Advanced Machine-Learning Methods for Brain-Computer Interfacing

The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving t...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 5; pp. 1688 - 1698
Main Authors Lv, Zhihan, Qiao, Liang, Wang, Qingjun, Piccialli, Francesco
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2020.3010014

Cover

Loading…
Abstract The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier.
AbstractList The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier.
The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier.The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier.
Author Piccialli, Francesco
Lv, Zhihan
Qiao, Liang
Wang, Qingjun
Author_xml – sequence: 1
  givenname: Zhihan
  orcidid: 0000-0003-2525-3074
  surname: Lv
  fullname: Lv, Zhihan
  email: lvzhihan@gmail.com
  organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China
– sequence: 2
  givenname: Liang
  orcidid: 0000-0002-8188-886X
  surname: Qiao
  fullname: Qiao, Liang
  email: leonqiaoove@gmail.com
  organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China
– sequence: 3
  givenname: Qingjun
  surname: Wang
  fullname: Wang, Qingjun
  email: wangqingjun@sau.edu.cn
  organization: Shenyang Aerospace University, Shenyang, China
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0002-5179-2496
  surname: Piccialli
  fullname: Piccialli, Francesco
  email: francesco.piccialli@unina.it
  organization: Department of Matemathics and Applications “Renato Caccioppoli”, University of Naples Federico II, Napoli, NA, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32750892$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoMofv8AEWTBi5etk8_d3LTFL6h40XNIs7O60iY12RX896a0evDgJROY550ZngOy7YNHQk4ojCgFffk8GY9HDBiMOFAAKrbIPpWyKrVWYnv1F7KUWvE9cpDSOwATGsQu2eOsklBrtk-urptP6x02xaN1b53Hcoo2-s6_Fo_Yv4UmFW2IxTjazpeTsFgOPcbiwee3tS5jR2SntfOEx5t6SF5ub54n9-X06e5hcj0tHRe6LysqaysVV4I6dLmiqx2i43VLweZrFBeyodAwQVtZzZRr2azRilWCq4bX_JBcrOcuY_gYMPVm0SWH87n1GIZkmOCgFGOUZ_T8D_oehujzdYbJGkBrLmimzjbUMFtgY5axW9j4ZX7cZICuARdDShHbX4SCWfk3K_9m5d9s_OdM9Sfjut72XfB9Njj_N3m6TnaI-LtJ546gjH8DqoGO1w
CODEN ITCBCY
CitedBy_id crossref_primary_10_1109_JIOT_2023_3335956
crossref_primary_10_1155_2021_2283768
crossref_primary_10_1155_2023_8225630
crossref_primary_10_1155_2022_2310014
crossref_primary_10_3390_make3040042
crossref_primary_10_1155_2021_5920035
crossref_primary_10_1016_j_compbiomed_2025_109795
crossref_primary_10_1155_2022_4646454
crossref_primary_10_1155_2021_5177037
crossref_primary_10_1109_LSENS_2022_3156158
crossref_primary_10_1155_2022_8979404
crossref_primary_10_1155_2021_9880332
crossref_primary_10_3390_electronics12102207
crossref_primary_10_1155_2022_5143757
crossref_primary_10_1155_2022_1607099
crossref_primary_10_1016_j_compeleceng_2023_108904
crossref_primary_10_1155_2022_2574451
crossref_primary_10_1155_2021_1368687
crossref_primary_10_1155_2021_6086106
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1155_2022_1817341
crossref_primary_10_1155_2022_1783975
crossref_primary_10_1080_2326263X_2023_2233368
crossref_primary_10_1155_2022_4596552
crossref_primary_10_1155_2021_8066133
crossref_primary_10_1155_2022_7385344
crossref_primary_10_3390_electronics14061110
crossref_primary_10_1016_j_eswa_2023_122286
crossref_primary_10_1155_2021_3533608
crossref_primary_10_1155_2022_4224749
crossref_primary_10_1155_2022_8709075
crossref_primary_10_1142_S0219519423400043
crossref_primary_10_1155_2021_8375290
crossref_primary_10_1155_2022_2933663
crossref_primary_10_1155_2022_2823614
crossref_primary_10_1155_2022_3111054
crossref_primary_10_1109_TFUZZ_2023_3276577
crossref_primary_10_3390_app14020534
crossref_primary_10_1016_j_bspc_2022_104314
crossref_primary_10_3390_app13148274
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1155_2022_2210820
crossref_primary_10_3389_fncom_2022_1010770
crossref_primary_10_1080_10255842_2023_2187662
crossref_primary_10_1155_2022_6274903
crossref_primary_10_1142_S0219519423400031
crossref_primary_10_1155_2022_9398551
crossref_primary_10_3233_JIFS_189829
crossref_primary_10_1109_ACCESS_2021_3080592
crossref_primary_10_1155_2022_2688003
crossref_primary_10_1155_2022_8179766
crossref_primary_10_1155_2021_2819986
crossref_primary_10_2174_0113816128324653240731075146
crossref_primary_10_1155_2023_6761830
crossref_primary_10_1155_2021_6633643
crossref_primary_10_1016_j_aei_2024_102697
crossref_primary_10_1155_2021_5359084
crossref_primary_10_1007_s00521_022_07619_1
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_1007_s00521_022_07292_4
crossref_primary_10_1155_2022_6495568
crossref_primary_10_3233_JIFS_219095
crossref_primary_10_1109_ACCESS_2024_3482115
crossref_primary_10_1155_2022_6431852
crossref_primary_10_32604_csse_2023_034682
crossref_primary_10_1186_s40708_023_00199_3
crossref_primary_10_1109_TETCI_2022_3189385
crossref_primary_10_1155_2022_6331206
crossref_primary_10_1155_2022_8081673
crossref_primary_10_1155_2022_8195243
crossref_primary_10_1155_2022_9511009
crossref_primary_10_1155_2022_5012875
crossref_primary_10_1016_j_bspc_2024_106837
crossref_primary_10_1109_ACCESS_2023_3247133
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_1155_2022_5639820
crossref_primary_10_1155_2022_8256450
crossref_primary_10_1155_2021_6872291
Cites_doi 10.1371/journal.pone.0057990
10.1109/TNSRE.2017.2705661
10.1109/TNSRE.2019.2896092
10.1109/TFUZZ.2017.2688423
10.1109/TNNLS.2019.2899936
10.1145/3336124
10.1038/s41928-019-0355-6
10.1109/MCI.2018.2881647
10.1109/TNSRE.2018.2874975
10.1109/TNSRE.2018.2835813
10.1145/3297713
10.1109/TBME.2018.2799661
10.1109/TNNLS.2018.2789927
10.1109/TFUZZ.2016.2598362
10.1109/TNSRE.2019.2923315
10.1145/2955097
10.1007/s00779-015-0844-1
10.1109/JIOT.2018.2877786
10.1109/TNSRE.2017.2766365
10.1109/TII.2019.2916689
10.1109/TII.2019.2912465
10.1109/ACCESS.2018.2809453
10.1109/MIS.2019.2944783
10.1109/TNSRE.2020.2968307
10.1109/TBME.2017.2667579
10.1145/3131607
10.1145/2645860
10.1109/TNSRE.2018.2878249
10.1109/NICS48868.2019.9023830
10.1109/OJEMB.2019.2962879
10.1109/TBME.2018.2872855
10.1109/TNSRE.2017.2731261
10.1145/3371235
10.1109/JSEN.2019.2912790
10.1109/TFUZZ.2016.2637934
10.1109/TNSRE.2019.2934496
10.1109/THMS.2018.2830647
10.1109/TNSRE.2018.2808425
10.1109/TNSRE.2018.2826541
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2020.3010014
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 1698
ExternalDocumentID 32750892
10_1109_TCBB_2020_3010014
9143412
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61902203
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Plan - Major Scientific and Technological Innovation Projects of ShanDong Province
  grantid: 2019JZZY020101
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
AAYOK
ADPZR
CGR
CUY
CVF
ECM
EIF
NPM
RIG
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-7158a563641cec636ec8ceec38f10a7506345d10d241f57b6cf2bd9627436d383
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Fri Jul 11 03:37:32 EDT 2025
Mon Jun 30 07:11:15 EDT 2025
Thu Apr 03 07:00:49 EDT 2025
Tue Jul 01 00:47:52 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Aug 27 02:26:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-7158a563641cec636ec8ceec38f10a7506345d10d241f57b6cf2bd9627436d383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5179-2496
0000-0003-2525-3074
0000-0002-8188-886X
PMID 32750892
PQID 2580099341
PQPubID 85499
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCBB_2020_3010014
proquest_journals_2580099341
crossref_citationtrail_10_1109_TCBB_2020_3010014
ieee_primary_9143412
pubmed_primary_32750892
proquest_miscellaneous_2430662213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref35
  doi: 10.1371/journal.pone.0057990
– ident: ref11
  doi: 10.1109/TNSRE.2017.2705661
– ident: ref34
  doi: 10.1109/TNSRE.2019.2896092
– ident: ref14
  doi: 10.1109/TFUZZ.2017.2688423
– ident: ref38
  doi: 10.1109/TNNLS.2019.2899936
– ident: ref32
  doi: 10.1145/3336124
– ident: ref40
  doi: 10.1038/s41928-019-0355-6
– ident: ref20
  doi: 10.1109/MCI.2018.2881647
– ident: ref24
  doi: 10.1109/TNSRE.2018.2874975
– ident: ref31
  doi: 10.1109/TNSRE.2018.2835813
– ident: ref4
  doi: 10.1145/3297713
– ident: ref9
  doi: 10.1109/TBME.2018.2799661
– ident: ref16
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref19
  doi: 10.1109/TFUZZ.2016.2598362
– ident: ref1
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref30
  doi: 10.1109/TNSRE.2019.2923315
– ident: ref10
  doi: 10.1109/TNSRE.2017.2705661
– ident: ref6
  doi: 10.1145/2955097
– ident: ref41
  doi: 10.1007/s00779-015-0844-1
– ident: ref27
  doi: 10.1109/JIOT.2018.2877786
– ident: ref21
  doi: 10.1109/TNSRE.2017.2766365
– ident: ref39
  doi: 10.1109/TII.2019.2916689
– ident: ref7
  doi: 10.1109/TII.2019.2912465
– ident: ref3
  doi: 10.1109/ACCESS.2018.2809453
– ident: ref36
  doi: 10.1109/MIS.2019.2944783
– ident: ref18
  doi: 10.1109/TNSRE.2020.2968307
– ident: ref15
  doi: 10.1109/TBME.2017.2667579
– ident: ref5
  doi: 10.1145/3131607
– ident: ref37
  doi: 10.1145/2645860
– ident: ref33
  doi: 10.1109/TNSRE.2018.2878249
– ident: ref17
  doi: 10.1109/NICS48868.2019.9023830
– ident: ref2
  doi: 10.1109/OJEMB.2019.2962879
– ident: ref26
  doi: 10.1109/TBME.2018.2872855
– ident: ref28
  doi: 10.1109/TNSRE.2017.2731261
– ident: ref8
  doi: 10.1145/3371235
– ident: ref22
  doi: 10.1109/JSEN.2019.2912790
– ident: ref29
  doi: 10.1109/TFUZZ.2016.2637934
– ident: ref23
  doi: 10.1109/TNSRE.2019.2934496
– ident: ref13
  doi: 10.1109/THMS.2018.2830647
– ident: ref25
  doi: 10.1109/TNSRE.2018.2808425
– ident: ref12
  doi: 10.1109/TNSRE.2018.2826541
SSID ssj0024904
Score 2.5427773
Snippet The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1688
SubjectTerms Accuracy
Adult
Algorithms
Brain
Brain modeling
Brain-computer interface
Brain-Computer Interfaces
Classification
Classification algorithms
common spatial pattern
Computer applications
EEG
EEG signals
Electroencephalography
Female
Human-computer interface
Humans
Imagination - classification
Implants
Information processing
Learning algorithms
Machine Learning
Machine learning algorithms
Male
motor imagination
Signal Processing, Computer-Assisted
Transfer learning
Visualization
Young Adult
Title Advanced Machine-Learning Methods for Brain-Computer Interfacing
URI https://ieeexplore.ieee.org/document/9143412
https://www.ncbi.nlm.nih.gov/pubmed/32750892
https://www.proquest.com/docview/2580099341
https://www.proquest.com/docview/2430662213
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEL_MJSa--DU_0Gkw8cnIBNoyeHNbXBYTfNqSvZFSig8aZhw86F_vtRSMRo1PkFC-7q6937XX-wFcSkFw1AsjHP1yjgGKR50ULcPhecoRJaVDodkb4odgtqD3S7bswHW7F0ZKqZPP5ECd6rX8bCUqNVV2E6Fzp4pSeAMDt3qv1mddvUhTBSpE4DC0KrOC6bnRzXwyHmMk6GOA6qqSQ4qLh6i65mHkf3FHml_ld6ipXc50B-LmY-tMk6dBVaYD8f6tjuN__2YXtg32tEe1sexBRxb7sFmzUb714HZk8gHsWGdYSscUX320Y80zvbYR4dpjRSrhNGwQtp5SzLnAZgewmN7NJzPHECw4gtCodIYeCzkLSEA9IQUepQjRaQoS5p7LUUABoSzz3AzdfM6GaSByP800XQ8JMoxtD6FbrAp5DDbPmcgEZyllnDKBURzighzxJbpIznxmgdvIORGm-rgiwXhOdBTiRonSUqK0lBgtWXDV3vJSl974q3FPSbhtaIRrQb9RZmI65zrxWaiAMV634KK9jN1KrZXwQq4qbEOJqo3ve8SCo9oI2mc3tnPy8ztPYctXiS86Ea0P3fK1kmeIXMr0XJvsB7TL46g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamIQQXXuNRGFAkTohubZN07Y0NMY1HOQ1ptypNUw6gDbHuAL8eJ02LQIA4tVLTl-3EnxPHH8CpFARHvTDC0S_nGKB41EnRMhyepxxRUtoTmr0hvg9GD_RmwiYNOK_3wkgpdfKZ7KhTvZafzcRCTZV1I3TuVFEKL6Hfp1G5W-uzsl6kyQIVJnAY2pVZw_TcqDu-HAwwFvQxRHVV0SHFxkNUZfMw8r84JM2w8jvY1E5nuA5x9bllrslTZ1GkHfH-rZLjf_9nA9YM-rT7pblsQkNOt2C55KN8a8FF32QE2LHOsZSOKb_6aMeaaXpuI8a1B4pWwqn4IGw9qZhzgc224WF4Nb4cOYZiwRGERoXT81jIWUAC6gkp8ChFiG5TkDD3XI4CCghlmedm6Ohz1ksDkftppgl7SJBhdLsDzelsKvfA5jkTmeAspYxTJjCOQ2SQI8JEJ8mZzyxwKzknwtQfVzQYz4mOQ9woUVpKlJYSoyULzupbXsriG381bikJ1w2NcC1oV8pMTPecJz4LFTTG6xac1JexY6nVEj6VswW2oURVx_c9YsFuaQT1syvb2f_5ncewMhrHd8nd9f3tAaz6Kg1Gp6W1oVm8LuQh4pgiPdLm-wHWW-b4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Machine-Learning+Methods+for+Brain-Computer+Interfacing&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Lv%2C+Zhihan&rft.au=Qiao%2C+Liang&rft.au=Wang%2C+Qingjun&rft.au=Piccialli%2C+Francesco&rft.date=2021-09-01&rft.issn=1557-9964&rft.eissn=1557-9964&rft.volume=18&rft.issue=5&rft.spage=1688&rft_id=info:doi/10.1109%2FTCBB.2020.3010014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon