resources Vol. 50; no. 2; pp. 242 - 251
Main Authors Lepikhin, A. P., Lyakhin, Yu. S., Lucnikov, A. I.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0097-8078
1608-344X
DOI10.1134/S0097807823020112

Cover

Abstract Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m 2 /s. The specific features of the obtained results are discussed.
AbstractList Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m 2 /s. The specific features of the obtained results are discussed.
Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m²/s. The specific features of the obtained results are discussed.
Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer technologies, including hydrodynamic computation modules, can be used to effectively estimate and forecast their consequences with the aim to minimize the adverse effect. These models require evaluating the coefficients of horizontal diffusion. The theoretical analysis of such processes is very difficult because of their specifics. Studies aimed at evaluating these coefficients in Russia and other countries are very few, even under the assumption of their homogeneity and isotropy. The modern measurement technologies involving the use of pilotless vehicles, make such studies much simpler. The article discusses the significance of such studies, the technology of their performance, and the results obtained for the Verkhne-Zyryansk Reservoir. A field experiment with the use of eight floats yielded an average estimate of the coefficient of horizontal turbulent diffusion equal to 0.012 m2/s. The specific features of the obtained results are discussed.
Author Lepikhin, A. P.
Lucnikov, A. I.
Lyakhin, Yu. S.
Author_xml – sequence: 1
  givenname: A. P.
  surname: Lepikhin
  fullname: Lepikhin, A. P.
  organization: Perm Federal Research Center, Ural Branch, Russian Academy of Sciences (PFRC UB RAS)
– sequence: 2
  givenname: Yu. S.
  surname: Lyakhin
  fullname: Lyakhin, Yu. S.
  email: ljahin85@mail.ru
  organization: Perm Federal Research Center, Ural Branch, Russian Academy of Sciences (PFRC UB RAS)
– sequence: 3
  givenname: A. I.
  surname: Lucnikov
  fullname: Lucnikov, A. I.
  organization: Kama Branch, Russian Research Institute for Integrated Use and Protection of Water Resources
BookMark eNp9kE1LAzEQhoNUsFZ_gLeAFy-r-dps9qi1fkDBQ1v0tqTZiaZsNzXZFf33plQQFIVAEuZ53hnmEA1a3wJCJ5ScU8rFxYyQslCkUIwTRihle2hIJVEZF-JpgIbbcratH6DDGFeEUEJUOUQwfwE8ed9AcNAawK7F1yFF40UE3Hk8edNNr7v0TtzYg7XOJLKL2Fs878Oyb9IPXztr--h8uw2YrXXT4MdkBXzlawfxCO1b3UQ4_rpHaHEzmY_vsunD7f34cpoZLsouK6WWRC-lVEYJWkgml4xrYkudczC5Usoali9LI_Na1KbW2qiiZIyDZILXBR-hs13uJvjXHmJXrV000DS6Bd_HitOcU1ESKhJ6-gNd-T60abqKKZILpdJJFN1RJvgYA9hqE9xah4-Kkmq7-OrX4pNT_HCM63SXltMF7Zp_TbYzY-rSPkP4nulv6RMIe5ZM
CitedBy_id crossref_primary_10_3390_drones7070412
Cites_doi 10.1134/S0001437014030163
10.4319/lo.2003.48.3.0971
10.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2
10.1007/978-3-642-85132-2_4
10.1016/j.marpolbul.2016.10.026
10.5194/hess-15-3679-2011
10.1134/S0001433821050042
10.3390/w13121638
10.1016/S0380-1330(98)70854-8
10.1134/S0001433821050133
10.1016/0011-7471(76)90875-5
10.1007/s10652-016-9458-z
10.3390/w10060776
10.9753/icce.v34.management.8
10.31857/S0205-96142019536-49
10.1029/96JC01145
10.5928/kaiyou1942.24.60
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 0097-8078, Water Resources, 2023, Vol. 50, No. 2, pp. 242–251. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vodnye Resursy, 2023, Vol. 50, No. 2, pp. 139–149.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 0097-8078, Water Resources, 2023, Vol. 50, No. 2, pp. 242–251. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Vodnye Resursy, 2023, Vol. 50, No. 2, pp. 139–149.
DBID AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
DOI 10.1134/S0097807823020112
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1608-344X
EndPage 251
ExternalDocumentID 10_1134_S0097807823020112
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAK
LK5
LK8
LLZTM
M2P
M4Y
M7P
M7R
MA-
ML.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7QH
7TG
7UA
ABRTQ
C1K
F1W
H96
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-c349t-96a60ab668c8417626b23a0f9a53ec5888fc25b9c65d4dcdaac879223e6243d73
IEDL.DBID AGYKE
ISSN 0097-8078
IngestDate Tue Aug 05 08:38:42 EDT 2025
Fri Jul 25 19:31:02 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Tue Jul 01 02:45:14 EDT 2025
Fri Feb 21 02:43:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords field experiment
Lagrangian approach
reservoir
coefficient of horizontal diffusion
pilotless vehicle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-96a60ab668c8417626b23a0f9a53ec5888fc25b9c65d4dcdaac879223e6243d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2805488488
PQPubID 54130
PageCount 10
ParticipantIDs proquest_miscellaneous_3153149014
proquest_journals_2805488488
crossref_primary_10_1134_S0097807823020112
crossref_citationtrail_10_1134_S0097807823020112
springer_journals_10_1134_S0097807823020112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Water resources
PublicationTitleAbbrev Water Resour
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References ChechinD.G.ArtamonovA.Yu.BodunkovN.E.ZhivoglotovD.N.ZaitsevaD.V.KalyaginM.Yu.KuznetsovD.D.KunashukA.A.ShevchenkoA.M.ShestakovaA.A.Experience of studying the turbulent structure of the atmospheric boundary layer using an unmanned aerial vehicleIzv., Atmos. Ocean. Phys20215752653210.1134/S0001433821050042
Currents and water diffusion in Baikal, Tr. Limnol. Inst. SO AN SSSR, 1970, vol. 14, no. 34.
Znamenskii, V.A., Gidrologicheskie protsessy i ikh rol' v formirovanii kachestva vody (Hydrological Processes and Their Role in Water Quality Formation), Leningrad: Gidrometeoizdat, 1981.
PintonJ.F.SawfordB.L.Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan2012K.R., New YorkCambridge Univ. Press
RichardsonL.F.StrommelH.Note on eddy diffusion in the seaJ. Meteorol.1948523824010.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2
Ozmidov, R.V., Diffuziya primesei v okeane (Diffusion of Solutes in the Ocean), Leningrad: Gidrometeoizdat, 1986.
PalK.P.MurthyR.ThomsonR.E.Lagrangian measurements in Lake OntarioLakes Res19982468169710.1016/S0380-1330(98)70854-8
ButorinN.V.LitvinovA.S.Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR1968
Matsuzaki, Y. and Fujita, I., Horizontal turbulent diffusion at sea surface for oil transport simulation, Coast. Manag., Environ., and Risk, 2014, no. 34, pp. 1–10.
StrommelH.Horisontal diffusion due to oceanic turbulenceJ. Marine Res.19498199225
Reference Manual “River Flow 2D Two-Dimensional River Dynamics Model,ˮ Hydronia LLC. 2016.
StockeR.ImbergeJ.Horizontal transport and dispersion in the surface layer of a medium-sized lakeLimnol. Oceanogr.20034897198210.4319/lo.2003.48.3.0971
OkuboA.OzmidovR.V.Empirical relationships between horizontal diffusion coefficients and the scale of the phenomenon, Izv. Akad. Nauk SSSRFiz. Atmosf. Okeana19706534536
Lyubimova, T., Lepikhin, A., Parshakova, Y., Bogomolov, A., Lyakhin, Y., and Tiunov, A., Peculiarities of hydrodynamics of small surface water bodies in zones of active technogenesis (On the Example of the Verkhne-Zyryansk Reservoir, Russia), Water. Switzerland, 2021, vol. 13. https://doi.org/10.3390/w13121638
GolitsynG.S.Coefficient of turbulent diffusion of a solute on water surface depending on the stage of wave developmentIzv. RAN FAO201147426432
LabzovskiiN.A.Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes)1978LeningradNauka
MatsuzakiY.FujitaI.In situ estimates of horizontal turbulent diffusivity at the sea surface for oil transport simulationMar. Pollution Bull2017117344010.1016/j.marpolbul.2016.10.026
Pravila ispol’zovaniya vodnykh resursov Verkhne-Zyryanskogo i Nizhne-Zyryanskogo vodokhranilishch (Regulations on the Use of Water Resources of the Verkhne-Zyryansk and Nizhne-Zyryansk Reservoirs), Ekaterinburg: RosNIIVKh, 2021.
OkuboA.EbbesmeyerC.C.Determination of vorticity, divergence, and deformation rates from analysis of drogue observationsDeep Sea Res. Oceanogr. Abstr19762334935210.1016/0011-7471(76)90875-5
BergerR.C.TateJ.N.BrownG.L.SavantG.Adaptive Hydraulics (AdH). Version 4.52015
PeetersF.WuesA.PiepkeG.ImbodeD.Horizontal mixing in lakesJ. Geophys. Res. Oceans199610136137510.1029/96JC01145
Zaripov, A.S. and Luchnikov, A.I., Studying the dynamics of shore destruction in the Kamskoe and Votkinskoe reservoirs due to abrasion by aerial photograph data, Georisk, 2021, no. 1, pp. 58–66.
Luchnikov, A.I., Lyakhin, Yu.S., and Lepikhin, A.P., Experience in the use of pilotless vehicles for evaluating the state of the shores of surface water bodies, Vod. Khoz. Ross., 2018, no. 1, pp. 37–46.
Okubo, A., Some remarks on the importance of the “Shear effect” on horizontal Jusion, Oceanography, 1968, no. 24, pp. 60–69.
Lavrova, O.Yu., Solov’ev, D.M., Strochkov, A.Ya., Nazirova, K.R., Krayushkin, E.V., and Zhuk, E.V., The use of mini-drifters for ground-truth measurements of coastal current parameters, Issled Zemli Kosmosa, 2019, no, 5, pp. 36–49.
OkuboA.Some speculation on oceanic diffusion diagramsRapp. P.-V. Reun. Cons. Int. Explor. Mer.19741677785
Peeters, F., Horizontale Mischung in Seen (Horizontal Mixing in Lakes), Ph. D. Thesis, Zurich: Eidgenossische Technische Hochschule, 1994. 147 p.
ShelekhovA.P.Afanas’evA.L.ShelekhovaE.A.KobzevA.A.Tel’minovA.E.MolchunovA.N.PoplevinaO.N.Using small unmanned aerial vehicles for turbulence measurements in the atmosphereIzv., Atmos. Ocean. Phys20215753354610.1134/S0001433821050133
Ozmidov, R.V., Experimental study of horizontal turbulent diffusion in sea and artificial water body with a small depth, Izv. Akad. Nauk SSSR, Ser. geofiz. no. 6, 1957, pp. 756–764.
ZhurbasV.M.LyzhkovD.A.Kuz’minaN.P.Estimates of the lateral eddy diffusivity in the Indian Ocean as derived from drifter dataOeanology20141528128810.1134/S0001437014030163
KolmogorovA.N.Local turbulence structure in an incompressible fluid at very high Reynolds numbersDokl. Akad. Nauk SSSR194130299303
Imboden, D.M. and Wuest A., Mixing mechanisms in lakes, in Physics and Chemistry of Lakes, Lerman, A., Imboden, D., and Gat, J., New York: Springer-Yerlag, 1995, pp. 83–138.
Delft 3D-Flow Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual, Delft Deltares, 2011.
Kitaev, A.B. and Devyatkova, T.P., Specifics of the turbulent water exchange in the Kamskoe and Votkinskoe reservoirs and methods for its evaluation, Geograf. Vestn., 2006, no. 2, pp. 67–75.
SuaraK.MardaniN.FairweatherH.McCallumA.AllanC.RoyS.BrownR.Observation of the dynamics and horizontal dispersion in a shallow Intermittently Closed and Open Lake and Lagoon (ICOLL)Water20181077610.3390/w10060776
SuaraK.BrownR.BorgasM.Eddy diffusivity: A single dispersion analysis of high resolution drifters in a tidal shallow estuaryEnviron., Fluid Mech20161692394310.1007/s10652-016-9458-z
Metodicheskie osnovy otsenki antropogennogo vliyaniya na kachestvo poverkhnostnykh vod (Methodological Basis for Assessing the Anthropogenic Impact on the Quality of Surface Waters), Karaushev, A.V., Ed., Gidrometeoizdat, 1981.
ShahaD.ChoY.K.KwakM.T.KunduS.JungK.Spatial variation of the longitudinal dispersion coefficient in an estuaryHydrol. Earth Syst. Sci.2011153679368810.5194/hess-15-3679-2011
8500_CR6
8500_CR5
D.G. Chechin (8500_CR17) 2021; 57
8500_CR4
8500_CR9
R.C. Berger (8500_CR19) 2015
8500_CR15
8500_CR16
A.P. Shelekhov (8500_CR18) 2021; 57
N.V. Butorin (8500_CR1) 1968
8500_CR10
8500_CR32
L.F. Richardson (8500_CR33) 1948; 5
8500_CR11
8500_CR12
8500_CR13
A. Okubo (8500_CR14) 1970; 6
K. Suara (8500_CR37) 2018; 10
N.A. Labzovskii (8500_CR8) 1978
A. Okubo (8500_CR26) 1974; 167
A.N. Kolmogorov (8500_CR7) 1941; 30
D. Shaha (8500_CR34) 2011; 15
A. Okubo (8500_CR27) 1976; 23
F. Peeters (8500_CR30) 1996; 101
G.S. Golitsyn (8500_CR2) 2011; 47
V.M. Zhurbas (8500_CR3) 2014; 15
Y. Matsuzaki (8500_CR24) 2017; 117
H. Strommel (8500_CR36) 1949; 8
8500_CR20
K.P. Pal (8500_CR28) 1998; 24
8500_CR25
8500_CR21
8500_CR22
K. Suara (8500_CR38) 2016; 16
8500_CR23
R. Stocke (8500_CR35) 2003; 48
J.F. Pinton (8500_CR31) 2012
8500_CR29
References_xml – reference: ZhurbasV.M.LyzhkovD.A.Kuz’minaN.P.Estimates of the lateral eddy diffusivity in the Indian Ocean as derived from drifter dataOeanology20141528128810.1134/S0001437014030163
– reference: Peeters, F., Horizontale Mischung in Seen (Horizontal Mixing in Lakes), Ph. D. Thesis, Zurich: Eidgenossische Technische Hochschule, 1994. 147 p.
– reference: Lyubimova, T., Lepikhin, A., Parshakova, Y., Bogomolov, A., Lyakhin, Y., and Tiunov, A., Peculiarities of hydrodynamics of small surface water bodies in zones of active technogenesis (On the Example of the Verkhne-Zyryansk Reservoir, Russia), Water. Switzerland, 2021, vol. 13. https://doi.org/10.3390/w13121638
– reference: ShahaD.ChoY.K.KwakM.T.KunduS.JungK.Spatial variation of the longitudinal dispersion coefficient in an estuaryHydrol. Earth Syst. Sci.2011153679368810.5194/hess-15-3679-2011
– reference: OkuboA.Some speculation on oceanic diffusion diagramsRapp. P.-V. Reun. Cons. Int. Explor. Mer.19741677785
– reference: Currents and water diffusion in Baikal, Tr. Limnol. Inst. SO AN SSSR, 1970, vol. 14, no. 34.
– reference: Pravila ispol’zovaniya vodnykh resursov Verkhne-Zyryanskogo i Nizhne-Zyryanskogo vodokhranilishch (Regulations on the Use of Water Resources of the Verkhne-Zyryansk and Nizhne-Zyryansk Reservoirs), Ekaterinburg: RosNIIVKh, 2021.
– reference: Reference Manual “River Flow 2D Two-Dimensional River Dynamics Model,ˮ Hydronia LLC. 2016.
– reference: ChechinD.G.ArtamonovA.Yu.BodunkovN.E.ZhivoglotovD.N.ZaitsevaD.V.KalyaginM.Yu.KuznetsovD.D.KunashukA.A.ShevchenkoA.M.ShestakovaA.A.Experience of studying the turbulent structure of the atmospheric boundary layer using an unmanned aerial vehicleIzv., Atmos. Ocean. Phys20215752653210.1134/S0001433821050042
– reference: Delft 3D-Flow Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, User Manual, Delft Deltares, 2011.
– reference: PintonJ.F.SawfordB.L.Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan2012K.R., New YorkCambridge Univ. Press
– reference: StrommelH.Horisontal diffusion due to oceanic turbulenceJ. Marine Res.19498199225
– reference: GolitsynG.S.Coefficient of turbulent diffusion of a solute on water surface depending on the stage of wave developmentIzv. RAN FAO201147426432
– reference: Metodicheskie osnovy otsenki antropogennogo vliyaniya na kachestvo poverkhnostnykh vod (Methodological Basis for Assessing the Anthropogenic Impact on the Quality of Surface Waters), Karaushev, A.V., Ed., Gidrometeoizdat, 1981.
– reference: Ozmidov, R.V., Experimental study of horizontal turbulent diffusion in sea and artificial water body with a small depth, Izv. Akad. Nauk SSSR, Ser. geofiz. no. 6, 1957, pp. 756–764.
– reference: Kitaev, A.B. and Devyatkova, T.P., Specifics of the turbulent water exchange in the Kamskoe and Votkinskoe reservoirs and methods for its evaluation, Geograf. Vestn., 2006, no. 2, pp. 67–75.
– reference: MatsuzakiY.FujitaI.In situ estimates of horizontal turbulent diffusivity at the sea surface for oil transport simulationMar. Pollution Bull2017117344010.1016/j.marpolbul.2016.10.026
– reference: KolmogorovA.N.Local turbulence structure in an incompressible fluid at very high Reynolds numbersDokl. Akad. Nauk SSSR194130299303
– reference: Lavrova, O.Yu., Solov’ev, D.M., Strochkov, A.Ya., Nazirova, K.R., Krayushkin, E.V., and Zhuk, E.V., The use of mini-drifters for ground-truth measurements of coastal current parameters, Issled Zemli Kosmosa, 2019, no, 5, pp. 36–49.
– reference: OkuboA.EbbesmeyerC.C.Determination of vorticity, divergence, and deformation rates from analysis of drogue observationsDeep Sea Res. Oceanogr. Abstr19762334935210.1016/0011-7471(76)90875-5
– reference: RichardsonL.F.StrommelH.Note on eddy diffusion in the seaJ. Meteorol.1948523824010.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2
– reference: StockeR.ImbergeJ.Horizontal transport and dispersion in the surface layer of a medium-sized lakeLimnol. Oceanogr.20034897198210.4319/lo.2003.48.3.0971
– reference: SuaraK.MardaniN.FairweatherH.McCallumA.AllanC.RoyS.BrownR.Observation of the dynamics and horizontal dispersion in a shallow Intermittently Closed and Open Lake and Lagoon (ICOLL)Water20181077610.3390/w10060776
– reference: Okubo, A., Some remarks on the importance of the “Shear effect” on horizontal Jusion, Oceanography, 1968, no. 24, pp. 60–69.
– reference: Luchnikov, A.I., Lyakhin, Yu.S., and Lepikhin, A.P., Experience in the use of pilotless vehicles for evaluating the state of the shores of surface water bodies, Vod. Khoz. Ross., 2018, no. 1, pp. 37–46.
– reference: Matsuzaki, Y. and Fujita, I., Horizontal turbulent diffusion at sea surface for oil transport simulation, Coast. Manag., Environ., and Risk, 2014, no. 34, pp. 1–10.
– reference: ShelekhovA.P.Afanas’evA.L.ShelekhovaE.A.KobzevA.A.Tel’minovA.E.MolchunovA.N.PoplevinaO.N.Using small unmanned aerial vehicles for turbulence measurements in the atmosphereIzv., Atmos. Ocean. Phys20215753354610.1134/S0001433821050133
– reference: BergerR.C.TateJ.N.BrownG.L.SavantG.Adaptive Hydraulics (AdH). Version 4.52015
– reference: Znamenskii, V.A., Gidrologicheskie protsessy i ikh rol' v formirovanii kachestva vody (Hydrological Processes and Their Role in Water Quality Formation), Leningrad: Gidrometeoizdat, 1981.
– reference: SuaraK.BrownR.BorgasM.Eddy diffusivity: A single dispersion analysis of high resolution drifters in a tidal shallow estuaryEnviron., Fluid Mech20161692394310.1007/s10652-016-9458-z
– reference: Imboden, D.M. and Wuest A., Mixing mechanisms in lakes, in Physics and Chemistry of Lakes, Lerman, A., Imboden, D., and Gat, J., New York: Springer-Yerlag, 1995, pp. 83–138.
– reference: LabzovskiiN.A.Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes)1978LeningradNauka
– reference: PalK.P.MurthyR.ThomsonR.E.Lagrangian measurements in Lake OntarioLakes Res19982468169710.1016/S0380-1330(98)70854-8
– reference: OkuboA.OzmidovR.V.Empirical relationships between horizontal diffusion coefficients and the scale of the phenomenon, Izv. Akad. Nauk SSSRFiz. Atmosf. Okeana19706534536
– reference: Ozmidov, R.V., Diffuziya primesei v okeane (Diffusion of Solutes in the Ocean), Leningrad: Gidrometeoizdat, 1986.
– reference: ButorinN.V.LitvinovA.S.Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR1968
– reference: Zaripov, A.S. and Luchnikov, A.I., Studying the dynamics of shore destruction in the Kamskoe and Votkinskoe reservoirs due to abrasion by aerial photograph data, Georisk, 2021, no. 1, pp. 58–66.
– reference: PeetersF.WuesA.PiepkeG.ImbodeD.Horizontal mixing in lakesJ. Geophys. Res. Oceans199610136137510.1029/96JC01145
– ident: 8500_CR16
– volume: 15
  start-page: 281
  year: 2014
  ident: 8500_CR3
  publication-title: Oeanology
  doi: 10.1134/S0001437014030163
– ident: 8500_CR20
– volume: 167
  start-page: 77
  year: 1974
  ident: 8500_CR26
  publication-title: Rapp. P.-V. Reun. Cons. Int. Explor. Mer.
– volume: 30
  start-page: 299
  year: 1941
  ident: 8500_CR7
  publication-title: Dokl. Akad. Nauk SSSR
– ident: 8500_CR29
– volume: 48
  start-page: 971
  year: 2003
  ident: 8500_CR35
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.3.0971
– volume: 5
  start-page: 238
  year: 1948
  ident: 8500_CR33
  publication-title: J. Meteorol.
  doi: 10.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2
– ident: 8500_CR11
– ident: 8500_CR4
– ident: 8500_CR6
– ident: 8500_CR15
– ident: 8500_CR32
– volume-title: Calculation of turbulent exchange coefficients in the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Akad. Nauk. SSSR
  year: 1968
  ident: 8500_CR1
– ident: 8500_CR13
– ident: 8500_CR21
  doi: 10.1007/978-3-642-85132-2_4
– volume: 117
  start-page: 34
  year: 2017
  ident: 8500_CR24
  publication-title: Mar. Pollution Bull
  doi: 10.1016/j.marpolbul.2016.10.026
– volume: 15
  start-page: 3679
  year: 2011
  ident: 8500_CR34
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-3679-2011
– volume: 57
  start-page: 526
  year: 2021
  ident: 8500_CR17
  publication-title: Izv., Atmos. Ocean. Phys
  doi: 10.1134/S0001433821050042
– ident: 8500_CR22
  doi: 10.3390/w13121638
– volume: 24
  start-page: 681
  year: 1998
  ident: 8500_CR28
  publication-title: Lakes Res
  doi: 10.1016/S0380-1330(98)70854-8
– volume: 57
  start-page: 533
  year: 2021
  ident: 8500_CR18
  publication-title: Izv., Atmos. Ocean. Phys
  doi: 10.1134/S0001433821050133
– volume: 23
  start-page: 349
  year: 1976
  ident: 8500_CR27
  publication-title: Deep Sea Res. Oceanogr. Abstr
  doi: 10.1016/0011-7471(76)90875-5
– volume-title: Adaptive Hydraulics (AdH). Version 4.5
  year: 2015
  ident: 8500_CR19
– volume: 8
  start-page: 199
  year: 1949
  ident: 8500_CR36
  publication-title: J. Marine Res.
– volume: 6
  start-page: 534
  year: 1970
  ident: 8500_CR14
  publication-title: Fiz. Atmosf. Okeana
– volume: 16
  start-page: 923
  year: 2016
  ident: 8500_CR38
  publication-title: Environ., Fluid Mech
  doi: 10.1007/s10652-016-9458-z
– volume: 10
  start-page: 776
  year: 2018
  ident: 8500_CR37
  publication-title: Water
  doi: 10.3390/w10060776
– ident: 8500_CR23
  doi: 10.9753/icce.v34.management.8
– volume-title: Lagrangian view of turbulent dispersion and mixing, Ten Chapters in Turbulence, Davidson, P.A., Kaneda, Y., and Sreenivasan
  year: 2012
  ident: 8500_CR31
– volume: 47
  start-page: 426
  year: 2011
  ident: 8500_CR2
  publication-title: Izv. RAN FAO
– ident: 8500_CR9
  doi: 10.31857/S0205-96142019536-49
– volume: 101
  start-page: 361
  year: 1996
  ident: 8500_CR30
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/96JC01145
– ident: 8500_CR5
– volume-title: Turbulent Diffusion in Lakes, Izmenchivost’ gidrofizicheskikh polei v ozerakh (Variations of Hydrophysical Fields in Lakes)
  year: 1978
  ident: 8500_CR8
– ident: 8500_CR10
– ident: 8500_CR25
  doi: 10.5928/kaiyou1942.24.60
– ident: 8500_CR12
SSID ssj0010089
Score 2.2644846
Snippet Small lakes and reservoirs located in the zone of active technogenesis are subject to the risk of various emergency situations. The present-day computer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms adverse effects
Aquatic Pollution
Coefficients
Computation
computers
Diffusion
Drifters
Earth and Environmental Science
Earth Sciences
Eddy diffusion
field experimentation
Floats
Homogeneity
Horizontal diffusion
hydrodynamics
Hydrogeology
Hydrology/Water Resources
Hydrophysical Processes
Isotropy
Lakes
Reservoirs
risk
Russia
Theoretical analysis
Turbulent diffusion
Waste Water Technology
water
Water Management
Water Pollution Control
Title The Experience in Drone Use to Evaluate the Coefficients of Turbulent Diffusion in Small Water Bodies
URI https://link.springer.com/article/10.1134/S0097807823020112
https://www.proquest.com/docview/2805488488
https://www.proquest.com/docview/3153149014
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTuMwcATlsFx47a4oL3klTqyC0sR27GOBAgItF1rBniLbcURFSVCbHODrGTdJK54SUg6WbE-czHgenvEMwD5LVCKdpaqZ5B6VCluR4F4kA0N1KqXx3d3hf1f8fEAvbtltfY970kS7Ny7JKaeu6o5Qd6fXZcuJnGfISS3ku0usI6RowVL37P9lb-Y8QLFWab3SMeBI1M7MD4G8FkdzHfONW3QqbU5Xod-sswoyuT8sC31ont-kcPzmh6zBSq19km5FLuuwYLMN-FEXQr97-gkWyYbM0x-TYUZOxnlmyWBiSZGTXpUcHNs47ji30wQULhaD5Cnpl4giJ8XIyTBNS3cO5wBcP6jRiNzgrDE5yl3U4i8YnPb6x-deXYnBMyGVhSe54r7SnAsjaAf5J9dBqPxUKhZaw9CKTk3AtDScJTQxiVJGILaD0PKAhkkU_oZWhovdBJKqIEq573oZRfKRyiAAJjtUU-1L1Qa_QUhs6jTlrlrGKJ6aKyGN3_2_NhzMpjxWOTq-GrzTYDmut-skDgRqrkLg04Y_s27caM57ojKbl5M4RNmA5iSalG342yB2DuLTF259a_Q2LLuC9lVs0A60inFpd1HtKfReTeZ7sDgIui8xTvSl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwLEJwGBfEUwwGBIkTqFJpkzQ5AmMar11YBbcqTVMxabRo3Q78PXYfm3hKSD1EiuNWduNH7NiEnPBEJwo91Zgr4TClYRRI4QTKMyxOlTIu3h1-GIh-yG6f-XN9j7tost2bkGQpqau-Iwzv9GK1nAAjQ6i1QO6ugC0gsW1B6F3MQweg1CqbV6H4DWQdyvwRxWdltLAwvwRFS13TWydrtZFILyqubpAlm22SVt2v_OV9i1jgLl1UKaajjHYneWZpWFg6zel1VcMbxgB3lduyTgSmTNA8pcMZUBKVDe2O0nSGx2WI4PFVj8f0CVZN6GWOyYXbJOxdD6_6Tt0wwTE-U1NHCS1cHQshjWTnIOZE7PnaTZXmvjUcnN3UeDxWRvCEJSbR2khgiudb4TE_CfwdspzBx-4SmmovSIWLs5wBl5U2gICrcxaz2FW6TdyGcpGpq4ljU4txVHoVPou-EbtNTudL3qpSGn8Bdxp2RPWuKiJPgoEpJTxtcjyfhv2AQQ6d2XxWRD6IcPD6wPNrk7OGjQsUv75w71_QR6TVHz7cR_c3g7t9soo96Kt0ng5Znk5m9gAslWl8WP6ZH8772eY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL6InzidGsEnpdi1Sdo8zn3g5xDc0LeSpgkKs5Wte_C_925tN_wEoQ-BJNeSS-6jd_kdISc8UYlETzXmUjhMKmgFoXAC6WkWWym1i3eH73ricsCun_hTWed0XGW7VyHJ4k4DojSl-flbYssaJAzv9yJyToBRItRgIIOXQBo3cKMPvOYsjAAKrrB_JYriICzDmj-S-KyY5tbmlwDpVO9018laaTDSZsHhDbJg0k2yUtYuf37fIgY4TeeIxfQlpe1Rlho6GBuaZ7RT4HlDG8a1MjPFjMD0CZpZ2p_AqqLioe0Xayf46wwJPLyq4ZA-wqwRvcgw0XCbDLqdfuvSKYsnONpnMnekUMJVsRChDlkDRJ6IPV-5ViruG83B8bXa47HUgics0YlSOgQGeb4RHvOTwN8hiyl87C6hVnmBFS72cgYcl0oDAS4bLGaxK1WNuNXKRbpEFscCF8No6mH4LPq22DVyOpvyVsBq_DW4XrEjKk_YOPJCMDbDEJ4aOZ51w9nAgIdKTTYZRz6Ic_AAwQuskbOKjXMSv75w71-jj8jyfbsb3V71bvbJKpajLzJ76mQxH03MARgteXw43ZgfvzzeIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Experience+in+Drone+Use+to+Evaluate+the+Coefficients+of+Turbulent+Diffusion+in+Small+Water+Bodies&rft.jtitle=Water+resources&rft.au=Lepikhin%2C+A.+P.&rft.au=Lyakhin%2C+Yu.+S.&rft.au=Lucnikov%2C+A.+I.&rft.date=2023-04-01&rft.issn=0097-8078&rft.eissn=1608-344X&rft.volume=50&rft.issue=2&rft.spage=242&rft.epage=251&rft_id=info:doi/10.1134%2FS0097807823020112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S0097807823020112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8078&client=summon