Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 6; pp. 3129 - 3142
Main Authors He, Cheng, Huang, Shihua, Cheng, Ran, Tan, Kay Chen, Jin, Yaochu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
AbstractList Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
Author Huang, Shihua
Tan, Kay Chen
Cheng, Ran
Jin, Yaochu
He, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0003-4218-8454
  surname: He
  fullname: He, Cheng
  email: chenghehust@gmail.com
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Shihua
  surname: Huang
  fullname: Huang, Shihua
  email: shihuahuang95@gmail.com
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Ran
  orcidid: 0000-0001-9410-8263
  surname: Cheng
  fullname: Cheng, Ran
  email: ranchengcn@gmail.com
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kaytan@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32365041$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O4zAUha0RowEKDzBCQpHYwKLFP3FsL0sHClKBDbNgZdnOjeSSJsVOipinx6WlCxbjja-uv3Ntn3OI9pq2AYR-EzwiBKvLp8nz1YhiikdUSY4l-YEOKCnkkFLB93Z1IfbRcYxznJZMLSV_oX1GWcFxTg7Q8_WqrfvOt40J79l9X6fSzsF1fgXZ47LzC__PrI-zPyG1msy-Z1NoIJhPYlyuIEQTvKmzB-je2vASs_Pp-CFeHKGflakjHG_3Afp7c_00uR3OHqd3k_Fs6FiuuqGslLAlkZgrACdKRyy1LLfOiNyW3JrCMJq-WVaW5qyipa2wsI4ww0sHwrEBOt_MXYb2tYfY6YWPDuraNND2UVOmZMEUyWVCz76h87YPTXqdppxKlXMseKJOt1RvF1DqZfCLZI7-Mi0BZAO40MYYoNohBOt1NnqdjV5no7fZJI34pnG--zS2C8bX_1WebJQeAHY3KSypwjn7ABFJm-w
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TSMC_2024_3443143
crossref_primary_10_3390_jmse12071210
crossref_primary_10_1109_TCYB_2021_3051021
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_1080_00207721_2022_2153635
crossref_primary_10_1109_TAI_2024_3444736
crossref_primary_10_1109_TEVC_2023_3296536
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1109_TEVC_2023_3255263
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1016_j_ymssp_2024_111251
crossref_primary_10_1145_3470971
crossref_primary_10_3390_math12020175
crossref_primary_10_1016_j_eswa_2023_122370
crossref_primary_10_1109_TCYB_2023_3265652
crossref_primary_10_1007_s40747_023_01214_0
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_TCYB_2021_3104848
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1016_j_engappai_2023_107745
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1016_j_neucom_2021_10_060
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1109_TCYB_2020_3000465
crossref_primary_10_1016_j_swevo_2024_101628
crossref_primary_10_1109_TEVC_2022_3170638
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1016_j_ins_2024_121347
crossref_primary_10_1109_JAS_2022_105875
crossref_primary_10_1016_j_swevo_2023_101261
crossref_primary_10_1109_JSYST_2023_3265021
crossref_primary_10_1002_wcms_1608
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1142_S0129065723500260
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1109_TEVC_2023_3306523
crossref_primary_10_1109_TEVC_2023_3321603
crossref_primary_10_1016_j_adhoc_2023_103308
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1016_j_swevo_2022_101093
crossref_primary_10_3390_rs15174178
crossref_primary_10_1016_j_engappai_2022_105249
crossref_primary_10_1016_j_eswa_2023_120290
crossref_primary_10_1109_TEVC_2022_3144675
crossref_primary_10_1016_j_ijepes_2022_108620
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1109_TETCI_2024_3386866
crossref_primary_10_1007_s40747_025_01845_5
crossref_primary_10_1109_TCYB_2022_3213537
crossref_primary_10_1007_s10489_025_06291_x
crossref_primary_10_1109_MCI_2023_3304080
crossref_primary_10_1109_TEVC_2022_3189029
crossref_primary_10_1016_j_ins_2023_119472
crossref_primary_10_1109_TAP_2022_3222076
crossref_primary_10_1109_TCYB_2023_3287596
crossref_primary_10_3390_math11132820
crossref_primary_10_1109_TCOMM_2023_3277878
crossref_primary_10_3390_math12182856
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1109_TEVC_2023_3319494
crossref_primary_10_1109_MCI_2024_3363980
crossref_primary_10_1109_TETCI_2022_3146882
crossref_primary_10_1109_TEVC_2021_3111209
crossref_primary_10_1016_j_ins_2024_120607
crossref_primary_10_1016_j_swevo_2022_101152
crossref_primary_10_1109_TII_2022_3206817
crossref_primary_10_1109_TEVC_2021_3099487
crossref_primary_10_1109_TMAG_2022_3171350
crossref_primary_10_1109_ACCESS_2024_3501775
crossref_primary_10_1109_TETCI_2020_3035937
crossref_primary_10_1007_s40747_021_00362_5
crossref_primary_10_1109_TEVC_2022_3152582
crossref_primary_10_1109_ACCESS_2022_3189163
crossref_primary_10_1109_TCYB_2022_3164285
crossref_primary_10_1016_j_asoc_2023_110805
crossref_primary_10_1155_2020_8810759
crossref_primary_10_1007_s11227_024_06258_8
crossref_primary_10_1007_s40747_022_00963_8
crossref_primary_10_1007_s40747_021_00402_0
crossref_primary_10_1007_s12293_022_00368_7
crossref_primary_10_1016_j_cja_2021_03_006
crossref_primary_10_1109_TEVC_2022_3231493
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1007_s10462_024_10818_y
crossref_primary_10_1007_s11042_023_17030_0
crossref_primary_10_1109_TCYB_2023_3267773
crossref_primary_10_1016_j_neucom_2021_08_070
crossref_primary_10_1109_TCE_2024_3367170
crossref_primary_10_1016_j_neucom_2020_07_137
crossref_primary_10_1109_TEVC_2022_3155593
crossref_primary_10_1016_j_asoc_2024_112344
crossref_primary_10_1016_j_asoc_2022_109263
crossref_primary_10_1109_JSYST_2021_3130080
crossref_primary_10_1109_TITS_2023_3266807
crossref_primary_10_3390_mca28010014
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1016_j_eswa_2024_125684
Cites_doi 10.1109/TEVC.2007.892759
10.1007/BF00175355
10.1109/CEC.2015.7257247
10.1007/978-1-4614-6940-7_15
10.1145/1007730.1007731
10.1007/978-3-540-87700-4_78
10.1023/A:1008202821328
10.1109/TEVC.2013.2281524
10.1007/3-540-45712-7_29
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2015.2395073
10.1109/TEVC.2008.925798
10.1007/s11390-012-1282-4
10.1109/CCAAW.2017.8001880
10.1109/4235.797969
10.1145/1830483.1830571
10.1016/S0169-7439(97)00061-0
10.1016/j.ins.2018.06.073
10.1109/TEVC.2016.2519378
10.1109/CEC.2006.1688406
10.1109/TEVC.2005.851275
10.1109/TEVC.2009.2033671
10.1162/EVCO_a_00122
10.1109/TNNLS.2017.2695223
10.1016/j.swevo.2011.05.001
10.1109/4235.996017
10.1007/s40747-018-0080-1
10.1109/ICCIAS.2006.294139
10.1109/CEC.2000.870313
10.1007/978-3-540-30217-9_36
10.1109/TCYB.2016.2550502
10.1016/j.enbuild.2014.11.063
10.1109/MCI.2009.933094
10.1007/s40747-017-0057-5
10.1016/S0893-6080(05)80131-5
10.1109/TEVC.2018.2794319
10.1109/TEVC.2018.2802784
10.1007/978-1-4419-9863-7_1185
10.1109/MCI.2011.942584
10.1109/CEC.2013.6557593
10.1002/advs.201700520
10.1109/TEVC.2007.894202
10.1109/CVPR.2017.19
10.1002/9781118445112.stat01249
10.1162/evco.2007.15.4.493
10.1007/3-540-32494-1_6
10.1002/mcda.1605
10.1109/TEVC.2014.2308305
10.1109/CEC.2013.6557903
10.1109/CEC.2016.7748353
10.1162/EVCO_a_00128
10.1038/nature14544
10.1007/978-1-4842-2766-4_12
10.1109/TCYB.2015.2507366
10.1109/MCI.2017.2742868
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.2985081
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3142
ExternalDocumentID 32365041
10_1109_TCYB_2020_2985081
9082904
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Program for University Key Laboratory of Guangdong Province
  grantid: 2017KSYS008
  funderid: 10.13039/100016094
– fundername: National Natural Science Foundation of China
  grantid: 61903178; 61906081
  funderid: 10.13039/501100001809
– fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2017ZT07X386
– fundername: Shenzhen Peacock Plan
  grantid: KQTD2016112514355531
  funderid: 10.13039/501100012234
– fundername: Research Grants Council of the Hong Kong
  grantid: CityU11202418; CityU11209219
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-8f97bd18059eec7dc1b2b34bca74bd5ba6a32202dfb243f2dbf07bc13a5dce7c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 03:22:18 EDT 2025
Sun Jun 29 16:19:55 EDT 2025
Thu Apr 03 07:00:18 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Tue Jul 01 00:53:55 EDT 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-8f97bd18059eec7dc1b2b34bca74bd5ba6a32202dfb243f2dbf07bc13a5dce7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6802-2463
0000-0003-4218-8454
0000-0003-1100-0631
0000-0001-9410-8263
PMID 32365041
PQID 2528945075
PQPubID 85422
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2020_2985081
ieee_primary_9082904
proquest_journals_2528945075
pubmed_primary_32365041
proquest_miscellaneous_2398639148
crossref_primary_10_1109_TCYB_2020_2985081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref58
ref14
ref53
ref52
ref10
jin (ref24) 2000
jain (ref36) 1988; 32
ref17
ref16
ref19
ref18
ref50
bhattacharjee (ref34) 2015
ref46
ref45
ziztler (ref11) 2001
ref48
ref47
ref42
ref41
ref44
ref43
deb (ref67) 2001; 16
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
larrañaga (ref40) 2001; 2
arjovsky (ref64) 2017
zitzler (ref15) 2004
ref35
ref37
ref31
ref30
ref33
ref32
ref2
ref39
goodfellow (ref59) 2016; 1
ref38
kingma (ref57) 2014
ref71
ref70
ref72
deb (ref20) 1996; 26
ref68
radford (ref55) 2015
ref23
kingma (ref63) 2013
ref26
ref69
siddique (ref1) 2013
ref25
ref66
ref22
ref65
ref21
martínez (ref51) 2014
ref28
ref27
seah (ref29) 2012
ref60
goodfellow (ref54) 2014
ref62
ref61
References_xml – ident: ref12
  doi: 10.1109/TEVC.2007.892759
– ident: ref30
  doi: 10.1007/BF00175355
– ident: ref35
  doi: 10.1109/CEC.2015.7257247
– ident: ref5
  doi: 10.1007/978-1-4614-6940-7_15
– ident: ref52
  doi: 10.1145/1007730.1007731
– ident: ref28
  doi: 10.1007/978-3-540-87700-4_78
– volume: 26
  start-page: 30
  year: 1996
  ident: ref20
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– start-page: 786
  year: 2000
  ident: ref24
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Proc Genet Evol Comput Conf
– ident: ref68
  doi: 10.1023/A:1008202821328
– start-page: 832
  year: 2004
  ident: ref15
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref42
  doi: 10.1109/TEVC.2013.2281524
– ident: ref44
  doi: 10.1007/3-540-45712-7_29
– ident: ref14
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref21
  doi: 10.1109/TEVC.2015.2395073
– ident: ref13
  doi: 10.1109/TEVC.2008.925798
– ident: ref33
  doi: 10.1007/s11390-012-1282-4
– ident: ref4
  doi: 10.1109/CCAAW.2017.8001880
– ident: ref58
  doi: 10.1109/4235.797969
– ident: ref32
  doi: 10.1145/1830483.1830571
– year: 2013
  ident: ref1
  article-title: Computational intelligence: Synergies of fuzzy logic
  publication-title: Neural Networks and Evolutionary Computing
– ident: ref38
  doi: 10.1016/S0169-7439(97)00061-0
– ident: ref37
  doi: 10.1016/j.ins.2018.06.073
– ident: ref9
  doi: 10.1109/TEVC.2016.2519378
– ident: ref69
  doi: 10.1109/CEC.2006.1688406
– ident: ref71
  doi: 10.1109/TEVC.2005.851275
– volume: 32
  start-page: 227
  year: 1988
  ident: ref36
  article-title: Algorithms for clustering data
  publication-title: Technometrics
– ident: ref31
  doi: 10.1109/TEVC.2009.2033671
– ident: ref53
  doi: 10.1162/EVCO_a_00122
– ident: ref2
  doi: 10.1109/TNNLS.2017.2695223
– year: 2017
  ident: ref64
  publication-title: Wasserstein GAN
– ident: ref26
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref10
  doi: 10.1109/4235.996017
– ident: ref22
  doi: 10.1007/s40747-018-0080-1
– ident: ref18
  doi: 10.1109/ICCIAS.2006.294139
– ident: ref17
  doi: 10.1109/CEC.2000.870313
– ident: ref46
  doi: 10.1007/978-3-540-30217-9_36
– ident: ref7
  doi: 10.1109/TCYB.2016.2550502
– ident: ref3
  doi: 10.1016/j.enbuild.2014.11.063
– ident: ref25
  doi: 10.1109/MCI.2009.933094
– ident: ref6
  doi: 10.1007/s40747-017-0057-5
– ident: ref60
  doi: 10.1016/S0893-6080(05)80131-5
– ident: ref43
  doi: 10.1109/TEVC.2018.2794319
– ident: ref39
  doi: 10.1109/TEVC.2018.2802784
– ident: ref65
  doi: 10.1007/978-1-4419-9863-7_1185
– start-page: 2672
  year: 2014
  ident: ref54
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/MCI.2011.942584
– start-page: 1
  year: 2012
  ident: ref29
  article-title: Pareto rank learning in multi-objective evolutionary algorithms
  publication-title: Proc IEEE Congr Evol Comput
– year: 2001
  ident: ref11
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems (EUROGEN)
– ident: ref49
  doi: 10.1109/CEC.2013.6557593
– ident: ref61
  doi: 10.1002/advs.201700520
– start-page: 682
  year: 2014
  ident: ref51
  article-title: Using a family of curves to approximate the Pareto front of a multi-objective optimization problem
  publication-title: Proc Int Conf Parallel Problem Solving Nat
– ident: ref47
  doi: 10.1109/TEVC.2007.894202
– volume: 1
  year: 2016
  ident: ref59
  publication-title: Deep Learning
– ident: ref56
  doi: 10.1109/CVPR.2017.19
– ident: ref62
  doi: 10.1002/9781118445112.stat01249
– ident: ref50
  doi: 10.1162/evco.2007.15.4.493
– start-page: 1041
  year: 2015
  ident: ref34
  article-title: A novel constraint handling strategy for expensive optimization problems
  publication-title: Proc World Congr Struct Multidiscipl Optim
– ident: ref45
  doi: 10.1007/3-540-32494-1_6
– ident: ref27
  doi: 10.1002/mcda.1605
– volume: 2
  year: 2001
  ident: ref40
  publication-title: Estimation of Distribution Algorithms A New Tool for Evolutionary Computation
– ident: ref8
  doi: 10.1109/TEVC.2014.2308305
– volume: 16
  year: 2001
  ident: ref67
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– year: 2015
  ident: ref55
  publication-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– ident: ref16
  doi: 10.1109/CEC.2013.6557903
– ident: ref70
  doi: 10.1109/CEC.2016.7748353
– ident: ref41
  doi: 10.1162/EVCO_a_00128
– year: 2014
  ident: ref57
  publication-title: Adam A method for stochastic optimization
– ident: ref19
  doi: 10.1038/nature14544
– ident: ref72
  doi: 10.1007/978-1-4842-2766-4_12
– year: 2013
  ident: ref63
  publication-title: Auto-encoding variational bayes
– ident: ref48
  doi: 10.1109/TCYB.2015.2507366
– ident: ref66
  doi: 10.1109/MCI.2017.2742868
SSID ssj0000816898
Score 2.5982633
Snippet Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3129
SubjectTerms Adaptation models
Computational modeling
Deep learning
evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
Generative adversarial networks
generative adversarial networks (GANs)
Genetic algorithms
Machine learning
multiobjective optimization
Multiple objective analysis
Optimization
Training
Training data
Title Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)
URI https://ieeexplore.ieee.org/document/9082904
https://www.ncbi.nlm.nih.gov/pubmed/32365041
https://www.proquest.com/docview/2528945075
https://www.proquest.com/docview/2398639148
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTlxaKH2E0spIHApqFsd2EvtIKQghsVxAglPkcZwDbXerfVSiv75jxxsJ1Fa9RcnYSTTj8Te2Zz6AffKLQtNMmnuFFKCQheQauzLXhfV1ZawTdUgUvhxX5zfq4ra8XYNPQy6M9z4ePvOjcBn38tupW4alsqNAz21C8c9nFLj1uVrDekokkIjUt4IuckIVddrELLg5uj65-0zBoOAjYTRhkkAQI4UkeKKKRzNSpFj5O9qMs87ZC7hcfW9_2OTraLnAkfv1pJTj__7QJjxP8JMd9_ayBWt-8hK20gCfs4-pCvXBNtyd_kxWaWcPLObpTvG-d4_sihzN95TByb7Mgsdk-MD61lEiEj3PbTBvNu6Pmofuj8fzg1dwc3Z6fXKeJx6G3EllFrnuTI1toQmJee_q1hUoUCp0tlbYlmgrS26Bi7ZDoWQnWux4ja6Qtmydr518DeuT6cS_BaY0N53i1nKFqqq8FbrTku5557VCkQFf6aJxqUh54Mr41sRghZsmaLIJmmySJjM4HJr86Ct0_Et4O2hhEEwKyGB3pfAmjeF5I0oKRhXh5TKDveExjb6wpWInfrokGWk0YTyKKTN40xvK0PfKvnb-_M53sCHC-Zi4orML64vZ0r8ngLPAD9GyfwNAnPQ2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLSXAqUtAQqu1EOpmsWxncQ-8tS2ZbeXRYJTZDvOoYVdtA8k-PUdO95IrdqqtygZO4lmPPONPQ-A96gXmURLmjph0EFBCUmlafJUZtqVhdKWlT5ReDAs-lfiy3V-vQKfulwY51wIPnM9fxnO8uuJXfitsiPfnlv54p9raPfzrM3W6nZUQguJ0PyW4UWKuKKMx5gZVUej05sTdAcZ7TElEZX4FjGccQQoIvvFJoUmK3_Hm8HuXKzDYPnFbbjJj95ibnr26bdijv_7SxvwIgJQctxKzCasuPFL2IxLfEY-xDrUh1twc_4Q5VJPH0nI1J2Y762CJN9Q1dzFHE5yNvU6k5hH0o4OFKHV80x7ASfDNtjcT388nB2-gquL89FpP42dGFLLhZqnslGlqTOJWMw5W9Y2M8xwYawuhalzowuNioGyujFM8IbVpqGlsRnXeW1daflrWB1Pxm4biJBUNYJqTYURReE0k43keM9ZJ4VhCdAlLyoby5T7bhm3VXBXqKo8JyvPySpyMoGP3ZD7tkbHv4i3PBc6wsiABPaWDK_iKp5VLEd3VCBizhN41z3G9ecPVfTYTRZIw5VElIdeZQJvWkHp5l7K186f33kAz_qjwWV1-Xn4dReeMx8tE_Z39mB1Pl24twh35mY_SPlPIy_3fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multiobjective+Optimization+Driven+by+Generative+Adversarial+Networks+%28GANs%29&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=He%2C+Cheng&rft.au=Huang%2C+Shihua&rft.au=Cheng%2C+Ran&rft.au=Tan%2C+Kay+Chen&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=51&rft.issue=6&rft.spage=3129&rft.epage=3142&rft_id=info:doi/10.1109%2FTCYB.2020.2985081&rft_id=info%3Apmid%2F32365041&rft.externalDocID=9082904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon