TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports

Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 28; no. 1; pp. 835 - 845
Main Authors Wu, Jiang, Liu, Dongyu, Guo, Ziyang, Xu, Qingyang, Wu, Yingcai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
AbstractList Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.
Author Wu, Yingcai
Xu, Qingyang
Liu, Dongyu
Guo, Ziyang
Wu, Jiang
Author_xml – sequence: 1
  givenname: Jiang
  surname: Wu
  fullname: Wu, Jiang
  email: wujiang5521@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China
– sequence: 2
  givenname: Dongyu
  surname: Liu
  fullname: Liu, Dongyu
  email: dongyu@mit.edu
  organization: Massachusetts Institute of Technology, United States
– sequence: 3
  givenname: Ziyang
  surname: Guo
  fullname: Guo, Ziyang
  email: ziyangguo27@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China
– sequence: 4
  givenname: Qingyang
  surname: Xu
  fullname: Xu, Qingyang
  email: qingyangxu17@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China
– sequence: 5
  givenname: Yingcai
  surname: Wu
  fullname: Wu, Yingcai
  email: ycwu@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34587062$$D View this record in MEDLINE/PubMed
BookMark eNp90U1LwzAYB_AgE53TDyCCFLx46cxb8-JNhpvCQNDptaTZU83smpm0it_ejs0dPHhKCL9_wpP_EerVvgaETgkeEoL11exlNBlSTMmQEcIVo3uoTzQnKc6w6HV7LGVKBRWH6CjGBcaEc6UP0CHjmZJY0D4az4xtnB1X_us6eXGxNVVyU5vquzuMiS-T208I6ejN1K-ufk02OiauTh6NfYcmeVr50MRjtF-aKsLJdh2g5_HtbHSXTh8m96ObaWoZ102qM81KxYuyUGTOrOIMzwswjFkuLaWcgdKCcSuxkgVIMCUUBBeKARfWaMoG6HJz7yr4jxZiky9dtFBVpgbfxpxmUpEs40x09OIPXfg2dKN1ShDGhFadG6DzrWqLJczzVXBLE77z3x_qANkAG3yMAcodIThft5CvW8jXLeTbFrqM_JOxrjGN83UTjKv-TZ5tkg4Adi_pLKPrkX4ARKqR7g
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s12650_021_00778_8
crossref_primary_10_1109_TVCG_2021_3114790
crossref_primary_10_1111_cgf_15191
crossref_primary_10_3390_app13137380
crossref_primary_10_1007_s12650_022_00884_1
crossref_primary_10_1109_TBDATA_2024_3423721
crossref_primary_10_1080_08839514_2025_2462382
crossref_primary_10_1109_TVCG_2024_3358919
crossref_primary_10_1111_cgf_14786
crossref_primary_10_1111_cgf_14820
crossref_primary_10_1109_TVCG_2021_3130422
crossref_primary_10_3389_fspor_2024_1406846
crossref_primary_10_1109_TVCG_2022_3209373
crossref_primary_10_11834_jig_230034
crossref_primary_10_1016_j_cag_2023_05_016
crossref_primary_10_1007_s12650_021_00772_0
crossref_primary_10_1109_TVCG_2022_3209452
crossref_primary_10_1109_TVCG_2022_3207147
crossref_primary_10_1109_TVCG_2024_3456216
crossref_primary_10_1007_s10994_024_06682_0
crossref_primary_10_1371_journal_pone_0301608
crossref_primary_10_4018_IJSWIS_338999
Cites_doi 10.2312/conf/EG2013/stars/039-063
10.1145/2939672.2939761
10.1007/s10618-007-0070-1
10.1109/TVCG.2020.3030359
10.1109/TVCG.2021.3114861
10.1109/TVCG.2011.179
10.1109/TVCG.2014.2346682
10.1109/TVCG.2017.2745083
10.1007/978-3-319-46131-1_8
10.1109/TVCG.2020.2992200
10.1016/j.visinf.2020.04.005
10.1145/2487575.2487654
10.1145/238386.238493
10.1109/TVCG.2018.2864885
10.1145/2339530.2339606
10.1109/TVCG.2020.3030465
10.7551/mitpress/4643.001.0001
10.1109/TVCG.2021.3074576
10.1201/b17511
10.1109/TVCG.2017.2745320
10.1109/PacificVis.2018.00025
10.1109/TVCG.2016.2598591
10.1145/1871437.1871448
10.1109/TVCG.2019.2934670
10.1145/1978942.1979196
10.1109/VIZSEC.2018.8709230
10.1109/TVCG.2019.2934630
10.1109/MCG.2016.101
10.1007/s12650-020-00647-w
10.13140/RG.2.1.1324.4968
10.1016/j.visinf.2018.04.007
10.1145/1529282.1529606
10.1109/32.221135
10.1109/TVCG.2021.3071387
10.1145/3211954.3211959
10.1109/TVCG.2020.3030458
10.1109/VAST50239.2020.00009
10.1007/s12650-020-00692-5
10.1109/VL.1996.545307
10.1109/TVCG.2019.2934243
10.1016/j.visinf.2020.04.001
10.1111/cgf.13447
10.1016/j.visinf.2020.04.002
10.1109/TVCG.2013.200
10.1137/1.9781611972764.35
10.1109/TVCG.2020.3030442
10.1109/TVCG.2019.2952129
10.1109/TVCG.2016.2598831
10.1109/TITS.2020.2983226
10.1109/TVCG.2020.3030392
10.1007/s12650-020-00707-1
10.1007/s12650-020-00673-8
10.1145/2702123.2702419
10.1109/TVCG.2013.192
10.1109/TVCG.2017.2744218
10.1016/j.visinf.2021.01.001
10.1016/j.visinf.2020.02.001
10.1109/TVCG.2017.2745278
10.1177/1473871611416549
10.1145/2020408.2020589
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2021.3114832
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 845
ExternalDocumentID 34587062
10_1109_TVCG_2021_3114832
9552436
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LR18F020001
  funderid: 10.13039/501100004731
– fundername: NSFC
  grantid: 62072400
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-9593f84bfb81d3c8430dbea33c47c2243e89634c7087be7eafeb10b83e46ca923
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 04:06:15 EDT 2025
Sun Jun 29 16:36:50 EDT 2025
Wed Feb 19 02:28:35 EST 2025
Tue Jul 01 02:12:12 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Wed Aug 27 02:49:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-9593f84bfb81d3c8430dbea33c47c2243e89634c7087be7eafeb10b83e46ca923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34587062
PQID 2613369854
PQPubID 75741
PageCount 11
ParticipantIDs proquest_journals_2613369854
ieee_primary_9552436
pubmed_primary_34587062
crossref_primary_10_1109_TVCG_2021_3114832
proquest_miscellaneous_2578155436
crossref_citationtrail_10_1109_TVCG_2021_3114832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
chung (ref12) 0; 3
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
lan (ref37) 2021
fournier-viger (ref20) 2017; 1
ref24
ref67
ref23
ref26
ref25
ref64
cervone (ref7) 2014; 28
ref63
ref66
ref22
oates (ref44) 0; 96
ref65
ref21
ref28
ref27
guo (ref29) 2020
ref60
cohen (ref13) 2003; 3
ref62
ref61
References_xml – ident: ref3
  doi: 10.2312/conf/EG2013/stars/039-063
– volume: 3
  start-page: 73
  year: 2003
  ident: ref13
  article-title: A comparison of string distance metrics for name-matching tasks
  publication-title: IIWeb
– ident: ref2
  doi: 10.1145/2939672.2939761
– ident: ref42
  doi: 10.1007/s10618-007-0070-1
– ident: ref63
  doi: 10.1109/TVCG.2020.3030359
– ident: ref11
  doi: 10.1109/TVCG.2021.3114861
– ident: ref35
  doi: 10.1109/TVCG.2011.179
– ident: ref24
  doi: 10.1109/TVCG.2014.2346682
– ident: ref8
  doi: 10.1109/TVCG.2017.2745083
– ident: ref19
  doi: 10.1007/978-3-319-46131-1_8
– ident: ref49
  doi: 10.1109/TVCG.2020.2992200
– ident: ref38
  doi: 10.1016/j.visinf.2020.04.005
– volume: 96
  start-page: 346
  year: 0
  ident: ref44
  article-title: Searching for structure in multiple streams of data
  publication-title: International Conference on Machine Learning
– ident: ref59
  doi: 10.1145/2487575.2487654
– year: 2021
  ident: ref37
  article-title: RallyComparator: Visual comparison of the multivariate and spatial stroke sequence in a tabletennis rally
  publication-title: To appear in Journal of Visualization
– ident: ref47
  doi: 10.1145/238386.238493
– ident: ref27
  doi: 10.1109/TVCG.2018.2864885
– ident: ref53
  doi: 10.1145/2339530.2339606
– ident: ref33
  doi: 10.1109/TVCG.2020.3030465
– ident: ref25
  doi: 10.7551/mitpress/4643.001.0001
– ident: ref55
  doi: 10.1109/TVCG.2021.3074576
– ident: ref43
  doi: 10.1201/b17511
– ident: ref28
  doi: 10.1109/TVCG.2017.2745320
– ident: ref65
  doi: 10.1109/PacificVis.2018.00025
– ident: ref54
  doi: 10.1109/TVCG.2016.2598591
– ident: ref9
  doi: 10.1145/1871437.1871448
– ident: ref15
  doi: 10.1109/TVCG.2019.2934670
– ident: ref58
  doi: 10.1145/1978942.1979196
– ident: ref5
  doi: 10.1109/VIZSEC.2018.8709230
– ident: ref56
  doi: 10.1109/TVCG.2019.2934630
– ident: ref36
  doi: 10.1109/MCG.2016.101
– year: 2020
  ident: ref29
  article-title: Survey on visual analysis of event sequence data
  publication-title: ArXiv Preprint
– ident: ref10
  doi: 10.1007/s12650-020-00647-w
– ident: ref40
  doi: 10.13140/RG.2.1.1324.4968
– volume: 28
  start-page: 3
  year: 2014
  ident: ref7
  article-title: POINTWISE: Predicting points and valuing decisions in real time with NBA optical tracking data
  publication-title: Proceedings of the 8th MIT Sloan Sports Analytics Conference
– ident: ref31
  doi: 10.1016/j.visinf.2018.04.007
– ident: ref4
  doi: 10.1145/1529282.1529606
– ident: ref21
  doi: 10.1109/32.221135
– ident: ref16
  doi: 10.1109/TVCG.2021.3071387
– ident: ref34
  doi: 10.1145/3211954.3211959
– ident: ref57
  doi: 10.1109/TVCG.2020.3030458
– ident: ref60
  doi: 10.1109/VAST50239.2020.00009
– ident: ref66
  doi: 10.1007/s12650-020-00692-5
– ident: ref50
  doi: 10.1109/VL.1996.545307
– ident: ref48
  doi: 10.1109/TVCG.2019.2934243
– ident: ref26
  doi: 10.1016/j.visinf.2020.04.001
– ident: ref46
  doi: 10.1111/cgf.13447
– ident: ref22
  doi: 10.1016/j.visinf.2020.04.002
– ident: ref41
  doi: 10.1109/TVCG.2013.200
– ident: ref51
  doi: 10.1137/1.9781611972764.35
– ident: ref17
  doi: 10.1109/TVCG.2020.3030442
– ident: ref1
  doi: 10.1109/TVCG.2019.2952129
– ident: ref39
  doi: 10.1109/TVCG.2016.2598831
– ident: ref62
  doi: 10.1109/TITS.2020.2983226
– ident: ref64
  doi: 10.1109/TVCG.2020.3030392
– ident: ref32
  doi: 10.1007/s12650-020-00707-1
– ident: ref14
  doi: 10.1007/s12650-020-00673-8
– ident: ref67
  doi: 10.1145/2702123.2702419
– ident: ref45
  doi: 10.1109/TVCG.2013.192
– ident: ref61
  doi: 10.1109/TVCG.2017.2744218
– ident: ref18
  doi: 10.1016/j.visinf.2021.01.001
– ident: ref30
  doi: 10.1016/j.visinf.2020.02.001
– volume: 1
  start-page: 54
  year: 2017
  ident: ref20
  article-title: A survey of sequential pattern mining
  publication-title: Data Science and Pattern Recognition
– ident: ref6
  doi: 10.1109/TVCG.2017.2745278
– ident: ref23
  doi: 10.1177/1473871611416549
– volume: 3
  year: 0
  ident: ref12
  article-title: Visual analytics for multivariate sorting of sport event data
  publication-title: Workshop on Sports Data Visualization
– ident: ref52
  doi: 10.1145/2020408.2020589
SSID ssj0014489
Score 2.5345354
Snippet Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 835
SubjectTerms Algorithms
Badminton
Biomechanical Phenomena
Business competition
Computer Graphics
Data mining
Data models
Data visualization
Domains
Mining
Multivariate analysis
Multivariate Event Sequence
Pattern analysis
Pipelines
Players
Progression Analysis
Racquet Sports
Sequences
Sequential Pattern Mining
Sports
Sports Analytics
Subject specialists
Tactics
Task analysis
Tennis
Usability
Visual analytics
Title TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports
URI https://ieeexplore.ieee.org/document/9552436
https://www.ncbi.nlm.nih.gov/pubmed/34587062
https://www.proquest.com/docview/2613369854
https://www.proquest.com/docview/2578155436
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZAHxTYllZG4lThJRvbid1bhdiiSnBAC-IW2Y4jIVYJ6iaq1F_fGScblYqi3iJl7MSesf2N5wVwpJLSKZ8Zbm1luCyF59q4GQ_C26zMHRmnyNviMju_lt9v1e0GHI-xMCGE6HwWpvQYbfll4zu6KjsxSqVSZJuwiYpbH6s1WgxQzTC9f2HOU0TpgwVzlpiTxc3pN9QE0xkqqIj-BVWwEVKRhS99dBzF-ir_hprxyJm_gov1z_aeJvfTrnVT_-uvPI7_O5rXsD1gT_a1F5Y3sBHqt_Dyj4yEOzBfxKCp-bL5-YXd3K06oqe8JZTNmTUVO0PR5zEkAelZT71idzW7srgftCxWTV-9g-v52eL0nA-lFrgX0rSc0hNXWrrKIX4VXkuBPAxWCC9zj6e8CBpXqvR5onMX8mAr3OMTp0WQmbcIEndhq27qsA-sclb6mfIyaFQ1K40IQoiyzBHMOWyrJpCsZ7zwQx5yKoexLKI-kpiC-FUQv4qBXxP4PDZ56JNwPEe8Q3M9Eg7TPIGDNVuLYZmuClQfhciMVnICh-NrXGBkNbF1aDqkwT2NQBd1sdeLw9j3WoreP_3ND_AipWiJeGNzAFvtjy58RAzTuk9ReH8DDGjpMA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeJXCQgEjcUJ4m8R2YnNDVZcF2h7Qtuotsh1HqqiSik2ExK9nxslGgABxi5RxHp6x5xvPC-CVSiqnfG64tbXhshKea-NSHoS3eVU4ck5RtMVpvjyTHy_UxRa8mXJhQggx-CzM6TL68qvW93RUdmCUyqTIb8BN1PsqHbK1Jp8BGhpmiDAseIY4ffRhpok5WJ0fvkdbMEvRREX8L6iHjZCKfHzZLwopdlj5O9iMSmdxF042nzvEmnyZ952b---_VXL83_-5B3dG9MneDeJyH7ZC8wB2fqpJuAuLVUybWly1396y88t1T_RUuYTqObO2Zkco_DwmJSA9G6jX7LJhny3uCB2LfdPXD-FscbQ6XPKx2QL3QpqOU4HiWktXO0SwwmspkIvBCuFl4VHPi6BxrUpfJLpwoQi2xl0-cVoEmXuLMHEPtpu2CY-B1c5Knyovg0Zjs9aIIYSoqgLhnMOxagbJZsZLP1Yip4YYV2W0SBJTEr9K4lc58msGr6ch10MZjn8R79JcT4TjNM9gf8PWclyo6xINSCFyo5WcwcvpNi4x8pvYJrQ90uCuRrCLHvFoEIfp2RspevLnd76AW8vVyXF5_OH001O4nVHuRDy_2Yft7msfniGi6dzzKMg_AGHj7Hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TacticFlow%3A+Visual+Analytics+of+Ever-Changing+Tactics+in+Racket+Sports&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Wu%2C+Jiang&rft.au=Liu%2C+Dongyu&rft.au=Guo%2C+Ziyang&rft.au=Xu%2C+Qingyang&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=28&rft.issue=1&rft.spage=835&rft_id=info:doi/10.1109%2FTVCG.2021.3114832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon