Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)
Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 6; pp. 3129 - 3142 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm. |
---|---|
AbstractList | Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm. Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm. |
Author | Huang, Shihua Tan, Kay Chen Cheng, Ran Jin, Yaochu He, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0003-4218-8454 surname: He fullname: He, Cheng email: chenghehust@gmail.com organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Shihua surname: Huang fullname: Huang, Shihua email: shihuahuang95@gmail.com organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Ran orcidid: 0000-0001-9410-8263 surname: Cheng fullname: Cheng, Ran email: ranchengcn@gmail.com organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaytan@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 5 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32365041$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O4zAUha0RowEKDzBCQpHYwKLFP3FsL0sHClKBDbNgZdnOjeSSJsVOipinx6WlCxbjja-uv3Ntn3OI9pq2AYR-EzwiBKvLp8nz1YhiikdUSY4l-YEOKCnkkFLB93Z1IfbRcYxznJZMLSV_oX1GWcFxTg7Q8_WqrfvOt40J79l9X6fSzsF1fgXZ47LzC__PrI-zPyG1msy-Z1NoIJhPYlyuIEQTvKmzB-je2vASs_Pp-CFeHKGflakjHG_3Afp7c_00uR3OHqd3k_Fs6FiuuqGslLAlkZgrACdKRyy1LLfOiNyW3JrCMJq-WVaW5qyipa2wsI4ww0sHwrEBOt_MXYb2tYfY6YWPDuraNND2UVOmZMEUyWVCz76h87YPTXqdppxKlXMseKJOt1RvF1DqZfCLZI7-Mi0BZAO40MYYoNohBOt1NnqdjV5no7fZJI34pnG--zS2C8bX_1WebJQeAHY3KSypwjn7ABFJm-w |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TSMC_2024_3443143 crossref_primary_10_3390_jmse12071210 crossref_primary_10_1109_TCYB_2021_3051021 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_1080_00207721_2022_2153635 crossref_primary_10_1109_TAI_2024_3444736 crossref_primary_10_1109_TEVC_2023_3296536 crossref_primary_10_1016_j_compbiomed_2023_107727 crossref_primary_10_1109_TEVC_2023_3255263 crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1016_j_ymssp_2024_111251 crossref_primary_10_1145_3470971 crossref_primary_10_3390_math12020175 crossref_primary_10_1016_j_eswa_2023_122370 crossref_primary_10_1109_TCYB_2023_3265652 crossref_primary_10_1007_s40747_023_01214_0 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1109_TCYB_2021_3104848 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1016_j_engappai_2023_107745 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1016_j_neucom_2021_10_060 crossref_primary_10_1016_j_swevo_2024_101506 crossref_primary_10_1109_TCYB_2020_3000465 crossref_primary_10_1016_j_swevo_2024_101628 crossref_primary_10_1109_TEVC_2022_3170638 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1016_j_ins_2024_121347 crossref_primary_10_1109_JAS_2022_105875 crossref_primary_10_1016_j_swevo_2023_101261 crossref_primary_10_1109_JSYST_2023_3265021 crossref_primary_10_1002_wcms_1608 crossref_primary_10_1109_TCYB_2022_3225341 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TCC_2024_3450858 crossref_primary_10_1142_S0129065723500260 crossref_primary_10_1109_ACCESS_2021_3110853 crossref_primary_10_1109_TEVC_2023_3306523 crossref_primary_10_1109_TEVC_2023_3321603 crossref_primary_10_1016_j_adhoc_2023_103308 crossref_primary_10_1109_TETCI_2023_3313412 crossref_primary_10_1016_j_swevo_2022_101093 crossref_primary_10_3390_rs15174178 crossref_primary_10_1016_j_engappai_2022_105249 crossref_primary_10_1016_j_eswa_2023_120290 crossref_primary_10_1109_TEVC_2022_3144675 crossref_primary_10_1016_j_ijepes_2022_108620 crossref_primary_10_1109_TCYB_2021_3098186 crossref_primary_10_1109_TETCI_2024_3386866 crossref_primary_10_1007_s40747_025_01845_5 crossref_primary_10_1109_TCYB_2022_3213537 crossref_primary_10_1007_s10489_025_06291_x crossref_primary_10_1109_MCI_2023_3304080 crossref_primary_10_1109_TEVC_2022_3189029 crossref_primary_10_1016_j_ins_2023_119472 crossref_primary_10_1109_TAP_2022_3222076 crossref_primary_10_1109_TCYB_2023_3287596 crossref_primary_10_3390_math11132820 crossref_primary_10_1109_TCOMM_2023_3277878 crossref_primary_10_3390_math12182856 crossref_primary_10_1109_TETCI_2024_3369629 crossref_primary_10_1109_TEVC_2023_3319494 crossref_primary_10_1109_MCI_2024_3363980 crossref_primary_10_1109_TETCI_2022_3146882 crossref_primary_10_1109_TEVC_2021_3111209 crossref_primary_10_1016_j_ins_2024_120607 crossref_primary_10_1016_j_swevo_2022_101152 crossref_primary_10_1109_TII_2022_3206817 crossref_primary_10_1109_TEVC_2021_3099487 crossref_primary_10_1109_TMAG_2022_3171350 crossref_primary_10_1109_ACCESS_2024_3501775 crossref_primary_10_1109_TETCI_2020_3035937 crossref_primary_10_1007_s40747_021_00362_5 crossref_primary_10_1109_TEVC_2022_3152582 crossref_primary_10_1109_ACCESS_2022_3189163 crossref_primary_10_1109_TCYB_2022_3164285 crossref_primary_10_1016_j_asoc_2023_110805 crossref_primary_10_1155_2020_8810759 crossref_primary_10_1007_s11227_024_06258_8 crossref_primary_10_1007_s40747_022_00963_8 crossref_primary_10_1007_s40747_021_00402_0 crossref_primary_10_1007_s12293_022_00368_7 crossref_primary_10_1016_j_cja_2021_03_006 crossref_primary_10_1109_TEVC_2022_3231493 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1007_s10462_024_10818_y crossref_primary_10_1007_s11042_023_17030_0 crossref_primary_10_1109_TCYB_2023_3267773 crossref_primary_10_1016_j_neucom_2021_08_070 crossref_primary_10_1109_TCE_2024_3367170 crossref_primary_10_1016_j_neucom_2020_07_137 crossref_primary_10_1109_TEVC_2022_3155593 crossref_primary_10_1016_j_asoc_2024_112344 crossref_primary_10_1016_j_asoc_2022_109263 crossref_primary_10_1109_JSYST_2021_3130080 crossref_primary_10_1109_TITS_2023_3266807 crossref_primary_10_3390_mca28010014 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_1109_TEVC_2023_3340678 crossref_primary_10_1016_j_eswa_2024_125684 |
Cites_doi | 10.1109/TEVC.2007.892759 10.1007/BF00175355 10.1109/CEC.2015.7257247 10.1007/978-1-4614-6940-7_15 10.1145/1007730.1007731 10.1007/978-3-540-87700-4_78 10.1023/A:1008202821328 10.1109/TEVC.2013.2281524 10.1007/3-540-45712-7_29 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2015.2395073 10.1109/TEVC.2008.925798 10.1007/s11390-012-1282-4 10.1109/CCAAW.2017.8001880 10.1109/4235.797969 10.1145/1830483.1830571 10.1016/S0169-7439(97)00061-0 10.1016/j.ins.2018.06.073 10.1109/TEVC.2016.2519378 10.1109/CEC.2006.1688406 10.1109/TEVC.2005.851275 10.1109/TEVC.2009.2033671 10.1162/EVCO_a_00122 10.1109/TNNLS.2017.2695223 10.1016/j.swevo.2011.05.001 10.1109/4235.996017 10.1007/s40747-018-0080-1 10.1109/ICCIAS.2006.294139 10.1109/CEC.2000.870313 10.1007/978-3-540-30217-9_36 10.1109/TCYB.2016.2550502 10.1016/j.enbuild.2014.11.063 10.1109/MCI.2009.933094 10.1007/s40747-017-0057-5 10.1016/S0893-6080(05)80131-5 10.1109/TEVC.2018.2794319 10.1109/TEVC.2018.2802784 10.1007/978-1-4419-9863-7_1185 10.1109/MCI.2011.942584 10.1109/CEC.2013.6557593 10.1002/advs.201700520 10.1109/TEVC.2007.894202 10.1109/CVPR.2017.19 10.1002/9781118445112.stat01249 10.1162/evco.2007.15.4.493 10.1007/3-540-32494-1_6 10.1002/mcda.1605 10.1109/TEVC.2014.2308305 10.1109/CEC.2013.6557903 10.1109/CEC.2016.7748353 10.1162/EVCO_a_00128 10.1038/nature14544 10.1007/978-1-4842-2766-4_12 10.1109/TCYB.2015.2507366 10.1109/MCI.2017.2742868 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.2985081 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 3142 |
ExternalDocumentID | 32365041 10_1109_TCYB_2020_2985081 9082904 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Program for University Key Laboratory of Guangdong Province grantid: 2017KSYS008 funderid: 10.13039/100016094 – fundername: National Natural Science Foundation of China grantid: 61903178; 61906081 funderid: 10.13039/501100001809 – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams grantid: 2017ZT07X386 – fundername: Shenzhen Peacock Plan grantid: KQTD2016112514355531 funderid: 10.13039/501100012234 – fundername: Research Grants Council of the Hong Kong grantid: CityU11202418; CityU11209219 funderid: 10.13039/501100002920 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-8f97bd18059eec7dc1b2b34bca74bd5ba6a32202dfb243f2dbf07bc13a5dce7c3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 03:22:18 EDT 2025 Sun Jun 29 16:19:55 EDT 2025 Thu Apr 03 07:00:18 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Jul 01 00:53:55 EDT 2025 Wed Aug 27 02:30:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-8f97bd18059eec7dc1b2b34bca74bd5ba6a32202dfb243f2dbf07bc13a5dce7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6802-2463 0000-0003-4218-8454 0000-0003-1100-0631 0000-0001-9410-8263 |
PMID | 32365041 |
PQID | 2528945075 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2020_2985081 ieee_primary_9082904 proquest_journals_2528945075 pubmed_primary_32365041 proquest_miscellaneous_2398639148 crossref_primary_10_1109_TCYB_2020_2985081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref58 ref14 ref53 ref52 ref10 jin (ref24) 2000 jain (ref36) 1988; 32 ref17 ref16 ref19 ref18 ref50 bhattacharjee (ref34) 2015 ref46 ref45 ziztler (ref11) 2001 ref48 ref47 ref42 ref41 ref44 ref43 deb (ref67) 2001; 16 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 larrañaga (ref40) 2001; 2 arjovsky (ref64) 2017 zitzler (ref15) 2004 ref35 ref37 ref31 ref30 ref33 ref32 ref2 ref39 goodfellow (ref59) 2016; 1 ref38 kingma (ref57) 2014 ref71 ref70 ref72 deb (ref20) 1996; 26 ref68 radford (ref55) 2015 ref23 kingma (ref63) 2013 ref26 ref69 siddique (ref1) 2013 ref25 ref66 ref22 ref65 ref21 martínez (ref51) 2014 ref28 ref27 seah (ref29) 2012 ref60 goodfellow (ref54) 2014 ref62 ref61 |
References_xml | – ident: ref12 doi: 10.1109/TEVC.2007.892759 – ident: ref30 doi: 10.1007/BF00175355 – ident: ref35 doi: 10.1109/CEC.2015.7257247 – ident: ref5 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref52 doi: 10.1145/1007730.1007731 – ident: ref28 doi: 10.1007/978-3-540-87700-4_78 – volume: 26 start-page: 30 year: 1996 ident: ref20 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – start-page: 786 year: 2000 ident: ref24 article-title: On evolutionary optimization with approximate fitness functions publication-title: Proc Genet Evol Comput Conf – ident: ref68 doi: 10.1023/A:1008202821328 – start-page: 832 year: 2004 ident: ref15 article-title: Indicator-based selection in multiobjective search publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref42 doi: 10.1109/TEVC.2013.2281524 – ident: ref44 doi: 10.1007/3-540-45712-7_29 – ident: ref14 doi: 10.1016/j.ejor.2006.08.008 – ident: ref21 doi: 10.1109/TEVC.2015.2395073 – ident: ref13 doi: 10.1109/TEVC.2008.925798 – ident: ref33 doi: 10.1007/s11390-012-1282-4 – ident: ref4 doi: 10.1109/CCAAW.2017.8001880 – ident: ref58 doi: 10.1109/4235.797969 – ident: ref32 doi: 10.1145/1830483.1830571 – year: 2013 ident: ref1 article-title: Computational intelligence: Synergies of fuzzy logic publication-title: Neural Networks and Evolutionary Computing – ident: ref38 doi: 10.1016/S0169-7439(97)00061-0 – ident: ref37 doi: 10.1016/j.ins.2018.06.073 – ident: ref9 doi: 10.1109/TEVC.2016.2519378 – ident: ref69 doi: 10.1109/CEC.2006.1688406 – ident: ref71 doi: 10.1109/TEVC.2005.851275 – volume: 32 start-page: 227 year: 1988 ident: ref36 article-title: Algorithms for clustering data publication-title: Technometrics – ident: ref31 doi: 10.1109/TEVC.2009.2033671 – ident: ref53 doi: 10.1162/EVCO_a_00122 – ident: ref2 doi: 10.1109/TNNLS.2017.2695223 – year: 2017 ident: ref64 publication-title: Wasserstein GAN – ident: ref26 doi: 10.1016/j.swevo.2011.05.001 – ident: ref10 doi: 10.1109/4235.996017 – ident: ref22 doi: 10.1007/s40747-018-0080-1 – ident: ref18 doi: 10.1109/ICCIAS.2006.294139 – ident: ref17 doi: 10.1109/CEC.2000.870313 – ident: ref46 doi: 10.1007/978-3-540-30217-9_36 – ident: ref7 doi: 10.1109/TCYB.2016.2550502 – ident: ref3 doi: 10.1016/j.enbuild.2014.11.063 – ident: ref25 doi: 10.1109/MCI.2009.933094 – ident: ref6 doi: 10.1007/s40747-017-0057-5 – ident: ref60 doi: 10.1016/S0893-6080(05)80131-5 – ident: ref43 doi: 10.1109/TEVC.2018.2794319 – ident: ref39 doi: 10.1109/TEVC.2018.2802784 – ident: ref65 doi: 10.1007/978-1-4419-9863-7_1185 – start-page: 2672 year: 2014 ident: ref54 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/MCI.2011.942584 – start-page: 1 year: 2012 ident: ref29 article-title: Pareto rank learning in multi-objective evolutionary algorithms publication-title: Proc IEEE Congr Evol Comput – year: 2001 ident: ref11 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems (EUROGEN) – ident: ref49 doi: 10.1109/CEC.2013.6557593 – ident: ref61 doi: 10.1002/advs.201700520 – start-page: 682 year: 2014 ident: ref51 article-title: Using a family of curves to approximate the Pareto front of a multi-objective optimization problem publication-title: Proc Int Conf Parallel Problem Solving Nat – ident: ref47 doi: 10.1109/TEVC.2007.894202 – volume: 1 year: 2016 ident: ref59 publication-title: Deep Learning – ident: ref56 doi: 10.1109/CVPR.2017.19 – ident: ref62 doi: 10.1002/9781118445112.stat01249 – ident: ref50 doi: 10.1162/evco.2007.15.4.493 – start-page: 1041 year: 2015 ident: ref34 article-title: A novel constraint handling strategy for expensive optimization problems publication-title: Proc World Congr Struct Multidiscipl Optim – ident: ref45 doi: 10.1007/3-540-32494-1_6 – ident: ref27 doi: 10.1002/mcda.1605 – volume: 2 year: 2001 ident: ref40 publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation – ident: ref8 doi: 10.1109/TEVC.2014.2308305 – volume: 16 year: 2001 ident: ref67 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – year: 2015 ident: ref55 publication-title: Unsupervised representation learning with deep convolutional generative adversarial networks – ident: ref16 doi: 10.1109/CEC.2013.6557903 – ident: ref70 doi: 10.1109/CEC.2016.7748353 – ident: ref41 doi: 10.1162/EVCO_a_00128 – year: 2014 ident: ref57 publication-title: Adam A method for stochastic optimization – ident: ref19 doi: 10.1038/nature14544 – ident: ref72 doi: 10.1007/978-1-4842-2766-4_12 – year: 2013 ident: ref63 publication-title: Auto-encoding variational bayes – ident: ref48 doi: 10.1109/TCYB.2015.2507366 – ident: ref66 doi: 10.1109/MCI.2017.2742868 |
SSID | ssj0000816898 |
Score | 2.5982633 |
Snippet | Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3129 |
SubjectTerms | Adaptation models Computational modeling Deep learning evolutionary algorithm Evolutionary algorithms Evolutionary computation Generative adversarial networks generative adversarial networks (GANs) Genetic algorithms Machine learning multiobjective optimization Multiple objective analysis Optimization Training Training data |
Title | Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs) |
URI | https://ieeexplore.ieee.org/document/9082904 https://www.ncbi.nlm.nih.gov/pubmed/32365041 https://www.proquest.com/docview/2528945075 https://www.proquest.com/docview/2398639148 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxaKH2E0spIHApqFsd2EvtIKQghsVxAglPkcZwDbXerfVSiv75jxxsJ1Fa9RcnYSTTj8Te2Zz6AffKLQtNMmnuFFKCQheQauzLXhfV1ZawTdUgUvhxX5zfq4ra8XYNPQy6M9z4ePvOjcBn38tupW4alsqNAz21C8c9nFLj1uVrDekokkIjUt4IuckIVddrELLg5uj65-0zBoOAjYTRhkkAQI4UkeKKKRzNSpFj5O9qMs87ZC7hcfW9_2OTraLnAkfv1pJTj__7QJjxP8JMd9_ayBWt-8hK20gCfs4-pCvXBNtyd_kxWaWcPLObpTvG-d4_sihzN95TByb7Mgsdk-MD61lEiEj3PbTBvNu6Pmofuj8fzg1dwc3Z6fXKeJx6G3EllFrnuTI1toQmJee_q1hUoUCp0tlbYlmgrS26Bi7ZDoWQnWux4ja6Qtmydr518DeuT6cS_BaY0N53i1nKFqqq8FbrTku5557VCkQFf6aJxqUh54Mr41sRghZsmaLIJmmySJjM4HJr86Ct0_Et4O2hhEEwKyGB3pfAmjeF5I0oKRhXh5TKDveExjb6wpWInfrokGWk0YTyKKTN40xvK0PfKvnb-_M53sCHC-Zi4orML64vZ0r8ngLPAD9GyfwNAnPQ2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLSXAqUtAQqu1EOpmsWxncQ-8tS2ZbeXRYJTZDvOoYVdtA8k-PUdO95IrdqqtygZO4lmPPONPQ-A96gXmURLmjph0EFBCUmlafJUZtqVhdKWlT5ReDAs-lfiy3V-vQKfulwY51wIPnM9fxnO8uuJXfitsiPfnlv54p9raPfzrM3W6nZUQguJ0PyW4UWKuKKMx5gZVUej05sTdAcZ7TElEZX4FjGccQQoIvvFJoUmK3_Hm8HuXKzDYPnFbbjJj95ibnr26bdijv_7SxvwIgJQctxKzCasuPFL2IxLfEY-xDrUh1twc_4Q5VJPH0nI1J2Y762CJN9Q1dzFHE5yNvU6k5hH0o4OFKHV80x7ASfDNtjcT388nB2-gquL89FpP42dGFLLhZqnslGlqTOJWMw5W9Y2M8xwYawuhalzowuNioGyujFM8IbVpqGlsRnXeW1daflrWB1Pxm4biJBUNYJqTYURReE0k43keM9ZJ4VhCdAlLyoby5T7bhm3VXBXqKo8JyvPySpyMoGP3ZD7tkbHv4i3PBc6wsiABPaWDK_iKp5VLEd3VCBizhN41z3G9ecPVfTYTRZIw5VElIdeZQJvWkHp5l7K186f33kAz_qjwWV1-Xn4dReeMx8tE_Z39mB1Pl24twh35mY_SPlPIy_3fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multiobjective+Optimization+Driven+by+Generative+Adversarial+Networks+%28GANs%29&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=He%2C+Cheng&rft.au=Huang%2C+Shihua&rft.au=Cheng%2C+Ran&rft.au=Tan%2C+Kay+Chen&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=6&rft.spage=3129&rft.epage=3142&rft_id=info:doi/10.1109%2FTCYB.2020.2985081&rft_id=info%3Apmid%2F32365041&rft.externalDocID=9082904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |