Exploiting visual quasi-periodicity for real-time chewing event detection using active appearance models and support vector machines

Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualiti...

Full description

Saved in:
Bibliographic Details
Published inPersonal and ubiquitous computing Vol. 16; no. 6; pp. 729 - 739
Main Authors Cadavid, Steven, Abdel-Mottaleb, Mohamed, Helal, Abdelsalam
Format Journal Article
LanguageEnglish
Published London Springer-Verlag 01.08.2012
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-4909
1617-4917
DOI10.1007/s00779-011-0425-x

Cover

Loading…
Abstract Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject’s face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection.
AbstractList Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject’s face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection.
Issue Title: Special Issue on Smartphone Applications and Services for Pervasive Computing Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few researchers, though, have investigated the use of video as a means of monitoring dietary activities. Video possesses several inherent qualities, such as passive acquisition, that merits its analysis as an input modality for such an application. To this end, we propose a method to automatically detect chewing events in surveillance video of a subject. Firstly, an Active Appearance Model (AAM) is used to track a subject's face across the video sequence. It is observed that the variations in the AAM parameters across chewing events demonstrate a distinct periodicity. We utilize this property to discriminate between chewing and non-chewing facial actions such as talking. A feature representation is constructed by applying spectral analysis to a temporal window of model parameter values. The estimated power spectra subsequently undergo non-linear dimensionality reduction. The low-dimensional embedding of the power spectra are employed to train a binary Support Vector Machine classifier to detect chewing events. To emulate the gradual onset and offset of chewing, smoothness is imposed over the class predictions of neighboring video frames in order to deter abrupt changes in the class labels. Experiments are conducted on a dataset consisting of 37 subjects performing each of five actions, namely, open- and closed-mouth chewing, clutter faces, talking, and still face. Experimental results yielded a cross-validated percentage agreement of 93.0%, indicating that the proposed system provides an efficient approach to automated chewing detection.[PUBLICATION ABSTRACT]
Author Abdel-Mottaleb, Mohamed
Cadavid, Steven
Helal, Abdelsalam
Author_xml – sequence: 1
  givenname: Steven
  surname: Cadavid
  fullname: Cadavid, Steven
  email: s.cadavid1@umiami.edu
  organization: Department of Electrical and Computer Engineering, University of Miami
– sequence: 2
  givenname: Mohamed
  surname: Abdel-Mottaleb
  fullname: Abdel-Mottaleb, Mohamed
  organization: Department of Electrical and Computer Engineering, University of Miami
– sequence: 3
  givenname: Abdelsalam
  surname: Helal
  fullname: Helal, Abdelsalam
  organization: Department of Computer and Information Science and Engineering, University of Florida
BookMark eNp9kU1rFTEUhoNUsK3-AHcBN26iSWYmmVlKqR9QcKPrcCY506bMJNMkc73d-8PNcEWkoJt88Twnh_NekLMQAxLyWvB3gnP9PtdFD4wLwXgrO3Z8Rs6FEpq1g9Bnf858eEEucr7nXGjVqnPy8_q4ztEXH27pwecNZvqwQfZsxeSj89aXRzrFRBPCzIpfkNo7_LHjeMBQqMOCtvgY6Jb3V6iXA1JYV4QEwSJdosM5UwiO5m1dYyr0UJVacwF75wPml-T5BHPGV7_3S_L94_W3q8_s5uunL1cfbpht2qGwftAKhFIaBe9hdHJqZeO6cWpEw9HqBurS8lGqTuHkRhwdYte5tpfWNpI3l-Ttqe6a4sOGuZjFZ4vzDAHjlo1QWtSfhqGv6Jsn6H3cUqjdGcEbriWXfVcpfaJsijknnEydF-zTKAn8XFGzp2NO6ZiajtnTMcdqiifmmvwC6fG_jjw5ubLhFtPfPf1L-gWXBafT
CitedBy_id crossref_primary_10_1016_j_smhl_2018_07_004
crossref_primary_10_3390_nu14224847
crossref_primary_10_1007_s00779_013_0737_0
crossref_primary_10_3390_s16071067
crossref_primary_10_1007_s10851_019_00894_z
crossref_primary_10_1109_TBME_2016_2631246
crossref_primary_10_1145_3328920
crossref_primary_10_1155_2018_6161525
crossref_primary_10_1109_TBME_2022_3217196
crossref_primary_10_3390_electronics5040062
crossref_primary_10_1016_j_pmcj_2020_101259
crossref_primary_10_1145_3300149
crossref_primary_10_3390_computers6010004
crossref_primary_10_3390_s21206806
crossref_primary_10_1007_s40313_021_00727_8
crossref_primary_10_1007_s11277_014_1843_7
crossref_primary_10_1109_ACCESS_2020_2998716
crossref_primary_10_3389_fnut_2023_1119542
crossref_primary_10_1111_aor_13704
Cites_doi 10.1016/j.artmed.2007.11.007
10.3390/s90301499
10.1109/TIP.2006.881945
10.1126/science.290.5500.2323
10.1023/B:VISI.0000013087.49260.fb
10.1088/0967-3334/29/5/001
10.1126/science.290.5500.2319
10.1109/TIP.2008.924280
10.1109/TPAMI.2005.55
10.1162/089976603321780317
10.1109/TKDE.2005.198
10.1145/1389586.1389686
10.1007/BFb0054760
10.1145/1321440.1321544
10.1162/jocn.1991.3.1.71
10.1117/12.829205
10.1007/978-1-4757-2440-0
10.1109/CVPR.2008.4587509
10.1109/CVPRW.2009.5204259
10.1109/ISWPC.2008.4556181
10.1109/HEALTH.2008.4600106
ContentType Journal Article
Copyright Springer-Verlag London Limited 2011
Springer-Verlag London Limited 2012
Copyright_xml – notice: Springer-Verlag London Limited 2011
– notice: Springer-Verlag London Limited 2012
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s00779-011-0425-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1617-4917
EndPage 739
ExternalDocumentID 2726563421
10_1007_s00779_011_0425_x
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
199
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8AO
8FE
8FG
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AALFJ
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADPZR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AIKLT
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BDXCO
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCLIF
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAS
LLZTM
M0N
M4Y
MA-
MQGED
N2Q
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
XJE
YLTOR
YZZ
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEFXT
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
SJN
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c349t-8976a1667e108abd2f423d5bf3130ec73aec740b2656efdbebdee55d482cc3203
IEDL.DBID U2A
ISSN 1617-4909
IngestDate Thu Sep 04 19:19:15 EDT 2025
Sat Aug 23 12:34:57 EDT 2025
Tue Jul 01 02:25:53 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Fri Feb 21 02:33:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Support vector machines
Manifold learning
Behavior detection
Dietary monitoring
Active appearance models
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-8976a1667e108abd2f423d5bf3130ec73aec740b2656efdbebdee55d482cc3203
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1030720285
PQPubID 25320
PageCount 11
ParticipantIDs proquest_miscellaneous_1671349998
proquest_journals_1030720285
crossref_citationtrail_10_1007_s00779_011_0425_x
crossref_primary_10_1007_s00779_011_0425_x
springer_journals_10_1007_s00779_011_0425_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120800
2012-8-00
20120801
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 8
  year: 2012
  text: 20120800
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Personal and ubiquitous computing
PublicationTitleAbbrev Pers Ubiquit Comput
PublicationYear 2012
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References Cai, He, Han, Zhang (CR3) 2006; 15
Reis, Judd (CR13) 2000
CR4
Amft, Tröster (CR1) 2008; 42
CR5
CR19
Cai, He, Han (CR2) 2005; 17
Guo, Fu, Dyer, Huang (CR6) 2008; 17
CR17
CR9
CR16
Tenenbaum, de Silva, Langford (CR18) 2000; 290
He, Yan, Hu, Niyogi, Zhang (CR8) 2005; 27
Roweis, Saul (CR14) 2000; 290
Turk, Pentland (CR20) 1991; 3
CR12
CR23
CR10
Viola, Jones (CR22) 2004; 57
Hayes (CR7) 1996
Zhang, Ang, Xiao, Tham (CR24) 2009; 9
Vapnik (CR21) 1995
Sazonov, Schuckers, Lopez-Meyer, Makeyev, Sazonova, Melanson, Neuman (CR15) 2008; 29
Niyogi (CR11) 2003; 15
425_CR19
425_CR17
MH Hayes (425_CR7) 1996
P Niyogi (425_CR11) 2003; 15
425_CR16
O Amft (425_CR1) 2008; 42
HT Reis (425_CR13) 2000
S Roweis (425_CR14) 2000; 290
425_CR12
425_CR23
X He (425_CR8) 2005; 27
425_CR10
425_CR20
G Guo (425_CR6) 2008; 17
D Cai (425_CR2) 2005; 17
425_CR9
425_CR4
D Cai (425_CR3) 2006; 15
S Zhang (425_CR24) 2009; 9
425_CR5
J Tenenbaum (425_CR18) 2000; 290
E Sazonov (425_CR15) 2008; 29
VN Vapnik (425_CR21) 1995
P Viola (425_CR22) 2004; 57
References_xml – volume: 42
  start-page: 121
  issue: 2
  year: 2008
  end-page: 136
  ident: CR1
  article-title: Recognition of dietary activity events using on-body sensors
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.007
– ident: CR19
– volume: 9
  start-page: 1499
  issue: 3
  year: 2009
  end-page: 1517
  ident: CR24
  article-title: Detection of activities by wireless sensors for daily life surveillance: eating and drinking
  publication-title: Sensors
  doi: 10.3390/s90301499
– volume: 15
  start-page: 3608
  issue: 11
  year: 2006
  end-page: 3614
  ident: CR3
  article-title: Orthogonal laplacianfaces for face recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.881945
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  end-page: 2326
  ident: CR14
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– year: 1996
  ident: CR7
  publication-title: Statistical digital signal processing and modeling
– ident: CR4
– year: 2000
  ident: CR13
  publication-title: Handbook of research methods in social and personality psychology
– ident: CR16
– year: 1995
  ident: CR21
  publication-title: The nature of statistical learning theory
– ident: CR12
– ident: CR17
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  end-page: 154
  ident: CR22
  article-title: Robust real-time face detection
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 29
  start-page: 525
  issue: 5
  year: 2008
  ident: CR15
  article-title: Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/29/5/001
– ident: CR10
– ident: CR9
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  end-page: 2323
  ident: CR18
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 17
  start-page: 1178
  issue: 7
  year: 2008
  end-page: 1188
  ident: CR6
  article-title: Image-based human age estimation by manifold learning and locally adjusted robust regression
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.924280
– ident: CR5
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  end-page: 340
  ident: CR8
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.55
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: CR11
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– ident: CR23
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  end-page: 86
  ident: CR20
  article-title: Eigenfaces for recognition
  publication-title: J Cogn Neurosci
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  end-page: 1637
  ident: CR2
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.198
– volume: 9
  start-page: 1499
  issue: 3
  year: 2009
  ident: 425_CR24
  publication-title: Sensors
  doi: 10.3390/s90301499
– volume: 17
  start-page: 1178
  issue: 7
  year: 2008
  ident: 425_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.924280
– volume: 15
  start-page: 3608
  issue: 11
  year: 2006
  ident: 425_CR3
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.881945
– ident: 425_CR17
  doi: 10.1145/1389586.1389686
– ident: 425_CR5
  doi: 10.1007/BFb0054760
– ident: 425_CR4
  doi: 10.1145/1321440.1321544
– ident: 425_CR20
  doi: 10.1162/jocn.1991.3.1.71
– ident: 425_CR23
– volume: 15
  start-page: 1373
  year: 2003
  ident: 425_CR11
  publication-title: Neural Comput
  doi: 10.1162/089976603321780317
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  ident: 425_CR2
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.198
– volume: 29
  start-page: 525
  issue: 5
  year: 2008
  ident: 425_CR15
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/29/5/001
– volume: 42
  start-page: 121
  issue: 2
  year: 2008
  ident: 425_CR1
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.007
– ident: 425_CR16
  doi: 10.1117/12.829205
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 425_CR21
  doi: 10.1007/978-1-4757-2440-0
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 425_CR22
  publication-title: Int J Comput Vis
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume-title: Statistical digital signal processing and modeling
  year: 1996
  ident: 425_CR7
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 425_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.55
– ident: 425_CR12
  doi: 10.1109/CVPR.2008.4587509
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 425_CR18
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: 425_CR9
  doi: 10.1109/CVPRW.2009.5204259
– ident: 425_CR10
  doi: 10.1109/ISWPC.2008.4556181
– ident: 425_CR19
  doi: 10.1109/HEALTH.2008.4600106
– volume-title: Handbook of research methods in social and personality psychology
  year: 2000
  ident: 425_CR13
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 425_CR14
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
SSID ssj0017646
Score 2.124062
Snippet Steady increases in healthcare costs and obesity have inspired recent studies into cost-effective, assistive systems capable of monitoring dietary habits. Few...
Issue Title: Special Issue on Smartphone Applications and Services for Pervasive Computing Steady increases in healthcare costs and obesity have inspired...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 729
SubjectTerms Behavior
Chewing
Computer Science
Diet
Mathematical models
Mobile Computing
Monitoring
Monitoring systems
Original Article
Personal Computing
Power spectra
Reduction
Software
Support vector machines
Surveillance
Talking
Trains
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB1BcumFAi1qSooWiRPVqrbXnyfUVq0iDhVCRMrN2q-gSK3t1nYb7vxwZjbrtCDRiy_etSXPzs6bfc8zAJ-kCkOd5IbrQhtMUAJ0KaEjLhFOWFsYKilCaourdDaPvy6ShT9wa72sctgT3UZtak1n5CfUDivDTD1PvjS3nLpGEbvqW2i8hDFuwXkygvHZxdW371seIUs3_xdhnOZxERQDrxm4MqJZRlohTKdx4fL135HpEW7-w5C6wHP5Gl55xMhONyZ-Ay9s9RZ2h24MzDvnHvx2croVyZjZ_artcc5tL9sVp1rGNTHo3S-GEJUhTLzm1FOeocEeaLir4sSM7Zwuq2Ikhv_JpNsKmWwa9AZaHMy1zWmZrAxr-4aQO7t3p_7sxmkybbsP88uLH-cz7nsscC3iouM5whEZpmlmwyCXykRLxFcmUUuBwc3qTEi8xIGKEPfZpVFWGWuTxMR5pLWIAvEORlVd2QNgSi2JltUZMbM6KXIrCiLLhIpzESo1gWD4vqX2BcipD8Z1uS2d7ExSoklKMkm5nsDn7ZRmU33jucHTwWild8S2fFw2E_i4vY0uRLyIrGzd45jUFWnExHMCx4Oxnz7iPy88fP6F72EH0VW0UQtOYdTd9fYIEUynPvhl-gcQM_Ag
  priority: 102
  providerName: ProQuest
Title Exploiting visual quasi-periodicity for real-time chewing event detection using active appearance models and support vector machines
URI https://link.springer.com/article/10.1007/s00779-011-0425-x
https://www.proquest.com/docview/1030720285
https://www.proquest.com/docview/1671349998
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuPQCBVqxBVZG6onKUhLneVyqXVCREEJdCU6RX1utBNmlSRa488OZ8SYBqhapl-SQsSNlPPbnfJ9nAL5K5fs6Sg3XmTa4QfEwpIQOuEQ4YW1mKKUIqS3O49Nx-OMqumrOcZet2r2lJN1M3R12o8wzpO3B7S8ONI7AcT3CrTvp-MbBoKMOknh5pAiXZh5mXtZSmX_r4u1i9IIw_yBF3Voz-ggbDUhkg6VXt2DFFtuw2RZgYE087sCTU9BNSbnMFtOyxjZ3tSynnNIXz4g0rx4ZolKGyPCGUxl5hj66J3OXuIkZWzkpVsFI__6LSTf7MTmfYwDQeGCuUk7JZGFYWc8JrLOF-9HPbp0M05afYDwa_vx-ypuyClyLMKt4ighE-nGcWN9LpTLBBCGVidRE4HpmdSIkXkJPBQj17MQoq4y1UWTCNNBaBJ74DGvFrLC7wJSaEBOrEyJjdZSlVmTEjwkVpsJXqgde-31z3eQcp9IXN3mXLdm5JEeX5OSS_KEHR12T-TLhxnvG-63T8ib2ypwKpyU4MNKoB4fdY4waokJkYWc12sQuLyPuNXvwrXX26y7-8cIv_2W9Bx8QXwVLveA-rFW_a3uAGKZSfVhNRyd9WB-cXJ8N8X48PL-47LuR_AxyQe_x
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTtxAEC0ROCSXhGxiCCQdKbkkasV2ez0glAU0BDKKIpC4Ob0NGol4DLYHuPM9fGOq2vYAkcKNy1zctqWupV_Ne64CeCeV7-soNVxn2mCB4mFICR1wiXDC2sxQSxFSW4zi4UH4_TA6XICr_lsYklX2OdElajPV9B_5JxqHlWClnkab5QmnqVHErvYjNFq32LUXZ1iyVRs739C-74Nge2v_65B3UwW4FmFW8xQPYOnHcWJ9L5XKBGNEFCZSY4Hp3OpESPwJPRUg0rFjo6wy1kaRCdNAaxF4Ap_7AJYQZmQYRUtftkY_f815iyRuv2dCXMDDzMt6HtVzbUuThLRJWL5joPDz2yfhNbz9h5F1B932MjzuECr73LrUU1iwxTN40k9_YF0yeA6XTr43Idk0m02qBu85aWQ14dQ7eUqMfX3BEBIzhKXHnGbYM3SQM1ruukYxY2unAysYie-PmHSpl8myxG0mZ2RuTE_FZGFY1ZRUKbCZYxnYH6cBtdULOLiX3X8Ji8W0sCvAlBoTDawTYoJ1lKVWZETOCRWmwldqAF6_v7nuGp7T3I3jfN6q2ZkkR5PkZJL8fAAf5reUbbePuxav9UbLu8Cv8ms3HcDb-WUMWeJhZGGnDa6JXVNILHQH8LE39s1H_OeFq3e_8A08HO7_2Mv3dka7r-ARIrugVSquwWJ92th1RE-1et25LIPf9x0lfwGpzi30
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FiYS4AGERAyFpJLiAWrHdXg8IkWWUEDSKEJFyM70ZjRQ8Draz3PmqfF2q2vaEIJFbLnNx25a6ln4177kK4K1Uvq-j1HCdaYMFiochJXTAJcIJazNDLUVIbTGNdw_DL0fR0RJcDt_CkKxyyIkuUZu5pv_IN2gcVoKVehptFL0s4mB78qk64TRBipjWYZxG5yL79uIMy7f649422vpdEEx2vm_t8n7CANcizBqe4mEs_ThOrO-lUpmgQHRhIlUITO1WJ0LiT-ipAFGPLYyyylgbRSZMA61F4Al87j1YxiVxOoLlzZ3pwbcFh5HE3bdNiBF4mHnZwKl6roVpkpBOCUt5DBp-fvNUvIa6_7Cz7tCbPIaHPVplnzv3WoElWz6BR8MkCNYnhqfwx0n5ZiShZqezusV7TlpZzzj1UZ4Te99cMITHDCHqMad59gyd5YyWuw5SzNjGacJKRkL8n0y6NMxkVeE2k2MyN7KnZrI0rG4rqhrYqWMc2C-nB7X1Mzi8k91_DqNyXtoXwJQqiBLWCbHCOspSKzIi6oQKU-ErNQZv2N9c983PaQbHcb5o2-xMkqNJcjJJfj6G94tbqq7zx22LVwej5X0SqPNrlx3Dm8VlDF_iZGRp5y2uiV2DSCx6x_BhMPbfj_jPC1_e_sJ1uI_RkX_dm-6_ggcI8oJOtLgKo-Z3a18jkGrUWu-xDH7cdZBcAW7zMiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+visual+quasi-periodicity+for+real-time+chewing+event+detection+using+active+appearance+models+and+support+vector+machines&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Cadavid%2C+Steven&rft.au=Abdel-Mottaleb%2C+Mohamed&rft.au=Helal%2C+Abdelsalam&rft.date=2012-08-01&rft.pub=Springer-Verlag&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=16&rft.issue=6&rft.spage=729&rft.epage=739&rft_id=info:doi/10.1007%2Fs00779-011-0425-x&rft.externalDocID=10_1007_s00779_011_0425_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon