Hand movement classification from measured scattering parameters using deep convolutional neural network
•Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is s...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 151; p. 107258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.02.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2019.107258 |
Cover
Loading…
Abstract | •Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is safe for human body communication.•No additional sensors such as accelerometers and gyroscopes are required for evaluation.
Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters. |
---|---|
AbstractList | Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters. •Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been carried out.•Data set has been recorded with the help of fabricated transmitting and receiving antennas.•UWB range has been chosen as it is safe for human body communication.•No additional sensors such as accelerometers and gyroscopes are required for evaluation. Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility of using antennas and no dedicated sensors for movement identification is explored. Compact dual-band transmitting and receiving antennas of size 37.6 mm × 27 mm with frequency accuracy of 87% at lower band and 76% at higher band are simulated, fabricated and placed on the body of ten healthy subjects with normal BMI (18.5–24.9) kg/m2. Subjects are made to demonstrate five different hand movements. The dataset for each hand movement is experimentally measured using a Vector Network Analyzer (VNA). Measurement results reveal that the Reflection and Transmission coefficients (S11 and S21) of on-body antennas for each hand movement exhibit unique channel functionalities with respect to frequency. The uniqueness of the exhibited parameters aids in identifying the hand movements. Classification of hand movements based on measured data set is carried out using Deep Convolutional Neural Network (DCNN). The classification accuracy of movement comes out to be 93.32% when classifying using S11 parameters, and an accuracy of 98.67% when classifying using S21 parameters. |
ArticleNumber | 107258 |
Author | Mohta, Mohit Sharma, Aayush Gupta, Sindhu Hak Rajawat, Asmita |
Author_xml | – sequence: 1 givenname: Sindhu Hak surname: Gupta fullname: Gupta, Sindhu Hak email: shak@amity.edu – sequence: 2 givenname: Aayush surname: Sharma fullname: Sharma, Aayush – sequence: 3 givenname: Mohit surname: Mohta fullname: Mohta, Mohit – sequence: 4 givenname: Asmita surname: Rajawat fullname: Rajawat, Asmita email: arajawat@amity.edu |
BookMark | eNqNkE1LAzEQhoNUsFb_Q8Tz1nzt10mkqBUKXhS8hTQ70dTdpCbZiv_e7cdBPPU0zMu8z8y852jkvAOEriiZUkKLm9W0AxX7AB24NGWE1oNesrw6QWNalTwTlL2N0JiwgmeMCXqGzmNcEUIKXhdj9DFXrsGd3-wAWLcqRmusVsl6h03wHT4saHAc1ATBune8VkF1MDQR93ErNABrrL3b-LbfWlWLHfRhV9K3D58X6NSoNsLloU7Q68P9y2yeLZ4fn2Z3i0xzUaesJkTzwhjDTck0UY3ioHIhhqdKZoguc81pUxihKlOKCpqypIIXBaFiucyXOZ-g6z13HfxXDzHJle_DcE-UjPOKMUKYGKZu91M6-BgDGKlt2v2cgrKtpERu45Ur-SdeuY1X7uMdCPU_wjrYToWfo7yzvReGIDYWgozagtPQ2AA6ycbbIyi_OR2h2A |
CitedBy_id | crossref_primary_10_1021_acsanm_3c05572 crossref_primary_10_1007_s11277_022_09532_1 crossref_primary_10_1007_s13198_021_01484_2 crossref_primary_10_1016_j_artmed_2020_102005 crossref_primary_10_1007_s11277_024_11683_2 crossref_primary_10_1007_s12652_021_03237_2 crossref_primary_10_1007_s44174_023_00141_5 crossref_primary_10_1007_s11664_021_09222_x crossref_primary_10_2478_amns_2023_2_01415 |
Cites_doi | 10.1186/1743-0003-9-21 10.1016/j.measurement.2016.07.054 10.1016/j.bspc.2007.09.001 10.1109/TAP.2017.2677918 10.1016/j.gaitpost.2009.10.013 10.1109/MSP.2012.2205597 10.1109/JSEN.2014.2370945 10.1109/TCE.2012.6227423 10.1109/TBME.2010.2090044 10.1016/j.measurement.2018.05.098 10.1186/1743-0003-2-2 10.1109/TNSRE.2010.2079334 10.1109/TITB.2011.2118763 10.1109/TBME.2012.2227317 10.3390/s100807772 10.1109/LAWP.2018.2839019 10.1038/nature14539 10.1016/j.measurement.2017.07.017 10.1109/MAP.2007.4293935 10.1109/TBME.2006.889186 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2019.107258 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2019_107258 S0263224119311224 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c349t-900c36fff3f72c0ada3ea54410772f0c75c31d6f4a8f748ed7714366014bb5b53 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 07:48:47 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 04:37:35 EDT 2025 Tue Dec 03 03:45:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DCNN WBAN UWB Accuracy S11 S21 Compact dual-band antenna Human movement Neurodegenerative disorders |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-900c36fff3f72c0ada3ea54410772f0c75c31d6f4a8f748ed7714366014bb5b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2338220024 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2338220024 crossref_citationtrail_10_1016_j_measurement_2019_107258 crossref_primary_10_1016_j_measurement_2019_107258 elsevier_sciencedirect_doi_10_1016_j_measurement_2019_107258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Mariani, Jimenez, Vingerhoets, Aminian (b0050) 2013; 60 LeCun, Bengio, Hinton (b0165) 2015; 521 Xu, Li, Kim (b0120) 2017; 16 Michael, Lewek, Johnson, Halawa, Huang (b0060) 2010; 31 Pawar, Chaudhuri, Duttagupta (b0020) 2007; 54 Yazdandoost, Hamaguchi (b0100) 2011 Patel, Park, Bonato, Chan, Rodgers (b0030) 2012; 9 Mukhopadhyay (b0080) 2015; 15 Lee, Wilson, Lock, Kamper (b0005) 2011; 19 Zaric, Costa, Fernandes (b0090) 2014; 62 Hall, Hao, Nechayev, Alomain, Constantinou, Parini, Kamarudin, Salim, Heel, Dubrovka, Owadall, Song, Serra, Nepa, Gai1o, Bozzetti (b0085) 2007; 49 Guo, Chen, Shen (b0125) 2016; 93 Hinton (b0155) 2012; 29 Yazdandoost and Kamran Sayrafian-Pour, Channel model for body area network (BAN), IEEE802.15-07-0943-00-0ban, pp. 1549-1552, 2008. Bresnahan, Li, Koziol, Kim (b0115) 2018; 17 Chen, Patel, Buckley, Rednic, McClure, Shih, Tarsy, Welsh, Bonato (b0015) 2011; 58 Zhou, Hu (b0010) 2008; 3 Bonato (b0035) 2005; 2 Anda (b0075) May 2011; 15 Ramkumar Prabhu, Rajalingam (b0095) 2017; 9 Lara, Labrador (b0045) 2013 Krizhevsky, Sutskever, Hinton (b0160) 2012; 25 Lee, Wilson, Lock, Kamper (b0110) 2011; 19 Han, Tang, Deng (b0135) 2018; 127 Yang, Hsu (b0070) 2010; 10 Jinga, Zhaob, Lic, Xiaoqiang (b0150) 2017; 111 Iso-Ketol (b0025) 2008 Kim, Li (b0130) 2017; 65 Marzena, Agnieszka, Rafal, Pauk (b0040) 2018; 26 Kingma, Ba (b0170) 2015 Patel, Park, Bonato, Chan, Rodgers (b0055) 2012; 9 Ahn, Ahn, Kim, Choi (b0105) 2012; 58 Astrin (b0145) 2012 Negra, Jemili, Belghith (b0140) 2016 Astrin (10.1016/j.measurement.2019.107258_b0145) 2012 Mariani (10.1016/j.measurement.2019.107258_b0050) 2013; 60 Ramkumar Prabhu (10.1016/j.measurement.2019.107258_b0095) 2017; 9 Yazdandoost (10.1016/j.measurement.2019.107258_b0100) 2011 Iso-Ketol (10.1016/j.measurement.2019.107258_b0025) 2008 Lara (10.1016/j.measurement.2019.107258_b0045) 2013 Bresnahan (10.1016/j.measurement.2019.107258_b0115) 2018; 17 Bonato (10.1016/j.measurement.2019.107258_b0035) 2005; 2 LeCun (10.1016/j.measurement.2019.107258_b0165) 2015; 521 Kingma (10.1016/j.measurement.2019.107258_b0170) 2015 Patel (10.1016/j.measurement.2019.107258_b0055) 2012; 9 Han (10.1016/j.measurement.2019.107258_b0135) 2018; 127 Lee (10.1016/j.measurement.2019.107258_b0110) 2011; 19 10.1016/j.measurement.2019.107258_b0065 Ahn (10.1016/j.measurement.2019.107258_b0105) 2012; 58 Guo (10.1016/j.measurement.2019.107258_b0125) 2016; 93 Negra (10.1016/j.measurement.2019.107258_b0140) 2016 Zaric (10.1016/j.measurement.2019.107258_b0090) 2014; 62 Patel (10.1016/j.measurement.2019.107258_b0030) 2012; 9 Hall (10.1016/j.measurement.2019.107258_b0085) 2007; 49 Xu (10.1016/j.measurement.2019.107258_b0120) 2017; 16 Lee (10.1016/j.measurement.2019.107258_b0005) 2011; 19 Yang (10.1016/j.measurement.2019.107258_b0070) 2010; 10 Kim (10.1016/j.measurement.2019.107258_b0130) 2017; 65 Mukhopadhyay (10.1016/j.measurement.2019.107258_b0080) 2015; 15 Pawar (10.1016/j.measurement.2019.107258_b0020) 2007; 54 Zhou (10.1016/j.measurement.2019.107258_b0010) 2008; 3 Chen (10.1016/j.measurement.2019.107258_b0015) 2011; 58 Michael (10.1016/j.measurement.2019.107258_b0060) 2010; 31 Krizhevsky (10.1016/j.measurement.2019.107258_b0160) 2012; 25 Marzena (10.1016/j.measurement.2019.107258_b0040) 2018; 26 Hinton (10.1016/j.measurement.2019.107258_b0155) 2012; 29 Anda (10.1016/j.measurement.2019.107258_b0075) 2011; 15 Jinga (10.1016/j.measurement.2019.107258_b0150) 2017; 111 |
References_xml | – volume: 19 year: 2011 ident: b0005 article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 58 start-page: 831 year: 2011 end-page: 836 ident: b0015 article-title: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors publication-title: IEEE Trans. Biomed. Eng. – reference: Yazdandoost and Kamran Sayrafian-Pour, Channel model for body area network (BAN), IEEE802.15-07-0943-00-0ban, pp. 1549-1552, 2008. – year: 2011 ident: b0100 article-title: Very small UWB antenna for WBAN applications publication-title: 5th international symposium on medical information and communication technology – year: 2013 ident: b0045 article-title: A Survey on human activity recognition using wearable sensors publication-title: IEEE Communications Surveys & Tutorials – start-page: 1 year: 2012 end-page: 271 ident: b0145 publication-title: 802.15.6-2012—IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks – volume: 26 start-page: 671 year: 2018 end-page: 677 ident: b0040 article-title: Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings publication-title: Technol. Health Care – start-page: 196 year: 2008 end-page: 199 ident: b0025 article-title: Hip Guard: a wearable measurement system for patients recovering from a hip operation publication-title: Proc. Pervasive Comput. Technol. And Healthcare Conf. – volume: 2 start-page: 1 year: 2005 end-page: 4 ident: b0035 article-title: Advances in wearable technology and applications in physical medicine and rehabilitation publication-title: J. NeuroEng. Rehabil. – volume: 62 year: 2014 ident: b0090 article-title: Design and ranging performance of a low-profile UWB antenna for WBAN localization applications publication-title: IEEE Trans. Antenna Wave Propag. – year: 2016 ident: b0140 article-title: Wireless body area networks: applications and technologies publication-title: The 2nd International Workshop on Recent Advances on Machine-to-Machine Communications, Madrid – volume: 9 year: 2017 ident: b0095 article-title: Rectangular patch antenna to operate in flame retardant 4 using coaxial feeding technique publication-title: Int. J. Electron. Eng. Res. – volume: 31 start-page: 256 year: 2010 end-page: 260 ident: b0060 article-title: Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease publication-title: Elsevier Gait Posture – volume: 17 start-page: 1199 year: 2018 end-page: 1203 ident: b0115 article-title: Monitoring human head and neck-based motions from around-neck creeping wave propagations publication-title: IEEE Antennas Wireless Propag. Lett. – volume: 9 year: 2012 ident: b0055 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. Neuroeng. Rehab. – volume: 15 start-page: 474 year: May 2011 end-page: 480 ident: b0075 article-title: Guraliuc, Paolo Barsocchi, Francesco Potortı, and Paolo Nepa, Limb movements classification using wearable wireless transceivers publication-title: IEEE Trans. Inform. Technol. Bio Med. – volume: 49 start-page: 41 year: 2007 end-page: 58 ident: b0085 article-title: Antennas and propagation for on-body communication systems publication-title: IEEE Antennas Propag. Mag. – volume: 10 start-page: 7772 year: 2010 end-page: 7788 ident: b0070 article-title: A review of accelerometry-based wearable motion detectors for physical activity monitoring publication-title: Sensors – volume: 3 start-page: 1 year: 2008 end-page: 18 ident: b0010 article-title: Human motion tracking for rehabilitation—a survey publication-title: Biomed. Signal Process. Control – volume: 25 start-page: 1090 year: 2012 end-page: 1098 ident: b0160 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc. Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 1812 year: 2017 end-page: 1815 ident: b0120 article-title: Classification of finger movements based on reflection coefficient variations of a body worn electrically small antenna publication-title: IEEE Antennas Wireless Propag. Lett. – volume: 19 start-page: 558 year: 2011 end-page: 566 ident: b0110 article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors publication-title: IEEE Trans. Neural Syst. Rehab. Eng. – volume: 111 start-page: 1 year: 2017 end-page: 10 ident: b0150 article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox publication-title: Measurement – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b0155 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. – volume: 60 start-page: 155 year: 2013 end-page: 158 ident: b0050 article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 15 year: 2015 ident: b0080 article-title: Wearable sensors for human activity monitoring: a review publication-title: IEEE Sens. J. – volume: 9 start-page: 1 year: 2012 end-page: 17 ident: b0030 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. NeuroEng. Rehabil. – volume: 127 start-page: 246 year: 2018 end-page: 255 ident: b0135 article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis publication-title: Measurement – volume: 58 year: 2012 ident: b0105 article-title: Experimental outage capacity analysis for off-body wireless body area network channel with transmit diversity publication-title: IEEE Trans. Consum. Electron. – volume: 65 year: 2017 ident: b0130 article-title: Human activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks publication-title: IEEE Trans. Antennas Propag. – year: 2015 ident: b0170 article-title: Adam: a method for stochastic optimization publication-title: 3rd International Conference on Learning Representations, San Diego – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0165 article-title: Deep learning publication-title: Nature – volume: 54 start-page: 874 year: 2007 end-page: 882 ident: b0020 article-title: Body movement activity recognition for ambulatory cardiac monitoring publication-title: IEEE Trans. Biomed. Eng. – volume: 93 start-page: 490 year: 2016 end-page: 502 ident: b0125 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement – volume: 9 start-page: 1 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0030 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-9-21 – volume: 93 start-page: 490 issue: 2016 year: 2016 ident: 10.1016/j.measurement.2019.107258_b0125 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – volume: 3 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.measurement.2019.107258_b0010 article-title: Human motion tracking for rehabilitation—a survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.09.001 – start-page: 196 year: 2008 ident: 10.1016/j.measurement.2019.107258_b0025 article-title: Hip Guard: a wearable measurement system for patients recovering from a hip operation – volume: 65 issue: 5 year: 2017 ident: 10.1016/j.measurement.2019.107258_b0130 article-title: Human activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2017.2677918 – volume: 31 start-page: 256 issue: 2 year: 2010 ident: 10.1016/j.measurement.2019.107258_b0060 article-title: Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease publication-title: Elsevier Gait Posture doi: 10.1016/j.gaitpost.2009.10.013 – year: 2015 ident: 10.1016/j.measurement.2019.107258_b0170 article-title: Adam: a method for stochastic optimization – ident: 10.1016/j.measurement.2019.107258_b0065 – volume: 25 start-page: 1090 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0160 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc. Adv. Neural Inf. Process. Syst. – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0155 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 15 issue: 3 year: 2015 ident: 10.1016/j.measurement.2019.107258_b0080 article-title: Wearable sensors for human activity monitoring: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2370945 – year: 2013 ident: 10.1016/j.measurement.2019.107258_b0045 article-title: A Survey on human activity recognition using wearable sensors – volume: 9 issue: 1 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0055 article-title: A review of wearable sensors and systems with application in rehabilitation publication-title: J. Neuroeng. Rehab. doi: 10.1186/1743-0003-9-21 – volume: 58 issue: 2 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0105 article-title: Experimental outage capacity analysis for off-body wireless body area network channel with transmit diversity publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2012.6227423 – volume: 58 start-page: 831 issue: 3 year: 2011 ident: 10.1016/j.measurement.2019.107258_b0015 article-title: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2090044 – volume: 127 start-page: 246 year: 2018 ident: 10.1016/j.measurement.2019.107258_b0135 article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2018.05.098 – volume: 26 start-page: 671 issue: S2 year: 2018 ident: 10.1016/j.measurement.2019.107258_b0040 article-title: Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings publication-title: Technol. Health Care – volume: 9 issue: 3 year: 2017 ident: 10.1016/j.measurement.2019.107258_b0095 article-title: Rectangular patch antenna to operate in flame retardant 4 using coaxial feeding technique publication-title: Int. J. Electron. Eng. Res. – year: 2016 ident: 10.1016/j.measurement.2019.107258_b0140 article-title: Wireless body area networks: applications and technologies – volume: 16 start-page: 1812 year: 2017 ident: 10.1016/j.measurement.2019.107258_b0120 article-title: Classification of finger movements based on reflection coefficient variations of a body worn electrically small antenna publication-title: IEEE Antennas Wireless Propag. Lett. – volume: 2 start-page: 1 year: 2005 ident: 10.1016/j.measurement.2019.107258_b0035 article-title: Advances in wearable technology and applications in physical medicine and rehabilitation publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-2-2 – volume: 19 start-page: 558 issue: 5 year: 2011 ident: 10.1016/j.measurement.2019.107258_b0110 article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2010.2079334 – volume: 15 start-page: 474 issue: 3 year: 2011 ident: 10.1016/j.measurement.2019.107258_b0075 article-title: Guraliuc, Paolo Barsocchi, Francesco Potortı, and Paolo Nepa, Limb movements classification using wearable wireless transceivers publication-title: IEEE Trans. Inform. Technol. Bio Med. doi: 10.1109/TITB.2011.2118763 – volume: 60 start-page: 155 issue: 1 year: 2013 ident: 10.1016/j.measurement.2019.107258_b0050 article-title: On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2227317 – volume: 10 start-page: 7772 issue: 8 year: 2010 ident: 10.1016/j.measurement.2019.107258_b0070 article-title: A review of accelerometry-based wearable motion detectors for physical activity monitoring publication-title: Sensors doi: 10.3390/s100807772 – year: 2011 ident: 10.1016/j.measurement.2019.107258_b0100 article-title: Very small UWB antenna for WBAN applications – volume: 17 start-page: 1199 issue: 7 year: 2018 ident: 10.1016/j.measurement.2019.107258_b0115 article-title: Monitoring human head and neck-based motions from around-neck creeping wave propagations publication-title: IEEE Antennas Wireless Propag. Lett. doi: 10.1109/LAWP.2018.2839019 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.measurement.2019.107258_b0165 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 year: 2012 ident: 10.1016/j.measurement.2019.107258_b0145 – volume: 111 start-page: 1 issue: 2017 year: 2017 ident: 10.1016/j.measurement.2019.107258_b0150 article-title: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox publication-title: Measurement doi: 10.1016/j.measurement.2017.07.017 – volume: 19 issue: 5 year: 2011 ident: 10.1016/j.measurement.2019.107258_b0005 article-title: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2079334 – volume: 49 start-page: 41 issue: 3 year: 2007 ident: 10.1016/j.measurement.2019.107258_b0085 article-title: Antennas and propagation for on-body communication systems publication-title: IEEE Antennas Propag. Mag. doi: 10.1109/MAP.2007.4293935 – volume: 62 issue: 12 year: 2014 ident: 10.1016/j.measurement.2019.107258_b0090 article-title: Design and ranging performance of a low-profile UWB antenna for WBAN localization applications publication-title: IEEE Trans. Antenna Wave Propag. – volume: 54 start-page: 874 issue: 5 year: 2007 ident: 10.1016/j.measurement.2019.107258_b0020 article-title: Body movement activity recognition for ambulatory cardiac monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889186 |
SSID | ssj0006396 |
Score | 2.3094482 |
Snippet | •Electromagnetic signals radiated by antenna during different movements are measured by VNA.•For DCNN based classification, frequency domain analysis has been... Human body movement analysis aids in implementing the physical rehabilitation process to regain the diminished motor abilities. In this work, the feasibility... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107258 |
SubjectTerms | Accuracy Antennas Artificial neural networks Classification Compact dual-band antenna Computer simulation DCNN Human body Human motion Human movement Motor ability Movement Network analysers Neurodegenerative disorders Parameter identification Rehabilitation S11 S21 Sensors UWB WBAN |
Title | Hand movement classification from measured scattering parameters using deep convolutional neural network |
URI | https://dx.doi.org/10.1016/j.measurement.2019.107258 https://www.proquest.com/docview/2338220024 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kouhBtCo-aongde02yb7Ai4iyKnrRgreQzSZasdti69XfbiabtSoeBE8LIRNCZjYzSb75BuCI0VRJLlXAtDSBtRAWyKgvg5RJa0Na0czlcd_cxvmAXz1EDwtw1uTCIKzS7_31nu52a9_S86vZmwyHvbsQqcatA7IhSB_fhzCDnScI6zt-n8M8rAeO63sWFmDvZTicY7xG83s4RHlltj2hWP39dx_1Y7d2LuhiHdZ87EhO6-ltwIKu2rD6hVGwDUsO0ammm_CUy6oko7HjA58RhVEywoKcJghmlRA_r5JMlWPZtCMQpAIfIURmShAS_0hKrScEseneRu0EkAPTfRyCfAsGF-f3Z3ngyyoEivFsFmRhqFhsjGEmoSqUpbR6wlJkoY20TaiSSLF-GRsuU5PwVJcJ1kiP7cmNF0VURGwbWtW40jtAaMFtLysSm5LTIsqQ6wcf4nRYsoJFu5A2CymU5xzH0hcvogGXPYsvOhCoA1HrYBfop-ikJt74i9BJoy3xzYqEdRB_Ee80Ghb-V54Kag_xFKEsfO9_o-_DCsXDuoN8d6A1e33TBzaimRVdZ7JdWDy9vM5vPwAiMfjt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60xddBfGK1agSvS7dJ9gVeiihbH72o4C1ks4kPbC22_n8z2axV8SB4Wgg7IWQmM5PkyzcAx4ymSnKpAqalCayFsEBGXRmkTFob0opm7h339SDO7_jFfXQ_B6f1WxiEVXrfX_l05619S8fPZmf89NS5CZFq3AYgm4J08X5oHprITsUb0Oz1L_PBp0O2QTiujlpYgAKLcDSDeQ1nR3EI9Mpse0KxAPzvYeqHw3ZR6HwNVn36SHrVCNdhTo82YOULqeAGLDhQp5pswmMuRyUZvjpK8ClRmCgjMsgpg-DDEuLHVZKJckSbtgeCbOBDRMlMCKLiH0ip9ZggPN2bqR0A0mC6jwORb8Hd-dntaR74ygqBYjybBlkYKhYbY5hJqAplKa2qsBpZaJNtE6okUqxbxobL1CQ81WWCZdJju3njRREVEduGxuh1pHeA0ILbv6xIbEpOiyhDuh-8i9NhyQoWtSCtJ1IoTzuO1S9eRI0vexZfdCBQB6LSQQvop-i44t74i9BJrS3xzZCEjRF_EW_XGhZ-NU8Etft4imgWvvu_3g9hKb-9vhJX_cHlHixT3Ls7BHgbGtO3d71vE5xpceAN-AOgE_ue |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hand+movement+classification+from+measured+scattering+parameters+using+deep+convolutional+neural+network&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Gupta%2C+Sindhu+Hak&rft.au=Sharma%2C+Aayush&rft.au=Mohta%2C+Mohit&rft.au=Rajawat%2C+Asmita&rft.date=2020-02-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=151&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2019.107258&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |