A deep learning solution approach for high-dimensional random differential equations
Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrus...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 57; pp. 14 - 25 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.07.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrusive, entirely unsupervised, and mesh-free. Specifically, the random PDE is approximated by a feed-forward fully-connected deep residual network, with either strong or weak enforcement of initial and boundary constraints. Parameters of the approximating deep neural network are determined iteratively using variants of the Stochastic Gradient Descent (SGD) algorithm. The satisfactory accuracy of the proposed approach is numerically demonstrated on diffusion and heat conduction problems, in comparison with the converged Monte Carlo-based finite element results. |
---|---|
AbstractList | Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to the well-known curse of dimensionality. We present a new solution approach for these problems based on deep learning. This approach is intrusive, entirely unsupervised, and mesh-free. Specifically, the random PDE is approximated by a feed-forward fully-connected deep residual network, with either strong or weak enforcement of initial and boundary constraints. Parameters of the approximating deep neural network are determined iteratively using variants of the Stochastic Gradient Descent (SGD) algorithm. The satisfactory accuracy of the proposed approach is numerically demonstrated on diffusion and heat conduction problems, in comparison with the converged Monte Carlo-based finite element results. |
Author | Nabian, Mohammad Amin Meidani, Hadi |
Author_xml | – sequence: 1 givenname: Mohammad Amin surname: Nabian fullname: Nabian, Mohammad Amin – sequence: 2 givenname: Hadi surname: Meidani fullname: Meidani, Hadi email: meidani@illinois.edu |
BookMark | eNqNkE1LAzEQhoNUsFb_w4rnXSdp9iMnKcUvKHip55BNZtuUbdImW8F_b2o9iKeeBjLv-zB5rsnIeYeE3FEoKNDqYVPsgm_Rrbao1wUDKgooCwB6Qca0qZucs7ockTGwqsobweCKXMe4SYGacjEmy1lmEHdZjyo461ZZ9P1hsN5lapfISq-zzodsbVfr3Ngtuph2qs-CcsZvM2O7DgO6waY33B_UsRpvyGWn-oi3v3NCPp6flvPXfPH-8jafLXI95WLIBVcV1IypesqooRw7IWquoYG24l2pm9K00AqGBhSUqmZN15TMKGA18rZl0wm5P3HTpfsDxkFu_CGk86JkTJScCmhoSolTSgcfY8BO7oLdqvAlKcijRLmRfyTKo0QJpUyOUvfxX1fb4eeTQ1C2P4swPxEwifi0GGTUFp1GYwPqQRpvz6B8A8v7mQo |
CitedBy_id | crossref_primary_10_35378_gujs_798705 crossref_primary_10_2298_TSCI200822165L crossref_primary_10_1016_j_cma_2023_116578 crossref_primary_10_1615_JMachLearnModelComput_2023050411 crossref_primary_10_1007_s00521_024_10132_2 crossref_primary_10_1016_j_cageo_2024_105611 crossref_primary_10_1007_s13226_024_00541_3 crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1615_AnnualRevHeatTransfer_2022042131 crossref_primary_10_1007_s00500_022_07362_8 crossref_primary_10_1016_j_jcp_2020_109672 crossref_primary_10_1103_PhysRevResearch_2_033110 crossref_primary_10_1007_s11042_020_09142_8 crossref_primary_10_1103_PhysRevE_108_025305 crossref_primary_10_1016_j_icheatmasstransfer_2023_106662 crossref_primary_10_1007_s42985_019_0006_9 crossref_primary_10_1103_PhysRevE_106_025311 crossref_primary_10_1007_s11009_021_09871_9 crossref_primary_10_3390_math10224186 crossref_primary_10_3389_fmars_2024_1309775 crossref_primary_10_1111_mice_12685 crossref_primary_10_1109_ACCESS_2024_3356173 crossref_primary_10_2139_ssrn_4137334 crossref_primary_10_1016_j_cam_2024_116372 crossref_primary_10_1631_jzus_A2000317 crossref_primary_10_1007_s40192_022_00283_2 crossref_primary_10_1016_j_jcp_2023_112183 crossref_primary_10_1103_PhysRevB_109_214205 crossref_primary_10_1016_j_cma_2022_115664 crossref_primary_10_12677_MOS_2024_132122 crossref_primary_10_1615_JMachLearnModelComput_2024054646 crossref_primary_10_1080_0952813X_2023_2242356 crossref_primary_10_1016_j_jcp_2024_113709 crossref_primary_10_1016_j_jcp_2020_110079 crossref_primary_10_1142_S0219876221430209 crossref_primary_10_1016_j_jcp_2023_112258 crossref_primary_10_1007_s00366_022_01703_9 crossref_primary_10_1016_j_actaastro_2021_10_034 crossref_primary_10_1016_j_cma_2025_117732 crossref_primary_10_1109_ACCESS_2022_3160186 crossref_primary_10_3389_fsysb_2024_1407994 crossref_primary_10_1088_1402_4896_ad5258 crossref_primary_10_3390_s23146649 crossref_primary_10_1007_s00521_022_07017_7 crossref_primary_10_1016_j_anucene_2022_109234 crossref_primary_10_1016_j_cnsns_2024_108556 crossref_primary_10_1002_mma_9556 crossref_primary_10_3390_axioms12050429 crossref_primary_10_1016_j_commatsci_2022_111703 crossref_primary_10_1016_j_jmatprotec_2022_117534 crossref_primary_10_1007_s00033_024_02306_8 crossref_primary_10_1016_j_jcp_2019_109120 crossref_primary_10_1002_nag_3505 crossref_primary_10_1016_j_petrol_2021_109880 crossref_primary_10_1002_qute_202300065 |
Cites_doi | 10.1109/72.712178 10.1061/(ASCE)0733-9399(1991)117:8(1851) 10.1137/S1064827501387826 10.1016/0045-7825(86)90136-2 10.1016/j.probengmech.2009.10.003 10.1016/0895-7177(94)00160-X 10.1016/j.jcp.2011.01.002 10.1038/nature14539 10.1109/81.526685 10.1137/0914044 10.1016/0021-9991(90)90007-N 10.1016/j.jcp.2018.10.045 10.1137/040615201 10.1016/0895-7177(94)90095-7 10.1061/(ASCE)0733-9399(1988)114:8(1335) |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. Jul 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jul 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.probengmech.2019.05.001 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-4275 |
EndPage | 25 |
ExternalDocumentID | 10_1016_j_probengmech_2019_05_001 S0266892018301681 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c349t-94a60722a7321d14ef9974c080b64f5c85db0b92ed0a05a728f852da027e4bb23 |
IEDL.DBID | .~1 |
ISSN | 0266-8920 |
IngestDate | Mon Jul 14 07:49:08 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Tue Jul 01 04:09:51 EDT 2025 Fri Feb 23 02:27:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Residual networks Curse of dimensionality Deep neural networks Least squares Random differential equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-94a60722a7321d14ef9974c080b64f5c85db0b92ed0a05a728f852da027e4bb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2295419081 |
PQPubID | 2047568 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2295419081 crossref_primary_10_1016_j_probengmech_2019_05_001 crossref_citationtrail_10_1016_j_probengmech_2019_05_001 elsevier_sciencedirect_doi_10_1016_j_probengmech_2019_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Duchi, Hazan, Singer (b34) 2011; 12 Bochev, Gunzburger (b27) 2006 M.D. Zeiler, ADADELTA: an adaptive learning rate method, arXiv preprint Liu, Belytschko, Mani (b2) 1986; 56 Yentis, Zaghloul (b15) 1996; 43 He, Sun (b44) 2015 Blatman, Sudret (b11) 2010; 25 Boffi, Brezzi, Fortin (b49) 2013 Xiu (b7) 2010 D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint Yamazaki, Shinozuka, Dasgupta (b4) 1988; 114 Weinan, Han, Jentzen (b24) 2017 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b42) 2015 Raissi, Perdikaris, Karniadakis (b26) 2019; 378 S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint Sutskever, Martens, Dahl, Hinton (b36) 2013 . Ba, Caruana (b38) 2014 Gobovic, Zaghloul (b14) 1994 Zhang (b5) 2001 Lagaris, Likas, Fotiadis (b18) 1998; 9 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint Wang, Mendel (b13) 1990 J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, arXiv preprint Xiu, Karniadakis (b8) 2002; 24 LeCun, Bottou, Orr, Müller (b31) 2012 Xiu, Hesthaven (b9) 2005; 27 Malek, Beidokhti (b22) 2006; 183 R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, arXiv preprint Ghanem, Spanos (b6) 2003 Srivastava, Greff, Schmidhuber (b40) 2015 Goodfellow, Bengio, Courville (b29) 2016 J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian Fluid Simulation With Convolutional Networks, arXiv preprint Suzuki (b20) 2017 LeCun, Kanter, Solla (b30) 1991 LeCun, Bengio, Hinton (b28) 2015; 521 Bottou (b32) 2012 Bottou (b47) 2010 Saarinen, Bramley, Cybenko (b48) 1993; 14 J. Han, A. Jentzen, et al. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning, arXiv preprint Rudd (b23) 2013 Meade, Fernandez (b16) 1994; 20 Fishman (b1) 2013 Baydin, Pearlmutter, Radul, Siskind (b37) 2018; 18 Lee, Kang (b12) 1990; 91 He, Zhang, Ren, Sun (b43) 2016 Meade, Fernandez (b17) 1994; 19 P. Márquez-Neila, M. Salzmann, P. Fua, Imposing Hard Constraints on Deep Networks: Promises and Limitations, arXiv preprint Doostan, Owhadi (b10) 2011; 230 Deodatis (b3) 1991; 117 Ba (10.1016/j.probengmech.2019.05.001_b38) 2014 He (10.1016/j.probengmech.2019.05.001_b43) 2016 Sutskever (10.1016/j.probengmech.2019.05.001_b36) 2013 Xiu (10.1016/j.probengmech.2019.05.001_b8) 2002; 24 Bottou (10.1016/j.probengmech.2019.05.001_b32) 2012 10.1016/j.probengmech.2019.05.001_b45 10.1016/j.probengmech.2019.05.001_b46 Wang (10.1016/j.probengmech.2019.05.001_b13) 1990 10.1016/j.probengmech.2019.05.001_b41 Liu (10.1016/j.probengmech.2019.05.001_b2) 1986; 56 10.1016/j.probengmech.2019.05.001_b50 Szegedy (10.1016/j.probengmech.2019.05.001_b42) 2015 Meade (10.1016/j.probengmech.2019.05.001_b16) 1994; 20 Gobovic (10.1016/j.probengmech.2019.05.001_b14) 1994 Zhang (10.1016/j.probengmech.2019.05.001_b5) 2001 Rudd (10.1016/j.probengmech.2019.05.001_b23) 2013 10.1016/j.probengmech.2019.05.001_b19 Yamazaki (10.1016/j.probengmech.2019.05.001_b4) 1988; 114 Lagaris (10.1016/j.probengmech.2019.05.001_b18) 1998; 9 LeCun (10.1016/j.probengmech.2019.05.001_b31) 2012 Xiu (10.1016/j.probengmech.2019.05.001_b9) 2005; 27 Bottou (10.1016/j.probengmech.2019.05.001_b47) 2010 Xiu (10.1016/j.probengmech.2019.05.001_b7) 2010 10.1016/j.probengmech.2019.05.001_b25 Saarinen (10.1016/j.probengmech.2019.05.001_b48) 1993; 14 10.1016/j.probengmech.2019.05.001_b21 Bochev (10.1016/j.probengmech.2019.05.001_b27) 2006 Meade (10.1016/j.probengmech.2019.05.001_b17) 1994; 19 Raissi (10.1016/j.probengmech.2019.05.001_b26) 2019; 378 LeCun (10.1016/j.probengmech.2019.05.001_b28) 2015; 521 Boffi (10.1016/j.probengmech.2019.05.001_b49) 2013 Yentis (10.1016/j.probengmech.2019.05.001_b15) 1996; 43 He (10.1016/j.probengmech.2019.05.001_b44) 2015 Doostan (10.1016/j.probengmech.2019.05.001_b10) 2011; 230 Deodatis (10.1016/j.probengmech.2019.05.001_b3) 1991; 117 Fishman (10.1016/j.probengmech.2019.05.001_b1) 2013 Baydin (10.1016/j.probengmech.2019.05.001_b37) 2018; 18 Goodfellow (10.1016/j.probengmech.2019.05.001_b29) 2016 10.1016/j.probengmech.2019.05.001_b35 Malek (10.1016/j.probengmech.2019.05.001_b22) 2006; 183 Lee (10.1016/j.probengmech.2019.05.001_b12) 1990; 91 Suzuki (10.1016/j.probengmech.2019.05.001_b20) 2017 Blatman (10.1016/j.probengmech.2019.05.001_b11) 2010; 25 Srivastava (10.1016/j.probengmech.2019.05.001_b40) 2015 10.1016/j.probengmech.2019.05.001_b33 LeCun (10.1016/j.probengmech.2019.05.001_b30) 1991 Ghanem (10.1016/j.probengmech.2019.05.001_b6) 2003 10.1016/j.probengmech.2019.05.001_b39 Duchi (10.1016/j.probengmech.2019.05.001_b34) 2011; 12 Weinan (10.1016/j.probengmech.2019.05.001_b24) 2017 |
References_xml | – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint – reference: P. Márquez-Neila, M. Salzmann, P. Fua, Imposing Hard Constraints on Deep Networks: Promises and Limitations, arXiv preprint – volume: 230 start-page: 3015 year: 2011 end-page: 3034 ident: b10 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. – start-page: 1 year: 2017 end-page: 16 ident: b20 article-title: Neural network-based discretization of nonlinear differential equations publication-title: Neural Comput. Appl. – year: 2001 ident: b5 article-title: Stochastic Methods for Flow in Porous Media: Coping with Uncertainties – reference: J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, arXiv preprint – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b28 article-title: Deep learning publication-title: Nature – year: 2013 ident: b1 article-title: Monte Carlo: Concepts, Algorithms, and Applications – volume: 183 start-page: 260 year: 2006 end-page: 271 ident: b22 article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method publication-title: Appl. Math. Comput. – start-page: 1 year: 2013 end-page: 46 ident: b49 article-title: Variational formulations and finite element methods publication-title: Mixed Finite Element Methods and Applications – volume: 27 start-page: 1118 year: 2005 end-page: 1139 ident: b9 article-title: High-order collocation methods for differential equations with random inputs publication-title: SIAM J. Sci. Comput. – start-page: 125 year: 1990 end-page: 132 ident: b13 article-title: Structured trainable networks for matrix algebra publication-title: Neural Networks, 1990., 1990 IJCNN International Joint Conference on – reference: R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, arXiv preprint – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: b18 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – volume: 14 start-page: 693 year: 1993 end-page: 714 ident: b48 article-title: Ill-conditioning in neural network training problems publication-title: SIAM J. Sci. Comput. – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b37 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – start-page: 2377 year: 2015 end-page: 2385 ident: b40 article-title: Training very deep networks publication-title: Advances in Neural Information Processing Systems – year: 2003 ident: b6 article-title: Stochastic Finite Elements: A Spectral Approach – reference: M.D. Zeiler, ADADELTA: an adaptive learning rate method, arXiv preprint – volume: 56 start-page: 61 year: 1986 end-page: 81 ident: b2 article-title: Probabilistic finite elements for nonlinear structural dynamics publication-title: Comput. Methods Appl. Mech. Engrg. – reference: D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint – year: 2006 ident: b27 article-title: Least-Squares Finite Element Methods – start-page: 2654 year: 2014 end-page: 2662 ident: b38 article-title: Do deep nets really need to be deep? publication-title: Advances in Neural Information Processing Systems – reference: J. Han, A. Jentzen, et al. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning, arXiv preprint – reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint – start-page: 177 year: 2010 end-page: 186 ident: b47 article-title: Large-scale machine learning with stochastic gradient descent publication-title: Proceedings of COMPSTAT’2010 – start-page: 421 year: 2012 end-page: 436 ident: b32 article-title: Stochastic gradient descent tricks publication-title: Neural Networks: Tricks of the Trade – start-page: 770 year: 2016 end-page: 778 ident: b43 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 114 start-page: 1335 year: 1988 end-page: 1354 ident: b4 article-title: Neumann expansion for stochastic finite element analysis publication-title: J. Eng. Mech. – start-page: 5353 year: 2015 end-page: 5360 ident: b44 article-title: Convolutional neural networks at constrained time cost publication-title: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b26 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 2016 ident: b29 article-title: Deep Learning – year: 2013 ident: b23 article-title: Solving Partial Differential Equations Using Artificial Neural Networks – start-page: 1 year: 2017 end-page: 32 ident: b24 article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations publication-title: Commun. Math. Stat. – volume: 25 start-page: 183 year: 2010 end-page: 197 ident: b11 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab. Eng. Mech. – volume: 20 start-page: 19 year: 1994 end-page: 44 ident: b16 article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Modelling – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: b8 article-title: The wiener–askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – year: 2015 ident: b42 article-title: Going dEeper with Convolutions – year: 2010 ident: b7 article-title: Numerical Methods for Stochastic Computations: A Spectral Method Approach – reference: J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian Fluid Simulation With Convolutional Networks, arXiv preprint – volume: 91 start-page: 110 year: 1990 end-page: 131 ident: b12 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. – start-page: 359 year: 1994 end-page: 362 ident: b14 article-title: Analog cellular neural network with application to partial differential equations with variable mesh-size publication-title: Circuits and Systems, 1994. ISCAS’94., 1994 IEEE International Symposium on, Vol. 6 – volume: 19 start-page: 1 year: 1994 end-page: 25 ident: b17 article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Modelling – start-page: 918 year: 1991 end-page: 924 ident: b30 article-title: Second order properties of error surfaces: Learning time and generalization publication-title: Advances in Neural Information Processing Systems – reference: . – start-page: 9 year: 2012 end-page: 48 ident: b31 article-title: Efficient backprop publication-title: Neural Networks: Tricks of the Trade – volume: 43 start-page: 687 year: 1996 end-page: 690 ident: b15 article-title: VLSI Implementation of locally connected neural network for solving partial differential equations publication-title: IEEE Trans. Circuits Syst. I – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b34 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – start-page: 1139 year: 2013 end-page: 1147 ident: b36 article-title: On the importance of initialization and momentum in deep learning publication-title: International Conference on Machine Learning – volume: 117 start-page: 1851 year: 1991 end-page: 1864 ident: b3 article-title: Weighted integral method. I: stochastic stiffness matrix publication-title: J. Eng. Mech. – ident: 10.1016/j.probengmech.2019.05.001_b41 – start-page: 2377 year: 2015 ident: 10.1016/j.probengmech.2019.05.001_b40 article-title: Training very deep networks – year: 2013 ident: 10.1016/j.probengmech.2019.05.001_b1 – start-page: 177 year: 2010 ident: 10.1016/j.probengmech.2019.05.001_b47 article-title: Large-scale machine learning with stochastic gradient descent – ident: 10.1016/j.probengmech.2019.05.001_b39 – ident: 10.1016/j.probengmech.2019.05.001_b45 – ident: 10.1016/j.probengmech.2019.05.001_b35 – year: 2001 ident: 10.1016/j.probengmech.2019.05.001_b5 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.probengmech.2019.05.001_b37 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.probengmech.2019.05.001_b18 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – start-page: 9 year: 2012 ident: 10.1016/j.probengmech.2019.05.001_b31 article-title: Efficient backprop – start-page: 421 year: 2012 ident: 10.1016/j.probengmech.2019.05.001_b32 article-title: Stochastic gradient descent tricks – year: 2013 ident: 10.1016/j.probengmech.2019.05.001_b23 – volume: 183 start-page: 260 issue: 1 year: 2006 ident: 10.1016/j.probengmech.2019.05.001_b22 article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method publication-title: Appl. Math. Comput. – volume: 117 start-page: 1851 issue: 8 year: 1991 ident: 10.1016/j.probengmech.2019.05.001_b3 article-title: Weighted integral method. I: stochastic stiffness matrix publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1991)117:8(1851) – ident: 10.1016/j.probengmech.2019.05.001_b19 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.probengmech.2019.05.001_b8 article-title: The wiener–askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 56 start-page: 61 issue: 1 year: 1986 ident: 10.1016/j.probengmech.2019.05.001_b2 article-title: Probabilistic finite elements for nonlinear structural dynamics publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(86)90136-2 – ident: 10.1016/j.probengmech.2019.05.001_b46 – year: 2006 ident: 10.1016/j.probengmech.2019.05.001_b27 – start-page: 1 year: 2013 ident: 10.1016/j.probengmech.2019.05.001_b49 article-title: Variational formulations and finite element methods – volume: 25 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.probengmech.2019.05.001_b11 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2009.10.003 – ident: 10.1016/j.probengmech.2019.05.001_b25 – ident: 10.1016/j.probengmech.2019.05.001_b21 – start-page: 5353 year: 2015 ident: 10.1016/j.probengmech.2019.05.001_b44 article-title: Convolutional neural networks at constrained time cost – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.probengmech.2019.05.001_b34 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.probengmech.2019.05.001_b29 – volume: 20 start-page: 19 issue: 9 year: 1994 ident: 10.1016/j.probengmech.2019.05.001_b16 article-title: Solution of nonlinear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(94)00160-X – volume: 230 start-page: 3015 issue: 8 year: 2011 ident: 10.1016/j.probengmech.2019.05.001_b10 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.002 – ident: 10.1016/j.probengmech.2019.05.001_b33 – start-page: 2654 year: 2014 ident: 10.1016/j.probengmech.2019.05.001_b38 article-title: Do deep nets really need to be deep? – year: 2003 ident: 10.1016/j.probengmech.2019.05.001_b6 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.probengmech.2019.05.001_b28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 43 start-page: 687 issue: 8 year: 1996 ident: 10.1016/j.probengmech.2019.05.001_b15 article-title: VLSI Implementation of locally connected neural network for solving partial differential equations publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/81.526685 – volume: 14 start-page: 693 issue: 3 year: 1993 ident: 10.1016/j.probengmech.2019.05.001_b48 article-title: Ill-conditioning in neural network training problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/0914044 – volume: 91 start-page: 110 issue: 1 year: 1990 ident: 10.1016/j.probengmech.2019.05.001_b12 article-title: Neural algorithm for solving differential equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(90)90007-N – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.probengmech.2019.05.001_b26 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 27 start-page: 1118 issue: 3 year: 2005 ident: 10.1016/j.probengmech.2019.05.001_b9 article-title: High-order collocation methods for differential equations with random inputs publication-title: SIAM J. Sci. Comput. doi: 10.1137/040615201 – volume: 19 start-page: 1 issue: 12 year: 1994 ident: 10.1016/j.probengmech.2019.05.001_b17 article-title: The numerical solution of linear ordinary differential equations by feedforward neural networks publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(94)90095-7 – start-page: 918 year: 1991 ident: 10.1016/j.probengmech.2019.05.001_b30 article-title: Second order properties of error surfaces: Learning time and generalization – year: 2010 ident: 10.1016/j.probengmech.2019.05.001_b7 – start-page: 770 year: 2016 ident: 10.1016/j.probengmech.2019.05.001_b43 article-title: Deep residual learning for image recognition – start-page: 359 year: 1994 ident: 10.1016/j.probengmech.2019.05.001_b14 article-title: Analog cellular neural network with application to partial differential equations with variable mesh-size – start-page: 125 year: 1990 ident: 10.1016/j.probengmech.2019.05.001_b13 article-title: Structured trainable networks for matrix algebra – ident: 10.1016/j.probengmech.2019.05.001_b50 – start-page: 1 year: 2017 ident: 10.1016/j.probengmech.2019.05.001_b20 article-title: Neural network-based discretization of nonlinear differential equations publication-title: Neural Comput. Appl. – start-page: 1 year: 2017 ident: 10.1016/j.probengmech.2019.05.001_b24 article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations publication-title: Commun. Math. Stat. – volume: 114 start-page: 1335 issue: 8 year: 1988 ident: 10.1016/j.probengmech.2019.05.001_b4 article-title: Neumann expansion for stochastic finite element analysis publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1988)114:8(1335) – start-page: 1139 year: 2013 ident: 10.1016/j.probengmech.2019.05.001_b36 article-title: On the importance of initialization and momentum in deep learning – year: 2015 ident: 10.1016/j.probengmech.2019.05.001_b42 |
SSID | ssj0017149 |
Score | 2.5188198 |
Snippet | Developing efficient numerical algorithms for the solution of high dimensional random Partial Differential Equations (PDEs) has been a challenging task due to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14 |
SubjectTerms | Algorithms Artificial neural networks Conduction heating Conductive heat transfer Curse of dimensionality Deep learning Deep neural networks Finite element analysis Least squares Meshless methods Monte Carlo simulation Neural networks Partial differential equations Random differential equations Residual networks Stochastic models |
Title | A deep learning solution approach for high-dimensional random differential equations |
URI | https://dx.doi.org/10.1016/j.probengmech.2019.05.001 https://www.proquest.com/docview/2295419081 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnjxW5zOEcFrXZsmaQJexnBMhzvohruFpE3HZOumm1f_dpM2nR94GHgqLU0pL--zfe_3A-AqkkQF0ve9lKbEwypVHoutuSPlpwFhqhikfejT7hDfj8ioAtrlLIxtq3S-v_Dpubd2V5pOms3FZNJ8MtUDZdwEMGaUlObj1xhHVsuvP9ZtHpbfmxffWahn794Gl189Xpa0RWfjmc7_SwQ8B_F0_DB_xKhf3joPQZ19sOtyR9gqXu8AVHR2CPZcHgmdlS6PwKAFE60X0DFCjGGpX7BEEIcmVYUWqdhLLLp_gcwBTdhK5jNYcqYY259C_VpggS-PwbBzO2h3Pcee4MUh5iuPY0n9CCEZhShIAqxTbmoHCyyuKE5JzEiifMWRTnzpExkhljKCEmnqVI2VQuEJqGbzTJ8CGCiiY8I4tXO7lGlmajqCpDIPDUMVkBpgpbxE7KDFLcPFVJQ9ZC_im6iFFbXwie2nqwG0Xroo8DU2WXRTbor4oSzCxIFNltfLjRTOYpfC0ppjkx2x4Ox_Tz8HO_asaOmtg-rq7V1fmMRlpRq5ZjbAVuuu1-3bY-_xufcJ_jDwbA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IJurFbyOKWhOvla1ruzbxQowEFbgICbdm3TqCgYGCV_92263Dj3gg8bqtzfL6Prf3fj8ArsOIKj_yPJSylCKiUoV4bM0dKy_1KVfFIG23x9oD8jikwwq4K2dhbFul8_2FT8-9tbvScNJszMfjxrOpHhgXJoBxo6TMjl9vEGO-lsbg5mPV52EJvkXxoYUh-_gmuPpq8rKsLTobTXX-Y8IXOYqnI4j5I0j9ctd5DGrtgR2XPMJm8X77oKKzA7DrEknozHRxCPpNmGg9h44SYgRLBYMlhDg0uSq0UMUosfD-BTQHNHErmU1hSZpijH8C9WsBBr44AoPWff-ujRx9AooDIpZIkIh5IcZRGGA_8YlOhSkeLLK4YiSlMaeJ8pTAOvEij0Yh5imnOIlMoaqJUjg4BtVslukTAH1FdUy5YHZwl3HNTVFHcaTMpkGgfFoDvJSXjB22uKW4mMiyiexFfhO1tKKWHrUNdTWAV0vnBcDGOotuy0ORP7RFmkCwzvJ6eZDSmexCWl5zYtIj7p_-b_dLsNXudzuy89B7OgPb9k7R31sH1eXbuz43WcxSXeRa-gn8UPBX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+solution+approach+for+high-dimensional+random+differential+equations&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Nabian%2C+Mohammad+Amin&rft.au=Meidani%2C+Hadi&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=57&rft.spage=14&rft.epage=25&rft_id=info:doi/10.1016%2Fj.probengmech.2019.05.001&rft.externalDocID=S0266892018301681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |