Event-Based Secure Consensus of Mutiagent Systems Against DoS Attacks

This paper studies the problem of event-triggered secure consensus for multiagent systems subject to periodic energy-limited denial-of-service (DoS) attacks, where DoS attacks usually prevent agent-to-agent data transmission. The DoS attacks are assumed to occur periodically based on the time-sequen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 8; pp. 3468 - 3476
Main Authors Xu, Yong, Fang, Mei, Shi, Peng, Wu, Zheng-Guang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the problem of event-triggered secure consensus for multiagent systems subject to periodic energy-limited denial-of-service (DoS) attacks, where DoS attacks usually prevent agent-to-agent data transmission. The DoS attacks are assumed to occur periodically based on the time-sequence way and the period of DoS attacks and the uniform lower bound of the communication areas are predetected by some devices. Based on the above assumptions, an event-based protocol consisting of two different measurements corresponding to leader-followers and follower-follower is presented to schedule communications between agents, which can reduce the update frequency of the controller. Then, the stability of the resultant error system is analyzed to derive sufficient conditions of achieving secure consensus by employing the Lyapunov function and the inductive approach. Besides, positive low bounds on any two consecutive intervals of events generated by individual events are calculated to eliminate "Zeno behavior" under the developed triggering condition and event-triggered protocol. Simulation result is provided to verify the theoretical analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2918402