Hand movement classification from measured scattering parameters using deep convolutional neural network

•Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is s...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 151; p. 107258
Main Authors Gupta, Sindhu Hak, Sharma, Aayush, Mohta, Mohit, Rajawat, Asmita
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.02.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2019.107258

Cover

Loading…
Abstract •Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is safe for human body communication.•No additional sensors such as accelerometers and gyroscopes are required for evaluation. Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters.
AbstractList Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters.
•Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is safe for human body communication.•No additional sensors such as accelerometers and gyroscopes are required for evaluation. Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters.
ArticleNumber 107258
Author Mohta, Mohit
Sharma, Aayush
Gupta, Sindhu Hak
Rajawat, Asmita
Author_xml – sequence: 1
  givenname: Sindhu Hak
  surname: Gupta
  fullname: Gupta, Sindhu Hak
  email: shak@amity.edu
– sequence: 2
  givenname: Aayush
  surname: Sharma
  fullname: Sharma, Aayush
– sequence: 3
  givenname: Mohit
  surname: Mohta
  fullname: Mohta, Mohit
– sequence: 4
  givenname: Asmita
  surname: Rajawat
  fullname: Rajawat, Asmita
  email: arajawat@amity.edu
BookMark eNqNkE1LAzEQhoNUsFb_Q8Tz1nzt10mkqBUKXhS8hTQ70dTdpCbZiv_e7cdBPPU0zMu8z8y852jkvAOEriiZUkKLm9W0AxX7AB24NGWE1oNesrw6QWNalTwTlL2N0JiwgmeMCXqGzmNcEUIKXhdj9DFXrsGd3-wAWLcqRmusVsl6h03wHT4saHAc1ATBune8VkF1MDQR93ErNABrrL3b-LbfWlWLHfRhV9K3D58X6NSoNsLloU7Q68P9y2yeLZ4fn2Z3i0xzUaesJkTzwhjDTck0UY3ioHIhhqdKZoguc81pUxihKlOKCpqypIIXBaFiucyXOZ-g6z13HfxXDzHJle_DcE-UjPOKMUKYGKZu91M6-BgDGKlt2v2cgrKtpERu45Ur-SdeuY1X7uMdCPU_wjrYToWfo7yzvReGIDYWgozagtPQ2AA6ycbbIyi_OR2h2A
CitedBy_id crossref_primary_10_1021_acsanm_3c05572
crossref_primary_10_1007_s11277_022_09532_1
crossref_primary_10_1007_s13198_021_01484_2
crossref_primary_10_1016_j_artmed_2020_102005
crossref_primary_10_1007_s11277_024_11683_2
crossref_primary_10_1007_s12652_021_03237_2
crossref_primary_10_1007_s44174_023_00141_5
crossref_primary_10_1007_s11664_021_09222_x
crossref_primary_10_2478_amns_2023_2_01415
Cites_doi 10.1186/1743-0003-9-21
10.1016/j.measurement.2016.07.054
10.1016/j.bspc.2007.09.001
10.1109/TAP.2017.2677918
10.1016/j.gaitpost.2009.10.013
10.1109/MSP.2012.2205597
10.1109/JSEN.2014.2370945
10.1109/TCE.2012.6227423
10.1109/TBME.2010.2090044
10.1016/j.measurement.2018.05.098
10.1186/1743-0003-2-2
10.1109/TNSRE.2010.2079334
10.1109/TITB.2011.2118763
10.1109/TBME.2012.2227317
10.3390/s100807772
10.1109/LAWP.2018.2839019
10.1038/nature14539
10.1016/j.measurement.2017.07.017
10.1109/MAP.2007.4293935
10.1109/TBME.2006.889186
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2019.107258
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2019_107258
S0263224119311224
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c349t-900c36fff3f72c0ada3ea54410772f0c75c31d6f4a8f748ed7714366014bb5b53
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 07:48:47 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 04:37:35 EDT 2025
Tue Dec 03 03:45:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DCNN
WBAN
UWB
Accuracy
S11
S21
Compact dual-band antenna
Human movement
Neurodegenerative disorders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-900c36fff3f72c0ada3ea54410772f0c75c31d6f4a8f748ed7714366014bb5b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2338220024
PQPubID 2047460
ParticipantIDs proquest_journals_2338220024
crossref_citationtrail_10_1016_j_measurement_2019_107258
crossref_primary_10_1016_j_measurement_2019_107258
elsevier_sciencedirect_doi_10_1016_j_measurement_2019_107258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Mariani, Jimenez, Vingerhoets, Aminian (b0050) 2013; 60
LeCun, Bengio, Hinton (b0165) 2015; 521
Xu, Li, Kim (b0120) 2017; 16
Michael, Lewek, Johnson, Halawa, Huang (b0060) 2010; 31
Pawar, Chaudhuri, Duttagupta (b0020) 2007; 54
Yazdandoost, Hamaguchi (b0100) 2011
Patel, Park, Bonato, Chan, Rodgers (b0030) 2012; 9
Mukhopadhyay (b0080) 2015; 15
Lee, Wilson, Lock, Kamper (b0005) 2011; 19
Zaric, Costa, Fernandes (b0090) 2014; 62
Hall, Hao, Nechayev, Alomain, Constantinou, Parini, Kamarudin, Salim, Heel, Dubrovka, Owadall, Song, Serra, Nepa, Gai1o, Bozzetti (b0085) 2007; 49
Guo, Chen, Shen (b0125) 2016; 93
Hinton (b0155) 2012; 29
Yazdandoost and Kamran Sayrafian-Pour, Channel model for body area network (BAN), IEEE802.15-07-0943-00-0ban, pp. 1549-1552, 2008.
Bresnahan, Li, Koziol, Kim (b0115) 2018; 17
Chen, Patel, Buckley, Rednic, McClure, Shih, Tarsy, Welsh, Bonato (b0015) 2011; 58
Zhou, Hu (b0010) 2008; 3
Bonato (b0035) 2005; 2
Anda (b0075) May 2011; 15
Ramkumar Prabhu, Rajalingam (b0095) 2017; 9
Lara, Labrador (b0045) 2013
Krizhevsky, Sutskever, Hinton (b0160) 2012; 25
Lee, Wilson, Lock, Kamper (b0110) 2011; 19
Han, Tang, Deng (b0135) 2018; 127
Yang, Hsu (b0070) 2010; 10
Jinga, Zhaob, Lic, Xiaoqiang (b0150) 2017; 111
Iso-Ketol (b0025) 2008
Kim, Li (b0130) 2017; 65
Marzena, Agnieszka, Rafal, Pauk (b0040) 2018; 26
Kingma, Ba (b0170) 2015
Patel, Park, Bonato, Chan, Rodgers (b0055) 2012; 9
Ahn, Ahn, Kim, Choi (b0105) 2012; 58
Astrin (b0145) 2012
Negra, Jemili, Belghith (b0140) 2016
Astrin (10.1016/j.measurement.2019.107258_b0145) 2012
Mariani (10.1016/j.measurement.2019.107258_b0050) 2013; 60
Ramkumar Prabhu (10.1016/j.measurement.2019.107258_b0095) 2017; 9
Yazdandoost (10.1016/j.measurement.2019.107258_b0100) 2011
Iso-Ketol (10.1016/j.measurement.2019.107258_b0025) 2008
Lara (10.1016/j.measurement.2019.107258_b0045) 2013
Bresnahan (10.1016/j.measurement.2019.107258_b0115) 2018; 17
Bonato (10.1016/j.measurement.2019.107258_b0035) 2005; 2
LeCun (10.1016/j.measurement.2019.107258_b0165) 2015; 521
Kingma (10.1016/j.measurement.2019.107258_b0170) 2015
Patel (10.1016/j.measurement.2019.107258_b0055) 2012; 9
Han (10.1016/j.measurement.2019.107258_b0135) 2018; 127
Lee (10.1016/j.measurement.2019.107258_b0110) 2011; 19
10.1016/j.measurement.2019.107258_b0065
Ahn (10.1016/j.measurement.2019.107258_b0105) 2012; 58
Guo (10.1016/j.measurement.2019.107258_b0125) 2016; 93
Negra (10.1016/j.measurement.2019.107258_b0140) 2016
Zaric (10.1016/j.measurement.2019.107258_b0090) 2014; 62
Patel (10.1016/j.measurement.2019.107258_b0030) 2012; 9
Hall (10.1016/j.measurement.2019.107258_b0085) 2007; 49
Xu (10.1016/j.measurement.2019.107258_b0120) 2017; 16
Lee (10.1016/j.measurement.2019.107258_b0005) 2011; 19
Yang (10.1016/j.measurement.2019.107258_b0070) 2010; 10
Kim (10.1016/j.measurement.2019.107258_b0130) 2017; 65
Mukhopadhyay (10.1016/j.measurement.2019.107258_b0080) 2015; 15
Pawar (10.1016/j.measurement.2019.107258_b0020) 2007; 54
Zhou (10.1016/j.measurement.2019.107258_b0010) 2008; 3
Chen (10.1016/j.measurement.2019.107258_b0015) 2011; 58
Michael (10.1016/j.measurement.2019.107258_b0060) 2010; 31
Krizhevsky (10.1016/j.measurement.2019.107258_b0160) 2012; 25
Marzena (10.1016/j.measurement.2019.107258_b0040) 2018; 26
Hinton (10.1016/j.measurement.2019.107258_b0155) 2012; 29
Anda (10.1016/j.measurement.2019.107258_b0075) 2011; 15
Jinga (10.1016/j.measurement.2019.107258_b0150) 2017; 111
References_xml – volume: 19
  year: 2011
  ident: b0005
  article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 58
  start-page: 831
  year: 2011
  end-page: 836
  ident: b0015
  article-title: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Yazdandoost and Kamran Sayrafian-Pour, Channel model for body area network (BAN), IEEE802.15-07-0943-00-0ban, pp. 1549-1552, 2008.
– year: 2011
  ident: b0100
  article-title: Very small UWB antenna for WBAN applications
  publication-title: 5th international symposium on medical information and communication technology
– year: 2013
  ident: b0045
  article-title: A Survey on human activity recognition using wearable sensors
  publication-title: IEEE Communications Surveys & Tutorials
– start-page: 1
  year: 2012
  end-page: 271
  ident: b0145
  publication-title: 802.15.6-2012—IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks
– volume: 26
  start-page: 671
  year: 2018
  end-page: 677
  ident: b0040
  article-title: Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings
  publication-title: Technol. Health Care
– start-page: 196
  year: 2008
  end-page: 199
  ident: b0025
  article-title: Hip Guard: a wearable measurement system for patients recovering from a hip operation
  publication-title: Proc. Pervasive Comput. Technol. And Healthcare Conf.
– volume: 2
  start-page: 1
  year: 2005
  end-page: 4
  ident: b0035
  article-title: Advances in wearable technology and applications in physical medicine and rehabilitation
  publication-title: J. NeuroEng. Rehabil.
– volume: 62
  year: 2014
  ident: b0090
  article-title: Design and ranging performance of a low-profile UWB antenna for WBAN localization applications
  publication-title: IEEE Trans. Antenna Wave Propag.
– year: 2016
  ident: b0140
  article-title: Wireless body area networks: applications and technologies
  publication-title: The 2nd International Workshop on Recent Advances on Machine-to-Machine Communications, Madrid
– volume: 9
  year: 2017
  ident: b0095
  article-title: Rectangular patch antenna to operate in flame retardant 4 using coaxial feeding technique
  publication-title: Int. J. Electron. Eng. Res.
– volume: 31
  start-page: 256
  year: 2010
  end-page: 260
  ident: b0060
  article-title: Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease
  publication-title: Elsevier Gait Posture
– volume: 17
  start-page: 1199
  year: 2018
  end-page: 1203
  ident: b0115
  article-title: Monitoring human head and neck-based motions from around-neck creeping wave propagations
  publication-title: IEEE Antennas Wireless Propag. Lett.
– volume: 9
  year: 2012
  ident: b0055
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. Neuroeng. Rehab.
– volume: 15
  start-page: 474
  year: May 2011
  end-page: 480
  ident: b0075
  article-title: Guraliuc, Paolo Barsocchi, Francesco Potortı, and Paolo Nepa, Limb movements classification using wearable wireless transceivers
  publication-title: IEEE Trans. Inform. Technol. Bio Med.
– volume: 49
  start-page: 41
  year: 2007
  end-page: 58
  ident: b0085
  article-title: Antennas and propagation for on-body communication systems
  publication-title: IEEE Antennas Propag. Mag.
– volume: 10
  start-page: 7772
  year: 2010
  end-page: 7788
  ident: b0070
  article-title: A review of accelerometry-based wearable motion detectors for physical activity monitoring
  publication-title: Sensors
– volume: 3
  start-page: 1
  year: 2008
  end-page: 18
  ident: b0010
  article-title: Human motion tracking for rehabilitation—a survey
  publication-title: Biomed. Signal Process. Control
– volume: 25
  start-page: 1090
  year: 2012
  end-page: 1098
  ident: b0160
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 1812
  year: 2017
  end-page: 1815
  ident: b0120
  article-title: Classification of finger movements based on reflection coefficient variations of a body worn electrically small antenna
  publication-title: IEEE Antennas Wireless Propag. Lett.
– volume: 19
  start-page: 558
  year: 2011
  end-page: 566
  ident: b0110
  article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
– volume: 111
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0150
  article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
  publication-title: Measurement
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b0155
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 60
  start-page: 155
  year: 2013
  end-page: 158
  ident: b0050
  article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 15
  year: 2015
  ident: b0080
  article-title: Wearable sensors for human activity monitoring: a review
  publication-title: IEEE Sens. J.
– volume: 9
  start-page: 1
  year: 2012
  end-page: 17
  ident: b0030
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. NeuroEng. Rehabil.
– volume: 127
  start-page: 246
  year: 2018
  end-page: 255
  ident: b0135
  article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis
  publication-title: Measurement
– volume: 58
  year: 2012
  ident: b0105
  article-title: Experimental outage capacity analysis for off-body wireless body area network channel with transmit diversity
  publication-title: IEEE Trans. Consum. Electron.
– volume: 65
  year: 2017
  ident: b0130
  article-title: Human activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks
  publication-title: IEEE Trans. Antennas Propag.
– year: 2015
  ident: b0170
  article-title: Adam: a method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, San Diego
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0165
  article-title: Deep learning
  publication-title: Nature
– volume: 54
  start-page: 874
  year: 2007
  end-page: 882
  ident: b0020
  article-title: Body movement activity recognition for ambulatory cardiac monitoring
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: b0125
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
– volume: 9
  start-page: 1
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0030
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-21
– volume: 93
  start-page: 490
  issue: 2016
  year: 2016
  ident: 10.1016/j.measurement.2019.107258_b0125
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 3
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.measurement.2019.107258_b0010
  article-title: Human motion tracking for rehabilitation—a survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.09.001
– start-page: 196
  year: 2008
  ident: 10.1016/j.measurement.2019.107258_b0025
  article-title: Hip Guard: a wearable measurement system for patients recovering from a hip operation
– volume: 65
  issue: 5
  year: 2017
  ident: 10.1016/j.measurement.2019.107258_b0130
  article-title: Human activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2017.2677918
– volume: 31
  start-page: 256
  issue: 2
  year: 2010
  ident: 10.1016/j.measurement.2019.107258_b0060
  article-title: Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease
  publication-title: Elsevier Gait Posture
  doi: 10.1016/j.gaitpost.2009.10.013
– year: 2015
  ident: 10.1016/j.measurement.2019.107258_b0170
  article-title: Adam: a method for stochastic optimization
– ident: 10.1016/j.measurement.2019.107258_b0065
– volume: 25
  start-page: 1090
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0160
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0155
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 15
  issue: 3
  year: 2015
  ident: 10.1016/j.measurement.2019.107258_b0080
  article-title: Wearable sensors for human activity monitoring: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2370945
– year: 2013
  ident: 10.1016/j.measurement.2019.107258_b0045
  article-title: A Survey on human activity recognition using wearable sensors
– volume: 9
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0055
  article-title: A review of wearable sensors and systems with application in rehabilitation
  publication-title: J. Neuroeng. Rehab.
  doi: 10.1186/1743-0003-9-21
– volume: 58
  issue: 2
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0105
  article-title: Experimental outage capacity analysis for off-body wireless body area network channel with transmit diversity
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2012.6227423
– volume: 58
  start-page: 831
  issue: 3
  year: 2011
  ident: 10.1016/j.measurement.2019.107258_b0015
  article-title: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2090044
– volume: 127
  start-page: 246
  year: 2018
  ident: 10.1016/j.measurement.2019.107258_b0135
  article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.098
– volume: 26
  start-page: 671
  issue: S2
  year: 2018
  ident: 10.1016/j.measurement.2019.107258_b0040
  article-title: Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings
  publication-title: Technol. Health Care
– volume: 9
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2019.107258_b0095
  article-title: Rectangular patch antenna to operate in flame retardant 4 using coaxial feeding technique
  publication-title: Int. J. Electron. Eng. Res.
– year: 2016
  ident: 10.1016/j.measurement.2019.107258_b0140
  article-title: Wireless body area networks: applications and technologies
– volume: 16
  start-page: 1812
  year: 2017
  ident: 10.1016/j.measurement.2019.107258_b0120
  article-title: Classification of finger movements based on reflection coefficient variations of a body worn electrically small antenna
  publication-title: IEEE Antennas Wireless Propag. Lett.
– volume: 2
  start-page: 1
  year: 2005
  ident: 10.1016/j.measurement.2019.107258_b0035
  article-title: Advances in wearable technology and applications in physical medicine and rehabilitation
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-2-2
– volume: 19
  start-page: 558
  issue: 5
  year: 2011
  ident: 10.1016/j.measurement.2019.107258_b0110
  article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2010.2079334
– volume: 15
  start-page: 474
  issue: 3
  year: 2011
  ident: 10.1016/j.measurement.2019.107258_b0075
  article-title: Guraliuc, Paolo Barsocchi, Francesco Potortı, and Paolo Nepa, Limb movements classification using wearable wireless transceivers
  publication-title: IEEE Trans. Inform. Technol. Bio Med.
  doi: 10.1109/TITB.2011.2118763
– volume: 60
  start-page: 155
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2019.107258_b0050
  article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2227317
– volume: 10
  start-page: 7772
  issue: 8
  year: 2010
  ident: 10.1016/j.measurement.2019.107258_b0070
  article-title: A review of accelerometry-based wearable motion detectors for physical activity monitoring
  publication-title: Sensors
  doi: 10.3390/s100807772
– year: 2011
  ident: 10.1016/j.measurement.2019.107258_b0100
  article-title: Very small UWB antenna for WBAN applications
– volume: 17
  start-page: 1199
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2019.107258_b0115
  article-title: Monitoring human head and neck-based motions from around-neck creeping wave propagations
  publication-title: IEEE Antennas Wireless Propag. Lett.
  doi: 10.1109/LAWP.2018.2839019
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.measurement.2019.107258_b0165
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2012
  ident: 10.1016/j.measurement.2019.107258_b0145
– volume: 111
  start-page: 1
  issue: 2017
  year: 2017
  ident: 10.1016/j.measurement.2019.107258_b0150
  article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.07.017
– volume: 19
  issue: 5
  year: 2011
  ident: 10.1016/j.measurement.2019.107258_b0005
  article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2079334
– volume: 49
  start-page: 41
  issue: 3
  year: 2007
  ident: 10.1016/j.measurement.2019.107258_b0085
  article-title: Antennas and propagation for on-body communication systems
  publication-title: IEEE Antennas Propag. Mag.
  doi: 10.1109/MAP.2007.4293935
– volume: 62
  issue: 12
  year: 2014
  ident: 10.1016/j.measurement.2019.107258_b0090
  article-title: Design and ranging performance of a low-profile UWB antenna for WBAN localization applications
  publication-title: IEEE Trans. Antenna Wave Propag.
– volume: 54
  start-page: 874
  issue: 5
  year: 2007
  ident: 10.1016/j.measurement.2019.107258_b0020
  article-title: Body movement activity recognition for ambulatory cardiac monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889186
SSID ssj0006396
Score 2.3094482
Snippet •Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been...
Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107258
SubjectTerms Accuracy
Antennas
Artificial neural networks
Classification
Compact dual-band antenna
Computer simulation
DCNN
Human body
Human motion
Human movement
Motor ability
Movement
Network analysers
Neurodegenerative disorders
Parameter identification
Rehabilitation
S11
S21
Sensors
UWB
WBAN
Title Hand movement classification from measured scattering parameters using deep convolutional neural network
URI https://dx.doi.org/10.1016/j.measurement.2019.107258
https://www.proquest.com/docview/2338220024
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kouhBtCo-aongde02yb7Ai4iyKnrRgreQzSZasdti69XfbiabtSoeBE8LIRNCZjYzSb75BuCI0VRJLlXAtDSBtRAWyKgvg5RJa0Na0czlcd_cxvmAXz1EDwtw1uTCIKzS7_31nu52a9_S86vZmwyHvbsQqcatA7IhSB_fhzCDnScI6zt-n8M8rAeO63sWFmDvZTicY7xG83s4RHlltj2hWP39dx_1Y7d2LuhiHdZ87EhO6-ltwIKu2rD6hVGwDUsO0ammm_CUy6oko7HjA58RhVEywoKcJghmlRA_r5JMlWPZtCMQpAIfIURmShAS_0hKrScEseneRu0EkAPTfRyCfAsGF-f3Z3ngyyoEivFsFmRhqFhsjGEmoSqUpbR6wlJkoY20TaiSSLF-GRsuU5PwVJcJ1kiP7cmNF0VURGwbWtW40jtAaMFtLysSm5LTIsqQ6wcf4nRYsoJFu5A2CymU5xzH0hcvogGXPYsvOhCoA1HrYBfop-ikJt74i9BJoy3xzYqEdRB_Ee80Ghb-V54Kag_xFKEsfO9_o-_DCsXDuoN8d6A1e33TBzaimRVdZ7JdWDy9vM5vPwAiMfjt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60xddBfGK1agSvS7dJ9gVeiihbH72o4C1ks4kPbC22_n8z2axV8SB4Wgg7IWQmM5PkyzcAx4ymSnKpAqalCayFsEBGXRmkTFob0opm7h339SDO7_jFfXQ_B6f1WxiEVXrfX_l05619S8fPZmf89NS5CZFq3AYgm4J08X5oHprITsUb0Oz1L_PBp0O2QTiujlpYgAKLcDSDeQ1nR3EI9Mpse0KxAPzvYeqHw3ZR6HwNVn36SHrVCNdhTo82YOULqeAGLDhQp5pswmMuRyUZvjpK8ClRmCgjMsgpg-DDEuLHVZKJckSbtgeCbOBDRMlMCKLiH0ip9ZggPN2bqR0A0mC6jwORb8Hd-dntaR74ygqBYjybBlkYKhYbY5hJqAplKa2qsBpZaJNtE6okUqxbxobL1CQ81WWCZdJju3njRREVEduGxuh1pHeA0ILbv6xIbEpOiyhDuh-8i9NhyQoWtSCtJ1IoTzuO1S9eRI0vexZfdCBQB6LSQQvop-i44t74i9BJrS3xzZCEjRF_EW_XGhZ-NU8Etft4imgWvvu_3g9hKb-9vhJX_cHlHixT3Ls7BHgbGtO3d71vE5xpceAN-AOgE_ue
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand+movement+classification+from+measured+scattering+parameters+using+deep+convolutional+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Gupta%2C+Sindhu+Hak&rft.au=Sharma%2C+Aayush&rft.au=Mohta%2C+Mohit&rft.au=Rajawat%2C+Asmita&rft.date=2020-02-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=151&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2019.107258&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon