TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports
Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 28; no. 1; pp. 835 - 845 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback. |
---|---|
AbstractList | Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback. Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback.Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence. Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their tactics rapidly according to the opponent's reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the strengths and the limitations of our system based on domain experts' feedback. |
Author | Wu, Yingcai Xu, Qingyang Liu, Dongyu Guo, Ziyang Wu, Jiang |
Author_xml | – sequence: 1 givenname: Jiang surname: Wu fullname: Wu, Jiang email: wujiang5521@zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University, China – sequence: 2 givenname: Dongyu surname: Liu fullname: Liu, Dongyu email: dongyu@mit.edu organization: Massachusetts Institute of Technology, United States – sequence: 3 givenname: Ziyang surname: Guo fullname: Guo, Ziyang email: ziyangguo27@zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University, China – sequence: 4 givenname: Qingyang surname: Xu fullname: Xu, Qingyang email: qingyangxu17@zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University, China – sequence: 5 givenname: Yingcai surname: Wu fullname: Wu, Yingcai email: ycwu@zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34587062$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1LwzAYB_AgE53TDyCCFLx46cxb8-JNhpvCQNDptaTZU83smpm0it_ejs0dPHhKCL9_wpP_EerVvgaETgkeEoL11exlNBlSTMmQEcIVo3uoTzQnKc6w6HV7LGVKBRWH6CjGBcaEc6UP0CHjmZJY0D4az4xtnB1X_us6eXGxNVVyU5vquzuMiS-T208I6ejN1K-ufk02OiauTh6NfYcmeVr50MRjtF-aKsLJdh2g5_HtbHSXTh8m96ObaWoZ102qM81KxYuyUGTOrOIMzwswjFkuLaWcgdKCcSuxkgVIMCUUBBeKARfWaMoG6HJz7yr4jxZiky9dtFBVpgbfxpxmUpEs40x09OIPXfg2dKN1ShDGhFadG6DzrWqLJczzVXBLE77z3x_qANkAG3yMAcodIThft5CvW8jXLeTbFrqM_JOxrjGN83UTjKv-TZ5tkg4Adi_pLKPrkX4ARKqR7g |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1007_s12650_021_00778_8 crossref_primary_10_1109_TVCG_2021_3114790 crossref_primary_10_1111_cgf_15191 crossref_primary_10_3390_app13137380 crossref_primary_10_1007_s12650_022_00884_1 crossref_primary_10_1109_TBDATA_2024_3423721 crossref_primary_10_1080_08839514_2025_2462382 crossref_primary_10_1109_TVCG_2024_3358919 crossref_primary_10_1111_cgf_14786 crossref_primary_10_1111_cgf_14820 crossref_primary_10_1109_TVCG_2021_3130422 crossref_primary_10_3389_fspor_2024_1406846 crossref_primary_10_1109_TVCG_2022_3209373 crossref_primary_10_11834_jig_230034 crossref_primary_10_1016_j_cag_2023_05_016 crossref_primary_10_1007_s12650_021_00772_0 crossref_primary_10_1109_TVCG_2022_3209452 crossref_primary_10_1109_TVCG_2022_3207147 crossref_primary_10_1109_TVCG_2024_3456216 crossref_primary_10_1007_s10994_024_06682_0 crossref_primary_10_1371_journal_pone_0301608 crossref_primary_10_4018_IJSWIS_338999 |
Cites_doi | 10.2312/conf/EG2013/stars/039-063 10.1145/2939672.2939761 10.1007/s10618-007-0070-1 10.1109/TVCG.2020.3030359 10.1109/TVCG.2021.3114861 10.1109/TVCG.2011.179 10.1109/TVCG.2014.2346682 10.1109/TVCG.2017.2745083 10.1007/978-3-319-46131-1_8 10.1109/TVCG.2020.2992200 10.1016/j.visinf.2020.04.005 10.1145/2487575.2487654 10.1145/238386.238493 10.1109/TVCG.2018.2864885 10.1145/2339530.2339606 10.1109/TVCG.2020.3030465 10.7551/mitpress/4643.001.0001 10.1109/TVCG.2021.3074576 10.1201/b17511 10.1109/TVCG.2017.2745320 10.1109/PacificVis.2018.00025 10.1109/TVCG.2016.2598591 10.1145/1871437.1871448 10.1109/TVCG.2019.2934670 10.1145/1978942.1979196 10.1109/VIZSEC.2018.8709230 10.1109/TVCG.2019.2934630 10.1109/MCG.2016.101 10.1007/s12650-020-00647-w 10.13140/RG.2.1.1324.4968 10.1016/j.visinf.2018.04.007 10.1145/1529282.1529606 10.1109/32.221135 10.1109/TVCG.2021.3071387 10.1145/3211954.3211959 10.1109/TVCG.2020.3030458 10.1109/VAST50239.2020.00009 10.1007/s12650-020-00692-5 10.1109/VL.1996.545307 10.1109/TVCG.2019.2934243 10.1016/j.visinf.2020.04.001 10.1111/cgf.13447 10.1016/j.visinf.2020.04.002 10.1109/TVCG.2013.200 10.1137/1.9781611972764.35 10.1109/TVCG.2020.3030442 10.1109/TVCG.2019.2952129 10.1109/TVCG.2016.2598831 10.1109/TITS.2020.2983226 10.1109/TVCG.2020.3030392 10.1007/s12650-020-00707-1 10.1007/s12650-020-00673-8 10.1145/2702123.2702419 10.1109/TVCG.2013.192 10.1109/TVCG.2017.2744218 10.1016/j.visinf.2021.01.001 10.1016/j.visinf.2020.02.001 10.1109/TVCG.2017.2745278 10.1177/1473871611416549 10.1145/2020408.2020589 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2021.3114832 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 845 |
ExternalDocumentID | 34587062 10_1109_TVCG_2021_3114832 9552436 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation grantid: LR18F020001 funderid: 10.13039/501100004731 – fundername: NSFC grantid: 62072400 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-9593f84bfb81d3c8430dbea33c47c2243e89634c7087be7eafeb10b83e46ca923 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 04:06:15 EDT 2025 Sun Jun 29 16:36:50 EDT 2025 Wed Feb 19 02:28:35 EST 2025 Tue Jul 01 02:12:12 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed Aug 27 02:49:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-9593f84bfb81d3c8430dbea33c47c2243e89634c7087be7eafeb10b83e46ca923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34587062 |
PQID | 2613369854 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2613369854 ieee_primary_9552436 pubmed_primary_34587062 crossref_primary_10_1109_TVCG_2021_3114832 proquest_miscellaneous_2578155436 crossref_citationtrail_10_1109_TVCG_2021_3114832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 chung (ref12) 0; 3 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 lan (ref37) 2021 fournier-viger (ref20) 2017; 1 ref24 ref67 ref23 ref26 ref25 ref64 cervone (ref7) 2014; 28 ref63 ref66 ref22 oates (ref44) 0; 96 ref65 ref21 ref28 ref27 guo (ref29) 2020 ref60 cohen (ref13) 2003; 3 ref62 ref61 |
References_xml | – ident: ref3 doi: 10.2312/conf/EG2013/stars/039-063 – volume: 3 start-page: 73 year: 2003 ident: ref13 article-title: A comparison of string distance metrics for name-matching tasks publication-title: IIWeb – ident: ref2 doi: 10.1145/2939672.2939761 – ident: ref42 doi: 10.1007/s10618-007-0070-1 – ident: ref63 doi: 10.1109/TVCG.2020.3030359 – ident: ref11 doi: 10.1109/TVCG.2021.3114861 – ident: ref35 doi: 10.1109/TVCG.2011.179 – ident: ref24 doi: 10.1109/TVCG.2014.2346682 – ident: ref8 doi: 10.1109/TVCG.2017.2745083 – ident: ref19 doi: 10.1007/978-3-319-46131-1_8 – ident: ref49 doi: 10.1109/TVCG.2020.2992200 – ident: ref38 doi: 10.1016/j.visinf.2020.04.005 – volume: 96 start-page: 346 year: 0 ident: ref44 article-title: Searching for structure in multiple streams of data publication-title: International Conference on Machine Learning – ident: ref59 doi: 10.1145/2487575.2487654 – year: 2021 ident: ref37 article-title: RallyComparator: Visual comparison of the multivariate and spatial stroke sequence in a tabletennis rally publication-title: To appear in Journal of Visualization – ident: ref47 doi: 10.1145/238386.238493 – ident: ref27 doi: 10.1109/TVCG.2018.2864885 – ident: ref53 doi: 10.1145/2339530.2339606 – ident: ref33 doi: 10.1109/TVCG.2020.3030465 – ident: ref25 doi: 10.7551/mitpress/4643.001.0001 – ident: ref55 doi: 10.1109/TVCG.2021.3074576 – ident: ref43 doi: 10.1201/b17511 – ident: ref28 doi: 10.1109/TVCG.2017.2745320 – ident: ref65 doi: 10.1109/PacificVis.2018.00025 – ident: ref54 doi: 10.1109/TVCG.2016.2598591 – ident: ref9 doi: 10.1145/1871437.1871448 – ident: ref15 doi: 10.1109/TVCG.2019.2934670 – ident: ref58 doi: 10.1145/1978942.1979196 – ident: ref5 doi: 10.1109/VIZSEC.2018.8709230 – ident: ref56 doi: 10.1109/TVCG.2019.2934630 – ident: ref36 doi: 10.1109/MCG.2016.101 – year: 2020 ident: ref29 article-title: Survey on visual analysis of event sequence data publication-title: ArXiv Preprint – ident: ref10 doi: 10.1007/s12650-020-00647-w – ident: ref40 doi: 10.13140/RG.2.1.1324.4968 – volume: 28 start-page: 3 year: 2014 ident: ref7 article-title: POINTWISE: Predicting points and valuing decisions in real time with NBA optical tracking data publication-title: Proceedings of the 8th MIT Sloan Sports Analytics Conference – ident: ref31 doi: 10.1016/j.visinf.2018.04.007 – ident: ref4 doi: 10.1145/1529282.1529606 – ident: ref21 doi: 10.1109/32.221135 – ident: ref16 doi: 10.1109/TVCG.2021.3071387 – ident: ref34 doi: 10.1145/3211954.3211959 – ident: ref57 doi: 10.1109/TVCG.2020.3030458 – ident: ref60 doi: 10.1109/VAST50239.2020.00009 – ident: ref66 doi: 10.1007/s12650-020-00692-5 – ident: ref50 doi: 10.1109/VL.1996.545307 – ident: ref48 doi: 10.1109/TVCG.2019.2934243 – ident: ref26 doi: 10.1016/j.visinf.2020.04.001 – ident: ref46 doi: 10.1111/cgf.13447 – ident: ref22 doi: 10.1016/j.visinf.2020.04.002 – ident: ref41 doi: 10.1109/TVCG.2013.200 – ident: ref51 doi: 10.1137/1.9781611972764.35 – ident: ref17 doi: 10.1109/TVCG.2020.3030442 – ident: ref1 doi: 10.1109/TVCG.2019.2952129 – ident: ref39 doi: 10.1109/TVCG.2016.2598831 – ident: ref62 doi: 10.1109/TITS.2020.2983226 – ident: ref64 doi: 10.1109/TVCG.2020.3030392 – ident: ref32 doi: 10.1007/s12650-020-00707-1 – ident: ref14 doi: 10.1007/s12650-020-00673-8 – ident: ref67 doi: 10.1145/2702123.2702419 – ident: ref45 doi: 10.1109/TVCG.2013.192 – ident: ref61 doi: 10.1109/TVCG.2017.2744218 – ident: ref18 doi: 10.1016/j.visinf.2021.01.001 – ident: ref30 doi: 10.1016/j.visinf.2020.02.001 – volume: 1 start-page: 54 year: 2017 ident: ref20 article-title: A survey of sequential pattern mining publication-title: Data Science and Pattern Recognition – ident: ref6 doi: 10.1109/TVCG.2017.2745278 – ident: ref23 doi: 10.1177/1473871611416549 – volume: 3 year: 0 ident: ref12 article-title: Visual analytics for multivariate sorting of sport event data publication-title: Workshop on Sports Data Visualization – ident: ref52 doi: 10.1145/2020408.2020589 |
SSID | ssj0014489 |
Score | 2.5345354 |
Snippet | Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges when handling racket sports data. In racket... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 835 |
SubjectTerms | Algorithms Badminton Biomechanical Phenomena Business competition Computer Graphics Data mining Data models Data visualization Domains Mining Multivariate analysis Multivariate Event Sequence Pattern analysis Pipelines Players Progression Analysis Racquet Sports Sequences Sequential Pattern Mining Sports Sports Analytics Subject specialists Tactics Task analysis Tennis Usability Visual analytics |
Title | TacticFlow: Visual Analytics of Ever-Changing Tactics in Racket Sports |
URI | https://ieeexplore.ieee.org/document/9552436 https://www.ncbi.nlm.nih.gov/pubmed/34587062 https://www.proquest.com/docview/2613369854 https://www.proquest.com/docview/2578155436 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZAHxTYllZG4lThJRvbid1bhdiiSnBAC-IW2Y4jIVYJ6iaq1F_fGScblYqi3iJl7MSesf2N5wVwpJLSKZ8Zbm1luCyF59q4GQ_C26zMHRmnyNviMju_lt9v1e0GHI-xMCGE6HwWpvQYbfll4zu6KjsxSqVSZJuwiYpbH6s1WgxQzTC9f2HOU0TpgwVzlpiTxc3pN9QE0xkqqIj-BVWwEVKRhS99dBzF-ir_hprxyJm_gov1z_aeJvfTrnVT_-uvPI7_O5rXsD1gT_a1F5Y3sBHqt_Dyj4yEOzBfxKCp-bL5-YXd3K06oqe8JZTNmTUVO0PR5zEkAelZT71idzW7srgftCxWTV-9g-v52eL0nA-lFrgX0rSc0hNXWrrKIX4VXkuBPAxWCC9zj6e8CBpXqvR5onMX8mAr3OMTp0WQmbcIEndhq27qsA-sclb6mfIyaFQ1K40IQoiyzBHMOWyrJpCsZ7zwQx5yKoexLKI-kpiC-FUQv4qBXxP4PDZ56JNwPEe8Q3M9Eg7TPIGDNVuLYZmuClQfhciMVnICh-NrXGBkNbF1aDqkwT2NQBd1sdeLw9j3WoreP_3ND_AipWiJeGNzAFvtjy58RAzTuk9ReH8DDGjpMA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeJXCQgEjcUJ4m8R2YnNDVZcF2h7Qtuotsh1HqqiSik2ExK9nxslGgABxi5RxHp6x5xvPC-CVSiqnfG64tbXhshKea-NSHoS3eVU4ck5RtMVpvjyTHy_UxRa8mXJhQggx-CzM6TL68qvW93RUdmCUyqTIb8BN1PsqHbK1Jp8BGhpmiDAseIY4ffRhpok5WJ0fvkdbMEvRREX8L6iHjZCKfHzZLwopdlj5O9iMSmdxF042nzvEmnyZ952b---_VXL83_-5B3dG9MneDeJyH7ZC8wB2fqpJuAuLVUybWly1396y88t1T_RUuYTqObO2Zkco_DwmJSA9G6jX7LJhny3uCB2LfdPXD-FscbQ6XPKx2QL3QpqOU4HiWktXO0SwwmspkIvBCuFl4VHPi6BxrUpfJLpwoQi2xl0-cVoEmXuLMHEPtpu2CY-B1c5Knyovg0Zjs9aIIYSoqgLhnMOxagbJZsZLP1Yip4YYV2W0SBJTEr9K4lc58msGr6ch10MZjn8R79JcT4TjNM9gf8PWclyo6xINSCFyo5WcwcvpNi4x8pvYJrQ90uCuRrCLHvFoEIfp2RspevLnd76AW8vVyXF5_OH001O4nVHuRDy_2Yft7msfniGi6dzzKMg_AGHj7Hk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TacticFlow%3A+Visual+Analytics+of+Ever-Changing+Tactics+in+Racket+Sports&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Wu%2C+Jiang&rft.au=Liu%2C+Dongyu&rft.au=Guo%2C+Ziyang&rft.au=Xu%2C+Qingyang&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=28&rft.issue=1&rft.spage=835&rft_id=info:doi/10.1109%2FTVCG.2021.3114832&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |