A deep learning solution approach for high-dimensional random differential equations

Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrus...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 57; pp. 14 - 25
Main Authors Nabian, Mohammad Amin, Meidani, Hadi
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.07.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrusive, entirely unsupervised, and mesh-free. Specifically, the random PDE is approximated by a feed-forward fully-connected deep residual network, with either strong or weak enforcement of initial and boundary constraints. Parameters of the approximating deep neural network are determined iteratively using variants of the Stochastic Gradient Descent (SGD) algorithm. The satisfactory accuracy of the proposed approach is numerically demonstrated on diffusion and heat conduction problems, in comparison with the converged Monte Carlo-based finite element results.
AbstractList Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrusive, entirely unsupervised, and mesh-free. Specifically, the random PDE is approximated by a feed-forward fully-connected deep residual network, with either strong or weak enforcement of initial and boundary constraints. Parameters of the approximating deep neural network are determined iteratively using variants of the Stochastic Gradient Descent (SGD) algorithm. The satisfactory accuracy of the proposed approach is numerically demonstrated on diffusion and heat conduction problems, in comparison with the converged Monte Carlo-based finite element results.
Author Nabian, Mohammad Amin
Meidani, Hadi
Author_xml – sequence: 1
  givenname: Mohammad Amin
  surname: Nabian
  fullname: Nabian, Mohammad Amin
– sequence: 2
  givenname: Hadi
  surname: Meidani
  fullname: Meidani, Hadi
  email: meidani@illinois.edu
BookMark eNqNkE1LAzEQhoNUsFb_w4rnXSdp9iMnKcUvKHip55BNZtuUbdImW8F_b2o9iKeeBjLv-zB5rsnIeYeE3FEoKNDqYVPsgm_Rrbao1wUDKgooCwB6Qca0qZucs7ockTGwqsobweCKXMe4SYGacjEmy1lmEHdZjyo461ZZ9P1hsN5lapfISq-zzodsbVfr3Ngtuph2qs-CcsZvM2O7DgO6waY33B_UsRpvyGWn-oi3v3NCPp6flvPXfPH-8jafLXI95WLIBVcV1IypesqooRw7IWquoYG24l2pm9K00AqGBhSUqmZN15TMKGA18rZl0wm5P3HTpfsDxkFu_CGk86JkTJScCmhoSolTSgcfY8BO7oLdqvAlKcijRLmRfyTKo0QJpUyOUvfxX1fb4eeTQ1C2P4swPxEwifi0GGTUFp1GYwPqQRpvz6B8A8v7mQo
CitedBy_id crossref_primary_10_35378_gujs_798705
crossref_primary_10_2298_TSCI200822165L
crossref_primary_10_1016_j_cma_2023_116578
crossref_primary_10_1615_JMachLearnModelComput_2023050411
crossref_primary_10_1007_s00521_024_10132_2
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1007_s13226_024_00541_3
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1615_AnnualRevHeatTransfer_2022042131
crossref_primary_10_1007_s00500_022_07362_8
crossref_primary_10_1016_j_jcp_2020_109672
crossref_primary_10_1103_PhysRevResearch_2_033110
crossref_primary_10_1007_s11042_020_09142_8
crossref_primary_10_1103_PhysRevE_108_025305
crossref_primary_10_1016_j_icheatmasstransfer_2023_106662
crossref_primary_10_1007_s42985_019_0006_9
crossref_primary_10_1103_PhysRevE_106_025311
crossref_primary_10_1007_s11009_021_09871_9
crossref_primary_10_3390_math10224186
crossref_primary_10_3389_fmars_2024_1309775
crossref_primary_10_1111_mice_12685
crossref_primary_10_1109_ACCESS_2024_3356173
crossref_primary_10_2139_ssrn_4137334
crossref_primary_10_1016_j_cam_2024_116372
crossref_primary_10_1631_jzus_A2000317
crossref_primary_10_1007_s40192_022_00283_2
crossref_primary_10_1016_j_jcp_2023_112183
crossref_primary_10_1103_PhysRevB_109_214205
crossref_primary_10_1016_j_cma_2022_115664
crossref_primary_10_12677_MOS_2024_132122
crossref_primary_10_1615_JMachLearnModelComput_2024054646
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_1016_j_jcp_2020_110079
crossref_primary_10_1142_S0219876221430209
crossref_primary_10_1016_j_jcp_2023_112258
crossref_primary_10_1007_s00366_022_01703_9
crossref_primary_10_1016_j_actaastro_2021_10_034
crossref_primary_10_1016_j_cma_2025_117732
crossref_primary_10_1109_ACCESS_2022_3160186
crossref_primary_10_3389_fsysb_2024_1407994
crossref_primary_10_1088_1402_4896_ad5258
crossref_primary_10_3390_s23146649
crossref_primary_10_1007_s00521_022_07017_7
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1016_j_cnsns_2024_108556
crossref_primary_10_1002_mma_9556
crossref_primary_10_3390_axioms12050429
crossref_primary_10_1016_j_commatsci_2022_111703
crossref_primary_10_1016_j_jmatprotec_2022_117534
crossref_primary_10_1007_s00033_024_02306_8
crossref_primary_10_1016_j_jcp_2019_109120
crossref_primary_10_1002_nag_3505
crossref_primary_10_1016_j_petrol_2021_109880
crossref_primary_10_1002_qute_202300065
Cites_doi 10.1109/72.712178
10.1061/(ASCE)0733-9399(1991)117:8(1851)
10.1137/S1064827501387826
10.1016/0045-7825(86)90136-2
10.1016/j.probengmech.2009.10.003
10.1016/0895-7177(94)00160-X
10.1016/j.jcp.2011.01.002
10.1038/nature14539
10.1109/81.526685
10.1137/0914044
10.1016/0021-9991(90)90007-N
10.1016/j.jcp.2018.10.045
10.1137/040615201
10.1016/0895-7177(94)90095-7
10.1061/(ASCE)0733-9399(1988)114:8(1335)
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.probengmech.2019.05.001
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-4275
EndPage 25
ExternalDocumentID 10_1016_j_probengmech_2019_05_001
S0266892018301681
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c349t-94a60722a7321d14ef9974c080b64f5c85db0b92ed0a05a728f852da027e4bb23
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Mon Jul 14 07:49:08 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Tue Jul 01 04:09:51 EDT 2025
Fri Feb 23 02:27:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Residual networks
Curse of dimensionality
Deep neural networks
Least squares
Random differential equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-94a60722a7321d14ef9974c080b64f5c85db0b92ed0a05a728f852da027e4bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2295419081
PQPubID 2047568
PageCount 12
ParticipantIDs proquest_journals_2295419081
crossref_primary_10_1016_j_probengmech_2019_05_001
crossref_citationtrail_10_1016_j_probengmech_2019_05_001
elsevier_sciencedirect_doi_10_1016_j_probengmech_2019_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Duchi, Hazan, Singer (b34) 2011; 12
Bochev, Gunzburger (b27) 2006
M.D. Zeiler, ADADELTA: an adaptive learning rate method, arXiv preprint
Liu, Belytschko, Mani (b2) 1986; 56
Yentis, Zaghloul (b15) 1996; 43
He, Sun (b44) 2015
Blatman, Sudret (b11) 2010; 25
Boffi, Brezzi, Fortin (b49) 2013
Xiu (b7) 2010
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
Yamazaki, Shinozuka, Dasgupta (b4) 1988; 114
Weinan, Han, Jentzen (b24) 2017
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b42) 2015
Raissi, Perdikaris, Karniadakis (b26) 2019; 378
S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint
Sutskever, Martens, Dahl, Hinton (b36) 2013
.
Ba, Caruana (b38) 2014
Gobovic, Zaghloul (b14) 1994
Zhang (b5) 2001
Lagaris, Likas, Fotiadis (b18) 1998; 9
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint
Wang, Mendel (b13) 1990
J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, arXiv preprint
Xiu, Karniadakis (b8) 2002; 24
LeCun, Bottou, Orr, Müller (b31) 2012
Xiu, Hesthaven (b9) 2005; 27
Malek, Beidokhti (b22) 2006; 183
R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, arXiv preprint
Ghanem, Spanos (b6) 2003
Srivastava, Greff, Schmidhuber (b40) 2015
Goodfellow, Bengio, Courville (b29) 2016
J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian Fluid Simulation With Convolutional Networks, arXiv preprint
Suzuki (b20) 2017
LeCun, Kanter, Solla (b30) 1991
LeCun, Bengio, Hinton (b28) 2015; 521
Bottou (b32) 2012
Bottou (b47) 2010
Saarinen, Bramley, Cybenko (b48) 1993; 14
J. Han, A. Jentzen, et al. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning, arXiv preprint
Rudd (b23) 2013
Meade, Fernandez (b16) 1994; 20
Fishman (b1) 2013
Baydin, Pearlmutter, Radul, Siskind (b37) 2018; 18
Lee, Kang (b12) 1990; 91
He, Zhang, Ren, Sun (b43) 2016
Meade, Fernandez (b17) 1994; 19
P. Márquez-Neila, M. Salzmann, P. Fua, Imposing Hard Constraints on Deep Networks: Promises and Limitations, arXiv preprint
Doostan, Owhadi (b10) 2011; 230
Deodatis (b3) 1991; 117
Ba (10.1016/j.probengmech.2019.05.001_b38) 2014
He (10.1016/j.probengmech.2019.05.001_b43) 2016
Sutskever (10.1016/j.probengmech.2019.05.001_b36) 2013
Xiu (10.1016/j.probengmech.2019.05.001_b8) 2002; 24
Bottou (10.1016/j.probengmech.2019.05.001_b32) 2012
10.1016/j.probengmech.2019.05.001_b45
10.1016/j.probengmech.2019.05.001_b46
Wang (10.1016/j.probengmech.2019.05.001_b13) 1990
10.1016/j.probengmech.2019.05.001_b41
Liu (10.1016/j.probengmech.2019.05.001_b2) 1986; 56
10.1016/j.probengmech.2019.05.001_b50
Szegedy (10.1016/j.probengmech.2019.05.001_b42) 2015
Meade (10.1016/j.probengmech.2019.05.001_b16) 1994; 20
Gobovic (10.1016/j.probengmech.2019.05.001_b14) 1994
Zhang (10.1016/j.probengmech.2019.05.001_b5) 2001
Rudd (10.1016/j.probengmech.2019.05.001_b23) 2013
10.1016/j.probengmech.2019.05.001_b19
Yamazaki (10.1016/j.probengmech.2019.05.001_b4) 1988; 114
Lagaris (10.1016/j.probengmech.2019.05.001_b18) 1998; 9
LeCun (10.1016/j.probengmech.2019.05.001_b31) 2012
Xiu (10.1016/j.probengmech.2019.05.001_b9) 2005; 27
Bottou (10.1016/j.probengmech.2019.05.001_b47) 2010
Xiu (10.1016/j.probengmech.2019.05.001_b7) 2010
10.1016/j.probengmech.2019.05.001_b25
Saarinen (10.1016/j.probengmech.2019.05.001_b48) 1993; 14
10.1016/j.probengmech.2019.05.001_b21
Bochev (10.1016/j.probengmech.2019.05.001_b27) 2006
Meade (10.1016/j.probengmech.2019.05.001_b17) 1994; 19
Raissi (10.1016/j.probengmech.2019.05.001_b26) 2019; 378
LeCun (10.1016/j.probengmech.2019.05.001_b28) 2015; 521
Boffi (10.1016/j.probengmech.2019.05.001_b49) 2013
Yentis (10.1016/j.probengmech.2019.05.001_b15) 1996; 43
He (10.1016/j.probengmech.2019.05.001_b44) 2015
Doostan (10.1016/j.probengmech.2019.05.001_b10) 2011; 230
Deodatis (10.1016/j.probengmech.2019.05.001_b3) 1991; 117
Fishman (10.1016/j.probengmech.2019.05.001_b1) 2013
Baydin (10.1016/j.probengmech.2019.05.001_b37) 2018; 18
Goodfellow (10.1016/j.probengmech.2019.05.001_b29) 2016
10.1016/j.probengmech.2019.05.001_b35
Malek (10.1016/j.probengmech.2019.05.001_b22) 2006; 183
Lee (10.1016/j.probengmech.2019.05.001_b12) 1990; 91
Suzuki (10.1016/j.probengmech.2019.05.001_b20) 2017
Blatman (10.1016/j.probengmech.2019.05.001_b11) 2010; 25
Srivastava (10.1016/j.probengmech.2019.05.001_b40) 2015
10.1016/j.probengmech.2019.05.001_b33
LeCun (10.1016/j.probengmech.2019.05.001_b30) 1991
Ghanem (10.1016/j.probengmech.2019.05.001_b6) 2003
10.1016/j.probengmech.2019.05.001_b39
Duchi (10.1016/j.probengmech.2019.05.001_b34) 2011; 12
Weinan (10.1016/j.probengmech.2019.05.001_b24) 2017
References_xml – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint
– reference: P. Márquez-Neila, M. Salzmann, P. Fua, Imposing Hard Constraints on Deep Networks: Promises and Limitations, arXiv preprint
– volume: 230
  start-page: 3015
  year: 2011
  end-page: 3034
  ident: b10
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
– start-page: 1
  year: 2017
  end-page: 16
  ident: b20
  article-title: Neural network-based discretization of nonlinear differential equations
  publication-title: Neural Comput. Appl.
– year: 2001
  ident: b5
  article-title: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties
– reference: J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, arXiv preprint
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b28
  article-title: Deep learning
  publication-title: Nature
– year: 2013
  ident: b1
  article-title: Monte Carlo: Concepts, Algorithms, and Applications
– volume: 183
  start-page: 260
  year: 2006
  end-page: 271
  ident: b22
  article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method
  publication-title: Appl. Math. Comput.
– start-page: 1
  year: 2013
  end-page: 46
  ident: b49
  article-title: Variational formulations and finite element methods
  publication-title: Mixed Finite Element Methods and Applications
– volume: 27
  start-page: 1118
  year: 2005
  end-page: 1139
  ident: b9
  article-title: High-order collocation methods for differential equations with random inputs
  publication-title: SIAM J. Sci. Comput.
– start-page: 125
  year: 1990
  end-page: 132
  ident: b13
  article-title: Structured trainable networks for matrix algebra
  publication-title: Neural Networks, 1990., 1990 IJCNN International Joint Conference on
– reference: R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, arXiv preprint
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b18
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 693
  year: 1993
  end-page: 714
  ident: b48
  article-title: Ill-conditioning in neural network training problems
  publication-title: SIAM J. Sci. Comput.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b37
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– start-page: 2377
  year: 2015
  end-page: 2385
  ident: b40
  article-title: Training very deep networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2003
  ident: b6
  article-title: Stochastic Finite Elements: A Spectral Approach
– reference: M.D. Zeiler, ADADELTA: an adaptive learning rate method, arXiv preprint
– volume: 56
  start-page: 61
  year: 1986
  end-page: 81
  ident: b2
  article-title: Probabilistic finite elements for nonlinear structural dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
– year: 2006
  ident: b27
  article-title: Least-Squares Finite Element Methods
– start-page: 2654
  year: 2014
  end-page: 2662
  ident: b38
  article-title: Do deep nets really need to be deep?
  publication-title: Advances in Neural Information Processing Systems
– reference: J. Han, A. Jentzen, et al. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning, arXiv preprint
– reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint
– start-page: 177
  year: 2010
  end-page: 186
  ident: b47
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proceedings of COMPSTAT’2010
– start-page: 421
  year: 2012
  end-page: 436
  ident: b32
  article-title: Stochastic gradient descent tricks
  publication-title: Neural Networks: Tricks of the Trade
– start-page: 770
  year: 2016
  end-page: 778
  ident: b43
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 114
  start-page: 1335
  year: 1988
  end-page: 1354
  ident: b4
  article-title: Neumann expansion for stochastic finite element analysis
  publication-title: J. Eng. Mech.
– start-page: 5353
  year: 2015
  end-page: 5360
  ident: b44
  article-title: Convolutional neural networks at constrained time cost
  publication-title: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b26
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2016
  ident: b29
  article-title: Deep Learning
– year: 2013
  ident: b23
  article-title: Solving Partial Differential Equations Using Artificial Neural Networks
– start-page: 1
  year: 2017
  end-page: 32
  ident: b24
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
– volume: 25
  start-page: 183
  year: 2010
  end-page: 197
  ident: b11
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab. Eng. Mech.
– volume: 20
  start-page: 19
  year: 1994
  end-page: 44
  ident: b16
  article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Modelling
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: b8
  article-title: The wiener–askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– year: 2015
  ident: b42
  article-title: Going dEeper with Convolutions
– year: 2010
  ident: b7
  article-title: Numerical Methods for Stochastic Computations: A Spectral Method Approach
– reference: J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian Fluid Simulation With Convolutional Networks, arXiv preprint
– volume: 91
  start-page: 110
  year: 1990
  end-page: 131
  ident: b12
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
– start-page: 359
  year: 1994
  end-page: 362
  ident: b14
  article-title: Analog cellular neural network with application to partial differential equations with variable mesh-size
  publication-title: Circuits and Systems, 1994. ISCAS’94., 1994 IEEE International Symposium on, Vol. 6
– volume: 19
  start-page: 1
  year: 1994
  end-page: 25
  ident: b17
  article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Modelling
– start-page: 918
  year: 1991
  end-page: 924
  ident: b30
  article-title: Second order properties of error surfaces: Learning time and generalization
  publication-title: Advances in Neural Information Processing Systems
– reference: .
– start-page: 9
  year: 2012
  end-page: 48
  ident: b31
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade
– volume: 43
  start-page: 687
  year: 1996
  end-page: 690
  ident: b15
  article-title: VLSI Implementation of locally connected neural network for solving partial differential equations
  publication-title: IEEE Trans. Circuits Syst. I
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b34
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 1139
  year: 2013
  end-page: 1147
  ident: b36
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: International Conference on Machine Learning
– volume: 117
  start-page: 1851
  year: 1991
  end-page: 1864
  ident: b3
  article-title: Weighted integral method. I: stochastic stiffness matrix
  publication-title: J. Eng. Mech.
– ident: 10.1016/j.probengmech.2019.05.001_b41
– start-page: 2377
  year: 2015
  ident: 10.1016/j.probengmech.2019.05.001_b40
  article-title: Training very deep networks
– year: 2013
  ident: 10.1016/j.probengmech.2019.05.001_b1
– start-page: 177
  year: 2010
  ident: 10.1016/j.probengmech.2019.05.001_b47
  article-title: Large-scale machine learning with stochastic gradient descent
– ident: 10.1016/j.probengmech.2019.05.001_b39
– ident: 10.1016/j.probengmech.2019.05.001_b45
– ident: 10.1016/j.probengmech.2019.05.001_b35
– year: 2001
  ident: 10.1016/j.probengmech.2019.05.001_b5
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.probengmech.2019.05.001_b37
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.probengmech.2019.05.001_b18
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– start-page: 9
  year: 2012
  ident: 10.1016/j.probengmech.2019.05.001_b31
  article-title: Efficient backprop
– start-page: 421
  year: 2012
  ident: 10.1016/j.probengmech.2019.05.001_b32
  article-title: Stochastic gradient descent tricks
– year: 2013
  ident: 10.1016/j.probengmech.2019.05.001_b23
– volume: 183
  start-page: 260
  issue: 1
  year: 2006
  ident: 10.1016/j.probengmech.2019.05.001_b22
  article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method
  publication-title: Appl. Math. Comput.
– volume: 117
  start-page: 1851
  issue: 8
  year: 1991
  ident: 10.1016/j.probengmech.2019.05.001_b3
  article-title: Weighted integral method. I: stochastic stiffness matrix
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1991)117:8(1851)
– ident: 10.1016/j.probengmech.2019.05.001_b19
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.probengmech.2019.05.001_b8
  article-title: The wiener–askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 56
  start-page: 61
  issue: 1
  year: 1986
  ident: 10.1016/j.probengmech.2019.05.001_b2
  article-title: Probabilistic finite elements for nonlinear structural dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(86)90136-2
– ident: 10.1016/j.probengmech.2019.05.001_b46
– year: 2006
  ident: 10.1016/j.probengmech.2019.05.001_b27
– start-page: 1
  year: 2013
  ident: 10.1016/j.probengmech.2019.05.001_b49
  article-title: Variational formulations and finite element methods
– volume: 25
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.probengmech.2019.05.001_b11
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2009.10.003
– ident: 10.1016/j.probengmech.2019.05.001_b25
– ident: 10.1016/j.probengmech.2019.05.001_b21
– start-page: 5353
  year: 2015
  ident: 10.1016/j.probengmech.2019.05.001_b44
  article-title: Convolutional neural networks at constrained time cost
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.probengmech.2019.05.001_b34
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.probengmech.2019.05.001_b29
– volume: 20
  start-page: 19
  issue: 9
  year: 1994
  ident: 10.1016/j.probengmech.2019.05.001_b16
  article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(94)00160-X
– volume: 230
  start-page: 3015
  issue: 8
  year: 2011
  ident: 10.1016/j.probengmech.2019.05.001_b10
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.002
– ident: 10.1016/j.probengmech.2019.05.001_b33
– start-page: 2654
  year: 2014
  ident: 10.1016/j.probengmech.2019.05.001_b38
  article-title: Do deep nets really need to be deep?
– year: 2003
  ident: 10.1016/j.probengmech.2019.05.001_b6
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.probengmech.2019.05.001_b28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 43
  start-page: 687
  issue: 8
  year: 1996
  ident: 10.1016/j.probengmech.2019.05.001_b15
  article-title: VLSI Implementation of locally connected neural network for solving partial differential equations
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/81.526685
– volume: 14
  start-page: 693
  issue: 3
  year: 1993
  ident: 10.1016/j.probengmech.2019.05.001_b48
  article-title: Ill-conditioning in neural network training problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0914044
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  ident: 10.1016/j.probengmech.2019.05.001_b12
  article-title: Neural algorithm for solving differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90007-N
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.probengmech.2019.05.001_b26
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 27
  start-page: 1118
  issue: 3
  year: 2005
  ident: 10.1016/j.probengmech.2019.05.001_b9
  article-title: High-order collocation methods for differential equations with random inputs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040615201
– volume: 19
  start-page: 1
  issue: 12
  year: 1994
  ident: 10.1016/j.probengmech.2019.05.001_b17
  article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(94)90095-7
– start-page: 918
  year: 1991
  ident: 10.1016/j.probengmech.2019.05.001_b30
  article-title: Second order properties of error surfaces: Learning time and generalization
– year: 2010
  ident: 10.1016/j.probengmech.2019.05.001_b7
– start-page: 770
  year: 2016
  ident: 10.1016/j.probengmech.2019.05.001_b43
  article-title: Deep residual learning for image recognition
– start-page: 359
  year: 1994
  ident: 10.1016/j.probengmech.2019.05.001_b14
  article-title: Analog cellular neural network with application to partial differential equations with variable mesh-size
– start-page: 125
  year: 1990
  ident: 10.1016/j.probengmech.2019.05.001_b13
  article-title: Structured trainable networks for matrix algebra
– ident: 10.1016/j.probengmech.2019.05.001_b50
– start-page: 1
  year: 2017
  ident: 10.1016/j.probengmech.2019.05.001_b20
  article-title: Neural network-based discretization of nonlinear differential equations
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2017
  ident: 10.1016/j.probengmech.2019.05.001_b24
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
– volume: 114
  start-page: 1335
  issue: 8
  year: 1988
  ident: 10.1016/j.probengmech.2019.05.001_b4
  article-title: Neumann expansion for stochastic finite element analysis
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1988)114:8(1335)
– start-page: 1139
  year: 2013
  ident: 10.1016/j.probengmech.2019.05.001_b36
  article-title: On the importance of initialization and momentum in deep learning
– year: 2015
  ident: 10.1016/j.probengmech.2019.05.001_b42
SSID ssj0017149
Score 2.5188198
Snippet Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms Algorithms
Artificial neural networks
Conduction heating
Conductive heat transfer
Curse of dimensionality
Deep learning
Deep neural networks
Finite element analysis
Least squares
Meshless methods
Monte Carlo simulation
Neural networks
Partial differential equations
Random differential equations
Residual networks
Stochastic models
Title A deep learning solution approach for high-dimensional random differential equations
URI https://dx.doi.org/10.1016/j.probengmech.2019.05.001
https://www.proquest.com/docview/2295419081
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnjxW5zOEcFrXZsmaQJexnBMhzvohruFpE3HZOumm1f_dpM2nR94GHgqLU0pL--zfe_3A-AqkkQF0ve9lKbEwypVHoutuSPlpwFhqhikfejT7hDfj8ioAtrlLIxtq3S-v_Dpubd2V5pOms3FZNJ8MtUDZdwEMGaUlObj1xhHVsuvP9ZtHpbfmxffWahn794Gl189Xpa0RWfjmc7_SwQ8B_F0_DB_xKhf3joPQZ19sOtyR9gqXu8AVHR2CPZcHgmdlS6PwKAFE60X0DFCjGGpX7BEEIcmVYUWqdhLLLp_gcwBTdhK5jNYcqYY259C_VpggS-PwbBzO2h3Pcee4MUh5iuPY0n9CCEZhShIAqxTbmoHCyyuKE5JzEiifMWRTnzpExkhljKCEmnqVI2VQuEJqGbzTJ8CGCiiY8I4tXO7lGlmajqCpDIPDUMVkBpgpbxE7KDFLcPFVJQ9ZC_im6iFFbXwie2nqwG0Xroo8DU2WXRTbor4oSzCxIFNltfLjRTOYpfC0ppjkx2x4Ox_Tz8HO_asaOmtg-rq7V1fmMRlpRq5ZjbAVuuu1-3bY-_xufcJ_jDwbA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IJurFbyOKWhOvla1ruzbxQowEFbgICbdm3TqCgYGCV_92263Dj3gg8bqtzfL6Prf3fj8ArsOIKj_yPJSylCKiUoV4bM0dKy_1KVfFIG23x9oD8jikwwq4K2dhbFul8_2FT8-9tbvScNJszMfjxrOpHhgXJoBxo6TMjl9vEGO-lsbg5mPV52EJvkXxoYUh-_gmuPpq8rKsLTobTXX-Y8IXOYqnI4j5I0j9ctd5DGrtgR2XPMJm8X77oKKzA7DrEknozHRxCPpNmGg9h44SYgRLBYMlhDg0uSq0UMUosfD-BTQHNHErmU1hSZpijH8C9WsBBr44AoPWff-ujRx9AooDIpZIkIh5IcZRGGA_8YlOhSkeLLK4YiSlMaeJ8pTAOvEij0Yh5imnOIlMoaqJUjg4BtVslukTAH1FdUy5YHZwl3HNTVFHcaTMpkGgfFoDvJSXjB22uKW4mMiyiexFfhO1tKKWHrUNdTWAV0vnBcDGOotuy0ORP7RFmkCwzvJ6eZDSmexCWl5zYtIj7p_-b_dLsNXudzuy89B7OgPb9k7R31sH1eXbuz43WcxSXeRa-gn8UPBX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+solution+approach+for+high-dimensional+random+differential+equations&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Nabian%2C+Mohammad+Amin&rft.au=Meidani%2C+Hadi&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=57&rft.spage=14&rft.epage=25&rft_id=info:doi/10.1016%2Fj.probengmech.2019.05.001&rft.externalDocID=S0266892018301681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon