Advanced Machine-Learning Methods for Brain-Computer Interfacing
The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving t...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 18; no. 5; pp. 1688 - 1698 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5963 1557-9964 1557-9964 |
DOI | 10.1109/TCBB.2020.3010014 |
Cover
Loading…
Abstract | The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier. |
---|---|
AbstractList | The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier. The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier.The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological information of the brain during thinking activities. The effective classification of electroencephalogram (EEG) signals is the key to improving the performance of the system. To improve the classification accuracy of EEG signals in the BCI system, the transfer learning algorithm and the improved Common Spatial Pattern (CSP) algorithm are combined to construct a data classification model. Finally, the effectiveness of the proposed algorithm is verified. The results show that in actual and imagined movements, the accuracy of the left- and right-hand movements at different speeds is higher than when the speeds are the same. The proposed Adaptive Composite Common Spatial Pattern (ACCSP) and Self Adaptive Common Spatial Pattern (SACSP) algorithms have good classification effects on 5 subjects, with an average classification accuracy rate of 83.58 percent, which is an increase of 6.96 percent compared with traditional algorithms. When the training sample size is 10, the classification accuracy of the ACCSP algorithm is higher than that of the traditional CSP algorithm. The improved CSP algorithm combined with transfer learning embodies a good classification effect in both ACCSP and SACSP. Especially, the performance of SACSP mode is better. Combining the improved CSP algorithm proposed with the CSP-based transfer learning algorithm can improve the classification accuracy of the BCI classifier. |
Author | Piccialli, Francesco Lv, Zhihan Qiao, Liang Wang, Qingjun |
Author_xml | – sequence: 1 givenname: Zhihan orcidid: 0000-0003-2525-3074 surname: Lv fullname: Lv, Zhihan email: lvzhihan@gmail.com organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China – sequence: 2 givenname: Liang orcidid: 0000-0002-8188-886X surname: Qiao fullname: Qiao, Liang email: leonqiaoove@gmail.com organization: School of Data Science and Software Engineering, Qingdao University, Qingdao, China – sequence: 3 givenname: Qingjun surname: Wang fullname: Wang, Qingjun email: wangqingjun@sau.edu.cn organization: Shenyang Aerospace University, Shenyang, China – sequence: 4 givenname: Francesco orcidid: 0000-0002-5179-2496 surname: Piccialli fullname: Piccialli, Francesco email: francesco.piccialli@unina.it organization: Department of Matemathics and Applications “Renato Caccioppoli”, University of Naples Federico II, Napoli, NA, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32750892$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoMofv8AEWTBi5etk8_d3LTFL6h40XNIs7O60iY12RX896a0evDgJROY550ZngOy7YNHQk4ojCgFffk8GY9HDBiMOFAAKrbIPpWyKrVWYnv1F7KUWvE9cpDSOwATGsQu2eOsklBrtk-urptP6x02xaN1b53Hcoo2-s6_Fo_Yv4UmFW2IxTjazpeTsFgOPcbiwee3tS5jR2SntfOEx5t6SF5ub54n9-X06e5hcj0tHRe6LysqaysVV4I6dLmiqx2i43VLweZrFBeyodAwQVtZzZRr2azRilWCq4bX_JBcrOcuY_gYMPVm0SWH87n1GIZkmOCgFGOUZ_T8D_oehujzdYbJGkBrLmimzjbUMFtgY5axW9j4ZX7cZICuARdDShHbX4SCWfk3K_9m5d9s_OdM9Sfjut72XfB9Njj_N3m6TnaI-LtJ546gjH8DqoGO1w |
CODEN | ITCBCY |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3335956 crossref_primary_10_1155_2021_2283768 crossref_primary_10_1155_2023_8225630 crossref_primary_10_1155_2022_2310014 crossref_primary_10_3390_make3040042 crossref_primary_10_1155_2021_5920035 crossref_primary_10_1016_j_compbiomed_2025_109795 crossref_primary_10_1155_2022_4646454 crossref_primary_10_1155_2021_5177037 crossref_primary_10_1109_LSENS_2022_3156158 crossref_primary_10_1155_2022_8979404 crossref_primary_10_1155_2021_9880332 crossref_primary_10_3390_electronics12102207 crossref_primary_10_1155_2022_5143757 crossref_primary_10_1155_2022_1607099 crossref_primary_10_1016_j_compeleceng_2023_108904 crossref_primary_10_1155_2022_2574451 crossref_primary_10_1155_2021_1368687 crossref_primary_10_1155_2021_6086106 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1155_2022_1817341 crossref_primary_10_1155_2022_1783975 crossref_primary_10_1080_2326263X_2023_2233368 crossref_primary_10_1155_2022_4596552 crossref_primary_10_1155_2021_8066133 crossref_primary_10_1155_2022_7385344 crossref_primary_10_3390_electronics14061110 crossref_primary_10_1016_j_eswa_2023_122286 crossref_primary_10_1155_2021_3533608 crossref_primary_10_1155_2022_4224749 crossref_primary_10_1155_2022_8709075 crossref_primary_10_1142_S0219519423400043 crossref_primary_10_1155_2021_8375290 crossref_primary_10_1155_2022_2933663 crossref_primary_10_1155_2022_2823614 crossref_primary_10_1155_2022_3111054 crossref_primary_10_1109_TFUZZ_2023_3276577 crossref_primary_10_3390_app14020534 crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_3390_app13148274 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1155_2022_2210820 crossref_primary_10_3389_fncom_2022_1010770 crossref_primary_10_1080_10255842_2023_2187662 crossref_primary_10_1155_2022_6274903 crossref_primary_10_1142_S0219519423400031 crossref_primary_10_1155_2022_9398551 crossref_primary_10_3233_JIFS_189829 crossref_primary_10_1109_ACCESS_2021_3080592 crossref_primary_10_1155_2022_2688003 crossref_primary_10_1155_2022_8179766 crossref_primary_10_1155_2021_2819986 crossref_primary_10_2174_0113816128324653240731075146 crossref_primary_10_1155_2023_6761830 crossref_primary_10_1155_2021_6633643 crossref_primary_10_1016_j_aei_2024_102697 crossref_primary_10_1155_2021_5359084 crossref_primary_10_1007_s00521_022_07619_1 crossref_primary_10_1016_j_engappai_2022_105581 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_1155_2022_6495568 crossref_primary_10_3233_JIFS_219095 crossref_primary_10_1109_ACCESS_2024_3482115 crossref_primary_10_1155_2022_6431852 crossref_primary_10_32604_csse_2023_034682 crossref_primary_10_1186_s40708_023_00199_3 crossref_primary_10_1109_TETCI_2022_3189385 crossref_primary_10_1155_2022_6331206 crossref_primary_10_1155_2022_8081673 crossref_primary_10_1155_2022_8195243 crossref_primary_10_1155_2022_9511009 crossref_primary_10_1155_2022_5012875 crossref_primary_10_1016_j_bspc_2024_106837 crossref_primary_10_1109_ACCESS_2023_3247133 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_1155_2022_5639820 crossref_primary_10_1155_2022_8256450 crossref_primary_10_1155_2021_6872291 |
Cites_doi | 10.1371/journal.pone.0057990 10.1109/TNSRE.2017.2705661 10.1109/TNSRE.2019.2896092 10.1109/TFUZZ.2017.2688423 10.1109/TNNLS.2019.2899936 10.1145/3336124 10.1038/s41928-019-0355-6 10.1109/MCI.2018.2881647 10.1109/TNSRE.2018.2874975 10.1109/TNSRE.2018.2835813 10.1145/3297713 10.1109/TBME.2018.2799661 10.1109/TNNLS.2018.2789927 10.1109/TFUZZ.2016.2598362 10.1109/TNSRE.2019.2923315 10.1145/2955097 10.1007/s00779-015-0844-1 10.1109/JIOT.2018.2877786 10.1109/TNSRE.2017.2766365 10.1109/TII.2019.2916689 10.1109/TII.2019.2912465 10.1109/ACCESS.2018.2809453 10.1109/MIS.2019.2944783 10.1109/TNSRE.2020.2968307 10.1109/TBME.2017.2667579 10.1145/3131607 10.1145/2645860 10.1109/TNSRE.2018.2878249 10.1109/NICS48868.2019.9023830 10.1109/OJEMB.2019.2962879 10.1109/TBME.2018.2872855 10.1109/TNSRE.2017.2731261 10.1145/3371235 10.1109/JSEN.2019.2912790 10.1109/TFUZZ.2016.2637934 10.1109/TNSRE.2019.2934496 10.1109/THMS.2018.2830647 10.1109/TNSRE.2018.2808425 10.1109/TNSRE.2018.2826541 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TCBB.2020.3010014 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-9964 |
EndPage | 1698 |
ExternalDocumentID | 32750892 10_1109_TCBB_2020_3010014 9143412 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61902203 funderid: 10.13039/501100001809 – fundername: Key Research and Development Plan - Major Scientific and Technological Innovation Projects of ShanDong Province grantid: 2019JZZY020101 |
GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION AAYOK ADPZR CGR CUY CVF ECM EIF NPM RIG W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-7158a563641cec636ec8ceec38f10a7506345d10d241f57b6cf2bd9627436d383 |
IEDL.DBID | RIE |
ISSN | 1545-5963 1557-9964 |
IngestDate | Fri Jul 11 03:37:32 EDT 2025 Mon Jun 30 07:11:15 EDT 2025 Thu Apr 03 07:00:49 EDT 2025 Tue Jul 01 00:47:52 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Aug 27 02:26:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-7158a563641cec636ec8ceec38f10a7506345d10d241f57b6cf2bd9627436d383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5179-2496 0000-0003-2525-3074 0000-0002-8188-886X |
PMID | 32750892 |
PQID | 2580099341 |
PQPubID | 85499 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TCBB_2020_3010014 proquest_journals_2580099341 crossref_citationtrail_10_1109_TCBB_2020_3010014 ieee_primary_9143412 pubmed_primary_32750892 proquest_miscellaneous_2430662213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
PublicationTitleAbbrev | TCBB |
PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref35 doi: 10.1371/journal.pone.0057990 – ident: ref11 doi: 10.1109/TNSRE.2017.2705661 – ident: ref34 doi: 10.1109/TNSRE.2019.2896092 – ident: ref14 doi: 10.1109/TFUZZ.2017.2688423 – ident: ref38 doi: 10.1109/TNNLS.2019.2899936 – ident: ref32 doi: 10.1145/3336124 – ident: ref40 doi: 10.1038/s41928-019-0355-6 – ident: ref20 doi: 10.1109/MCI.2018.2881647 – ident: ref24 doi: 10.1109/TNSRE.2018.2874975 – ident: ref31 doi: 10.1109/TNSRE.2018.2835813 – ident: ref4 doi: 10.1145/3297713 – ident: ref9 doi: 10.1109/TBME.2018.2799661 – ident: ref16 doi: 10.1109/TNNLS.2018.2789927 – ident: ref19 doi: 10.1109/TFUZZ.2016.2598362 – ident: ref1 doi: 10.1109/TNNLS.2018.2789927 – ident: ref30 doi: 10.1109/TNSRE.2019.2923315 – ident: ref10 doi: 10.1109/TNSRE.2017.2705661 – ident: ref6 doi: 10.1145/2955097 – ident: ref41 doi: 10.1007/s00779-015-0844-1 – ident: ref27 doi: 10.1109/JIOT.2018.2877786 – ident: ref21 doi: 10.1109/TNSRE.2017.2766365 – ident: ref39 doi: 10.1109/TII.2019.2916689 – ident: ref7 doi: 10.1109/TII.2019.2912465 – ident: ref3 doi: 10.1109/ACCESS.2018.2809453 – ident: ref36 doi: 10.1109/MIS.2019.2944783 – ident: ref18 doi: 10.1109/TNSRE.2020.2968307 – ident: ref15 doi: 10.1109/TBME.2017.2667579 – ident: ref5 doi: 10.1145/3131607 – ident: ref37 doi: 10.1145/2645860 – ident: ref33 doi: 10.1109/TNSRE.2018.2878249 – ident: ref17 doi: 10.1109/NICS48868.2019.9023830 – ident: ref2 doi: 10.1109/OJEMB.2019.2962879 – ident: ref26 doi: 10.1109/TBME.2018.2872855 – ident: ref28 doi: 10.1109/TNSRE.2017.2731261 – ident: ref8 doi: 10.1145/3371235 – ident: ref22 doi: 10.1109/JSEN.2019.2912790 – ident: ref29 doi: 10.1109/TFUZZ.2016.2637934 – ident: ref23 doi: 10.1109/TNSRE.2019.2934496 – ident: ref13 doi: 10.1109/THMS.2018.2830647 – ident: ref25 doi: 10.1109/TNSRE.2018.2808425 – ident: ref12 doi: 10.1109/TNSRE.2018.2826541 |
SSID | ssj0024904 |
Score | 2.5427773 |
Snippet | The brain-computer interface (BCI) connects the brain and the external world through an information transmission channel by interpreting the physiological... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1688 |
SubjectTerms | Accuracy Adult Algorithms Brain Brain modeling Brain-computer interface Brain-Computer Interfaces Classification Classification algorithms common spatial pattern Computer applications EEG EEG signals Electroencephalography Female Human-computer interface Humans Imagination - classification Implants Information processing Learning algorithms Machine Learning Machine learning algorithms Male motor imagination Signal Processing, Computer-Assisted Transfer learning Visualization Young Adult |
Title | Advanced Machine-Learning Methods for Brain-Computer Interfacing |
URI | https://ieeexplore.ieee.org/document/9143412 https://www.ncbi.nlm.nih.gov/pubmed/32750892 https://www.proquest.com/docview/2580099341 https://www.proquest.com/docview/2430662213 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT4MwEL_MJSa--DU_0Gkw8cnIBNoyeHNbXBYTfNqSvZFSig8aZhw86F_vtRSMRo1PkFC-7q6937XX-wFcSkFw1AsjHP1yjgGKR50ULcPhecoRJaVDodkb4odgtqD3S7bswHW7F0ZKqZPP5ECd6rX8bCUqNVV2E6Fzp4pSeAMDt3qv1mddvUhTBSpE4DC0KrOC6bnRzXwyHmMk6GOA6qqSQ4qLh6i65mHkf3FHml_ld6ipXc50B-LmY-tMk6dBVaYD8f6tjuN__2YXtg32tEe1sexBRxb7sFmzUb714HZk8gHsWGdYSscUX320Y80zvbYR4dpjRSrhNGwQtp5SzLnAZgewmN7NJzPHECw4gtCodIYeCzkLSEA9IQUepQjRaQoS5p7LUUABoSzz3AzdfM6GaSByP800XQ8JMoxtD6FbrAp5DDbPmcgEZyllnDKBURzighzxJbpIznxmgdvIORGm-rgiwXhOdBTiRonSUqK0lBgtWXDV3vJSl974q3FPSbhtaIRrQb9RZmI65zrxWaiAMV634KK9jN1KrZXwQq4qbEOJqo3ve8SCo9oI2mc3tnPy8ztPYctXiS86Ea0P3fK1kmeIXMr0XJvsB7TL46g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamIQQXXuNRGFAkTohubZN07Y0NMY1HOQ1ptypNUw6gDbHuAL8eJ02LQIA4tVLTl-3EnxPHH8CpFARHvTDC0S_nGKB41EnRMhyepxxRUtoTmr0hvg9GD_RmwiYNOK_3wkgpdfKZ7KhTvZafzcRCTZV1I3TuVFEKL6Hfp1G5W-uzsl6kyQIVJnAY2pVZw_TcqDu-HAwwFvQxRHVV0SHFxkNUZfMw8r84JM2w8jvY1E5nuA5x9bllrslTZ1GkHfH-rZLjf_9nA9YM-rT7pblsQkNOt2C55KN8a8FF32QE2LHOsZSOKb_6aMeaaXpuI8a1B4pWwqn4IGw9qZhzgc224WF4Nb4cOYZiwRGERoXT81jIWUAC6gkp8ChFiG5TkDD3XI4CCghlmedm6Ohz1ksDkftppgl7SJBhdLsDzelsKvfA5jkTmeAspYxTJjCOQ2SQI8JEJ8mZzyxwKzknwtQfVzQYz4mOQ9woUVpKlJYSoyULzupbXsriG381bikJ1w2NcC1oV8pMTPecJz4LFTTG6xac1JexY6nVEj6VswW2oURVx_c9YsFuaQT1syvb2f_5ncewMhrHd8nd9f3tAaz6Kg1Gp6W1oVm8LuQh4pgiPdLm-wHWW-b4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Machine-Learning+Methods+for+Brain-Computer+Interfacing&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Lv%2C+Zhihan&rft.au=Qiao%2C+Liang&rft.au=Wang%2C+Qingjun&rft.au=Piccialli%2C+Francesco&rft.date=2021-09-01&rft.issn=1557-9964&rft.eissn=1557-9964&rft.volume=18&rft.issue=5&rft.spage=1688&rft_id=info:doi/10.1109%2FTCBB.2020.3010014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |