Exploiting visual quasi-periodicity for real-time chewing event detection using active appearance models and support vector machines
Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualiti...
Saved in:
Published in | Personal and ubiquitous computing Vol. 16; no. 6; pp. 729 - 739 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer-Verlag
01.08.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1617-4909 1617-4917 |
DOI | 10.1007/s00779-011-0425-x |
Cover
Loading…
Abstract | Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject’s face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection. |
---|---|
AbstractList | Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject’s face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection. Issue Title: Special Issue on Smartphone Applications and Services for Pervasive Computing Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject's face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection.[PUBLICATION ABSTRACT] |
Author | Abdel-Mottaleb, Mohamed Cadavid, Steven Helal, Abdelsalam |
Author_xml | – sequence: 1 givenname: Steven surname: Cadavid fullname: Cadavid, Steven email: s.cadavid1@umiami.edu organization: Department of Electrical and Computer Engineering, University of Miami – sequence: 2 givenname: Mohamed surname: Abdel-Mottaleb fullname: Abdel-Mottaleb, Mohamed organization: Department of Electrical and Computer Engineering, University of Miami – sequence: 3 givenname: Abdelsalam surname: Helal fullname: Helal, Abdelsalam organization: Department of Computer and Information Science and Engineering, University of Florida |
BookMark | eNp9kU1rFTEUhoNUsK3-AHcBN26iSWYmmVlKqR9QcKPrcCY506bMJNMkc73d-8PNcEWkoJt88Twnh_NekLMQAxLyWvB3gnP9PtdFD4wLwXgrO3Z8Rs6FEpq1g9Bnf858eEEucr7nXGjVqnPy8_q4ztEXH27pwecNZvqwQfZsxeSj89aXRzrFRBPCzIpfkNo7_LHjeMBQqMOCtvgY6Jb3V6iXA1JYV4QEwSJdosM5UwiO5m1dYyr0UJVacwF75wPml-T5BHPGV7_3S_L94_W3q8_s5uunL1cfbpht2qGwftAKhFIaBe9hdHJqZeO6cWpEw9HqBurS8lGqTuHkRhwdYte5tpfWNpI3l-Ttqe6a4sOGuZjFZ4vzDAHjlo1QWtSfhqGv6Jsn6H3cUqjdGcEbriWXfVcpfaJsijknnEydF-zTKAn8XFGzp2NO6ZiajtnTMcdqiifmmvwC6fG_jjw5ubLhFtPfPf1L-gWXBafT |
CitedBy_id | crossref_primary_10_1016_j_smhl_2018_07_004 crossref_primary_10_3390_nu14224847 crossref_primary_10_1007_s00779_013_0737_0 crossref_primary_10_3390_s16071067 crossref_primary_10_1007_s10851_019_00894_z crossref_primary_10_1109_TBME_2016_2631246 crossref_primary_10_1145_3328920 crossref_primary_10_1155_2018_6161525 crossref_primary_10_1109_TBME_2022_3217196 crossref_primary_10_3390_electronics5040062 crossref_primary_10_1016_j_pmcj_2020_101259 crossref_primary_10_1145_3300149 crossref_primary_10_3390_computers6010004 crossref_primary_10_3390_s21206806 crossref_primary_10_1007_s40313_021_00727_8 crossref_primary_10_1007_s11277_014_1843_7 crossref_primary_10_1109_ACCESS_2020_2998716 crossref_primary_10_3389_fnut_2023_1119542 crossref_primary_10_1111_aor_13704 |
Cites_doi | 10.1016/j.artmed.2007.11.007 10.3390/s90301499 10.1109/TIP.2006.881945 10.1126/science.290.5500.2323 10.1023/B:VISI.0000013087.49260.fb 10.1088/0967-3334/29/5/001 10.1126/science.290.5500.2319 10.1109/TIP.2008.924280 10.1109/TPAMI.2005.55 10.1162/089976603321780317 10.1109/TKDE.2005.198 10.1145/1389586.1389686 10.1007/BFb0054760 10.1145/1321440.1321544 10.1162/jocn.1991.3.1.71 10.1117/12.829205 10.1007/978-1-4757-2440-0 10.1109/CVPR.2008.4587509 10.1109/CVPRW.2009.5204259 10.1109/ISWPC.2008.4556181 10.1109/HEALTH.2008.4600106 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Limited 2011 Springer-Verlag London Limited 2012 |
Copyright_xml | – notice: Springer-Verlag London Limited 2011 – notice: Springer-Verlag London Limited 2012 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s00779-011-0425-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1617-4917 |
EndPage | 739 |
ExternalDocumentID | 2726563421 10_1007_s00779_011_0425_x |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8AO 8FE 8FG 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AALFJ AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADL ADMLS ADPZR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AIKLT AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BDXCO BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCLIF CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M0N M4Y MA- MQGED N2Q NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 XJE YLTOR YZZ Z45 Z7R Z7S Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEFXT AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT SJN 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c349t-8976a1667e108abd2f423d5bf3130ec73aec740b2656efdbebdee55d482cc3203 |
IEDL.DBID | U2A |
ISSN | 1617-4909 |
IngestDate | Thu Sep 04 19:19:15 EDT 2025 Sat Aug 23 12:34:57 EDT 2025 Tue Jul 01 02:25:53 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Fri Feb 21 02:33:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Support vector machines Manifold learning Behavior detection Dietary monitoring Active appearance models |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-8976a1667e108abd2f423d5bf3130ec73aec740b2656efdbebdee55d482cc3203 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1030720285 |
PQPubID | 25320 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1671349998 proquest_journals_1030720285 crossref_citationtrail_10_1007_s00779_011_0425_x crossref_primary_10_1007_s00779_011_0425_x springer_journals_10_1007_s00779_011_0425_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120800 2012-8-00 20120801 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 8 year: 2012 text: 20120800 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Personal and ubiquitous computing |
PublicationTitleAbbrev | Pers Ubiquit Comput |
PublicationYear | 2012 |
Publisher | Springer-Verlag Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
References | Cai, He, Han, Zhang (CR3) 2006; 15 Reis, Judd (CR13) 2000 CR4 Amft, Tröster (CR1) 2008; 42 CR5 CR19 Cai, He, Han (CR2) 2005; 17 Guo, Fu, Dyer, Huang (CR6) 2008; 17 CR17 CR9 CR16 Tenenbaum, de Silva, Langford (CR18) 2000; 290 He, Yan, Hu, Niyogi, Zhang (CR8) 2005; 27 Roweis, Saul (CR14) 2000; 290 Turk, Pentland (CR20) 1991; 3 CR12 CR23 CR10 Viola, Jones (CR22) 2004; 57 Hayes (CR7) 1996 Zhang, Ang, Xiao, Tham (CR24) 2009; 9 Vapnik (CR21) 1995 Sazonov, Schuckers, Lopez-Meyer, Makeyev, Sazonova, Melanson, Neuman (CR15) 2008; 29 Niyogi (CR11) 2003; 15 425_CR19 425_CR17 MH Hayes (425_CR7) 1996 P Niyogi (425_CR11) 2003; 15 425_CR16 O Amft (425_CR1) 2008; 42 HT Reis (425_CR13) 2000 S Roweis (425_CR14) 2000; 290 425_CR12 425_CR23 X He (425_CR8) 2005; 27 425_CR10 425_CR20 G Guo (425_CR6) 2008; 17 D Cai (425_CR2) 2005; 17 425_CR9 425_CR4 D Cai (425_CR3) 2006; 15 S Zhang (425_CR24) 2009; 9 425_CR5 J Tenenbaum (425_CR18) 2000; 290 E Sazonov (425_CR15) 2008; 29 VN Vapnik (425_CR21) 1995 P Viola (425_CR22) 2004; 57 |
References_xml | – volume: 42 start-page: 121 issue: 2 year: 2008 end-page: 136 ident: CR1 article-title: Recognition of dietary activity events using on-body sensors publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.007 – ident: CR19 – volume: 9 start-page: 1499 issue: 3 year: 2009 end-page: 1517 ident: CR24 article-title: Detection of activities by wireless sensors for daily life surveillance: eating and drinking publication-title: Sensors doi: 10.3390/s90301499 – volume: 15 start-page: 3608 issue: 11 year: 2006 end-page: 3614 ident: CR3 article-title: Orthogonal laplacianfaces for face recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.881945 – volume: 290 start-page: 2323 issue: 5500 year: 2000 end-page: 2326 ident: CR14 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – year: 1996 ident: CR7 publication-title: Statistical digital signal processing and modeling – ident: CR4 – year: 2000 ident: CR13 publication-title: Handbook of research methods in social and personality psychology – ident: CR16 – year: 1995 ident: CR21 publication-title: The nature of statistical learning theory – ident: CR12 – ident: CR17 – volume: 57 start-page: 137 issue: 2 year: 2004 end-page: 154 ident: CR22 article-title: Robust real-time face detection publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000013087.49260.fb – volume: 29 start-page: 525 issue: 5 year: 2008 ident: CR15 article-title: Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior publication-title: Physiol Meas doi: 10.1088/0967-3334/29/5/001 – ident: CR10 – ident: CR9 – volume: 290 start-page: 2319 issue: 5500 year: 2000 end-page: 2323 ident: CR18 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 17 start-page: 1178 issue: 7 year: 2008 end-page: 1188 ident: CR6 article-title: Image-based human age estimation by manifold learning and locally adjusted robust regression publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.924280 – ident: CR5 – volume: 27 start-page: 328 issue: 3 year: 2005 end-page: 340 ident: CR8 article-title: Face recognition using laplacianfaces publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.55 – volume: 15 start-page: 1373 year: 2003 end-page: 1396 ident: CR11 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput doi: 10.1162/089976603321780317 – ident: CR23 – volume: 3 start-page: 71 issue: 1 year: 1991 end-page: 86 ident: CR20 article-title: Eigenfaces for recognition publication-title: J Cogn Neurosci – volume: 17 start-page: 1624 issue: 12 year: 2005 end-page: 1637 ident: CR2 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.198 – volume: 9 start-page: 1499 issue: 3 year: 2009 ident: 425_CR24 publication-title: Sensors doi: 10.3390/s90301499 – volume: 17 start-page: 1178 issue: 7 year: 2008 ident: 425_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.924280 – volume: 15 start-page: 3608 issue: 11 year: 2006 ident: 425_CR3 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.881945 – ident: 425_CR17 doi: 10.1145/1389586.1389686 – ident: 425_CR5 doi: 10.1007/BFb0054760 – ident: 425_CR4 doi: 10.1145/1321440.1321544 – ident: 425_CR20 doi: 10.1162/jocn.1991.3.1.71 – ident: 425_CR23 – volume: 15 start-page: 1373 year: 2003 ident: 425_CR11 publication-title: Neural Comput doi: 10.1162/089976603321780317 – volume: 17 start-page: 1624 issue: 12 year: 2005 ident: 425_CR2 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.198 – volume: 29 start-page: 525 issue: 5 year: 2008 ident: 425_CR15 publication-title: Physiol Meas doi: 10.1088/0967-3334/29/5/001 – volume: 42 start-page: 121 issue: 2 year: 2008 ident: 425_CR1 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.007 – ident: 425_CR16 doi: 10.1117/12.829205 – volume-title: The nature of statistical learning theory year: 1995 ident: 425_CR21 doi: 10.1007/978-1-4757-2440-0 – volume: 57 start-page: 137 issue: 2 year: 2004 ident: 425_CR22 publication-title: Int J Comput Vis doi: 10.1023/B:VISI.0000013087.49260.fb – volume-title: Statistical digital signal processing and modeling year: 1996 ident: 425_CR7 – volume: 27 start-page: 328 issue: 3 year: 2005 ident: 425_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.55 – ident: 425_CR12 doi: 10.1109/CVPR.2008.4587509 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 425_CR18 publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: 425_CR9 doi: 10.1109/CVPRW.2009.5204259 – ident: 425_CR10 doi: 10.1109/ISWPC.2008.4556181 – ident: 425_CR19 doi: 10.1109/HEALTH.2008.4600106 – volume-title: Handbook of research methods in social and personality psychology year: 2000 ident: 425_CR13 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 425_CR14 publication-title: Science doi: 10.1126/science.290.5500.2323 |
SSID | ssj0017646 |
Score | 2.124062 |
Snippet | Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few... Issue Title: Special Issue on Smartphone Applications and Services for Pervasive Computing Steady increases in healthcare costs and obesity have inspired... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 729 |
SubjectTerms | Behavior Chewing Computer Science Diet Mathematical models Mobile Computing Monitoring Monitoring systems Original Article Personal Computing Power spectra Reduction Software Support vector machines Surveillance Talking Trains User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1BcumFAi1qSooWiRPVqrbXnyfUVq0iDhVCRMrN2q-gSK3t1nYb7vxwZjbrtCDRiy_etSXPzs6bfc8zAJ-kCkOd5IbrQhtMUAJ0KaEjLhFOWFsYKilCaourdDaPvy6ShT9wa72sctgT3UZtak1n5CfUDivDTD1PvjS3nLpGEbvqW2i8hDFuwXkygvHZxdW371seIUs3_xdhnOZxERQDrxm4MqJZRlohTKdx4fL135HpEW7-w5C6wHP5Gl55xMhONyZ-Ay9s9RZ2h24MzDvnHvx2croVyZjZ_artcc5tL9sVp1rGNTHo3S-GEJUhTLzm1FOeocEeaLir4sSM7Zwuq2Ikhv_JpNsKmWwa9AZaHMy1zWmZrAxr-4aQO7t3p_7sxmkybbsP88uLH-cz7nsscC3iouM5whEZpmlmwyCXykRLxFcmUUuBwc3qTEi8xIGKEPfZpVFWGWuTxMR5pLWIAvEORlVd2QNgSi2JltUZMbM6KXIrCiLLhIpzESo1gWD4vqX2BcipD8Z1uS2d7ExSoklKMkm5nsDn7ZRmU33jucHTwWild8S2fFw2E_i4vY0uRLyIrGzd45jUFWnExHMCx4Oxnz7iPy88fP6F72EH0VW0UQtOYdTd9fYIEUynPvhl-gcQM_Ag priority: 102 providerName: ProQuest |
Title | Exploiting visual quasi-periodicity for real-time chewing event detection using active appearance models and support vector machines |
URI | https://link.springer.com/article/10.1007/s00779-011-0425-x https://www.proquest.com/docview/1030720285 https://www.proquest.com/docview/1671349998 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPQCBVqxBVZG6onKUhLneVyqXVCREEJdCU6RX1utBNmlSRa488OZ8SYBqhapl-SQsSNlPPbnfJ9nAL5K5fs6Sg3XmTa4QfEwpIQOuEQ4YW1mKKUIqS3O49Nx-OMqumrOcZet2r2lJN1M3R12o8wzpO3B7S8ONI7AcT3CrTvp-MbBoKMOknh5pAiXZh5mXtZSmX_r4u1i9IIw_yBF3Voz-ggbDUhkg6VXt2DFFtuw2RZgYE087sCTU9BNSbnMFtOyxjZ3tSynnNIXz4g0rx4ZolKGyPCGUxl5hj66J3OXuIkZWzkpVsFI__6LSTf7MTmfYwDQeGCuUk7JZGFYWc8JrLOF-9HPbp0M05afYDwa_vx-ypuyClyLMKt4ighE-nGcWN9LpTLBBCGVidRE4HpmdSIkXkJPBQj17MQoq4y1UWTCNNBaBJ74DGvFrLC7wJSaEBOrEyJjdZSlVmTEjwkVpsJXqgde-31z3eQcp9IXN3mXLdm5JEeX5OSS_KEHR12T-TLhxnvG-63T8ib2ypwKpyU4MNKoB4fdY4waokJkYWc12sQuLyPuNXvwrXX26y7-8cIv_2W9Bx8QXwVLveA-rFW_a3uAGKZSfVhNRyd9WB-cXJ8N8X48PL-47LuR_AxyQe_x |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCSXhGxiCCQdKbkkasV2ez0glAU0BDKKIpC4Ob0NGol4DLYHuPM9fGOq2vYAkcKNy1zctqWupV_Ne64CeCeV7-soNVxn2mCB4mFICR1wiXDC2sxQSxFSW4zi4UH4_TA6XICr_lsYklX2OdElajPV9B_5JxqHlWClnkab5QmnqVHErvYjNFq32LUXZ1iyVRs739C-74Nge2v_65B3UwW4FmFW8xQPYOnHcWJ9L5XKBGNEFCZSY4Hp3OpESPwJPRUg0rFjo6wy1kaRCdNAaxF4Ap_7AJYQZmQYRUtftkY_f815iyRuv2dCXMDDzMt6HtVzbUuThLRJWL5joPDz2yfhNbz9h5F1B932MjzuECr73LrUU1iwxTN40k9_YF0yeA6XTr43Idk0m02qBu85aWQ14dQ7eUqMfX3BEBIzhKXHnGbYM3SQM1ruukYxY2unAysYie-PmHSpl8myxG0mZ2RuTE_FZGFY1ZRUKbCZYxnYH6cBtdULOLiX3X8Ji8W0sCvAlBoTDawTYoJ1lKVWZETOCRWmwldqAF6_v7nuGp7T3I3jfN6q2ZkkR5PkZJL8fAAf5reUbbePuxav9UbLu8Cv8ms3HcDb-WUMWeJhZGGnDa6JXVNILHQH8LE39s1H_OeFq3e_8A08HO7_2Mv3dka7r-ARIrugVSquwWJ92th1RE-1et25LIPf9x0lfwGpzi30 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FiYS4AGERAyFpJLiAWrHdXg8IkWWUEDSKEJFyM70ZjRQ8Draz3PmqfF2q2vaEIJFbLnNx25a6ln4177kK4K1Uvq-j1HCdaYMFiochJXTAJcIJazNDLUVIbTGNdw_DL0fR0RJcDt_CkKxyyIkuUZu5pv_IN2gcVoKVehptFL0s4mB78qk64TRBipjWYZxG5yL79uIMy7f649422vpdEEx2vm_t8n7CANcizBqe4mEs_ThOrO-lUpmgQHRhIlUITO1WJ0LiT-ipAFGPLYyyylgbRSZMA61F4Al87j1YxiVxOoLlzZ3pwbcFh5HE3bdNiBF4mHnZwKl6roVpkpBOCUt5DBp-fvNUvIa6_7Cz7tCbPIaHPVplnzv3WoElWz6BR8MkCNYnhqfwx0n5ZiShZqezusV7TlpZzzj1UZ4Te99cMITHDCHqMad59gyd5YyWuw5SzNjGacJKRkL8n0y6NMxkVeE2k2MyN7KnZrI0rG4rqhrYqWMc2C-nB7X1Mzi8k91_DqNyXtoXwJQqiBLWCbHCOspSKzIi6oQKU-ErNQZv2N9c983PaQbHcb5o2-xMkqNJcjJJfj6G94tbqq7zx22LVwej5X0SqPNrlx3Dm8VlDF_iZGRp5y2uiV2DSCx6x_BhMPbfj_jPC1_e_sJ1uI_RkX_dm-6_ggcI8oJOtLgKo-Z3a18jkGrUWu-xDH7cdZBcAW7zMiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+visual+quasi-periodicity+for+real-time+chewing+event+detection+using+active+appearance+models+and+support+vector+machines&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Cadavid%2C+Steven&rft.au=Abdel-Mottaleb%2C+Mohamed&rft.au=Helal%2C+Abdelsalam&rft.date=2012-08-01&rft.pub=Springer-Verlag&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=16&rft.issue=6&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1007%2Fs00779-011-0425-x&rft.externalDocID=10_1007_s00779_011_0425_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon |