Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods

Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into thr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 6; pp. 1658 - 1667
Main Authors Tao, Rong, Lu, Jianping, Shen, Chenxing, Xie, Xiaoming, Zhang, Shulin, Huang, Xiao, Tao, Minfang, Ma, Jian, Ma, Shixin, Zhang, Chaoxiang, Zhang, Tongxin, Tang, Fakuan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2018.2877649

Cover

Loading…
Abstract Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features. Results: For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively. Conclusion: we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location. Significance: The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.
AbstractList This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features. For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively. we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location. The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.
Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features. Results: For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively. Conclusion: we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location. Significance: The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.
This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.OBJECTIVEThis study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.METHODST wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.RESULTSFor IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.CONCLUSIONwe have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.SIGNIFICANCEThe proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.
Author Tao, Rong
Lu, Jianping
Huang, Xiao
Xie, Xiaoming
Ma, Jian
Zhang, Tongxin
Zhang, Shulin
Shen, Chenxing
Zhang, Chaoxiang
Ma, Shixin
Tang, Fakuan
Tao, Minfang
Author_xml – sequence: 1
  givenname: Rong
  orcidid: 0000-0002-6843-3668
  surname: Tao
  fullname: Tao, Rong
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina
– sequence: 2
  givenname: Jianping
  surname: Lu
  fullname: Lu, Jianping
  organization: Shanghai 6th People's Hospital
– sequence: 3
  givenname: Chenxing
  surname: Shen
  fullname: Shen, Chenxing
  organization: Shanghai 6th People's Hospital
– sequence: 4
  givenname: Xiaoming
  surname: Xie
  fullname: Xie, Xiaoming
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina
– sequence: 5
  givenname: Shulin
  orcidid: 0000-0003-1284-1010
  surname: Zhang
  fullname: Zhang, Shulin
  email: zhangsl@mail.sim.ac.cn
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina
– sequence: 6
  givenname: Xiao
  surname: Huang
  fullname: Huang, Xiao
  organization: 309th Hospital of Beijing
– sequence: 7
  givenname: Minfang
  surname: Tao
  fullname: Tao, Minfang
  organization: Shanghai 6th People's Hospital
– sequence: 8
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: Shanghai 6th People's Hospital
– sequence: 9
  givenname: Shixin
  surname: Ma
  fullname: Ma, Shixin
  organization: Shanghai 6th People's Hospital
– sequence: 10
  givenname: Chaoxiang
  surname: Zhang
  fullname: Zhang, Chaoxiang
  organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina
– sequence: 11
  givenname: Tongxin
  surname: Zhang
  fullname: Zhang, Tongxin
  organization: 309th Hospital of Beijing
– sequence: 12
  givenname: Fakuan
  surname: Tang
  fullname: Tang, Fakuan
  organization: 309th Hospital of Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30369432$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtPIzEUhS0EWgLsD0BIaKRtaCb4NTOecgMsICWigdry2HcSRxM7azsF--txHktBQWX5-Dv3WuecoWPnHSB0SfCYENzevk5mD2OKiRhT0TQ1b4_QiFSVKGnFyDEa4fxUtrTlp-gsxmW-csHrH-iUYVa3nNERWs7U3EHyWgVj_Tyo9eK9nKgIpniOegErq4snUCEV9zZC1ot7SKCT9a5QzhTT7BzsP7UT3qJ182Km9MI6KKbZ5nYCpIU38QKd9GqI8PNwnqO3Pw-vd0_l9OXx-e73tNSMt6msux5r3hFDNe8b0ves7pjiXdM1wvQdZprTLIuGGMG1qWintKgw7wnLMDB2jm72c9fB_91ATHJlo4ZhUA78JkpKaN0SjinP6K8v6NJvgsu_k5TSphKcsu3A6wO16VZg5DrYlQrv8n-KGSB7QAcfY4D-EyFYbpuS26bktil5aCp7mi8ebdMuxhSUHb51Xu2dFgA-N-UIqKgZ-wCFD6B6
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_dajour_2023_100242
crossref_primary_10_1109_ACCESS_2022_3165966
crossref_primary_10_1080_21681163_2022_2032361
crossref_primary_10_3390_info11040207
crossref_primary_10_1111_exsy_12882
crossref_primary_10_1016_j_patrec_2019_02_016
crossref_primary_10_1109_TIM_2023_3239936
crossref_primary_10_1007_s12046_021_01574_8
crossref_primary_10_1016_j_bspc_2022_104509
crossref_primary_10_3389_fdata_2022_1021518
crossref_primary_10_1080_10255842_2021_1937611
crossref_primary_10_3390_s23094218
crossref_primary_10_1016_j_isci_2024_110167
crossref_primary_10_1088_1742_6596_1950_1_012081
crossref_primary_10_1109_JTEHM_2020_2990073
crossref_primary_10_2139_ssrn_4831739
crossref_primary_10_1016_j_infrared_2020_103442
crossref_primary_10_1109_ACCESS_2024_3350996
crossref_primary_10_7498_aps_68_20190005
crossref_primary_10_1016_j_ahjo_2024_100424
crossref_primary_10_1109_TBME_2024_3486119
crossref_primary_10_1007_s00530_020_00728_8
crossref_primary_10_3390_mi13091538
crossref_primary_10_1063_5_0201950
crossref_primary_10_1109_ACCESS_2020_3016116
crossref_primary_10_1007_s11517_022_02618_9
crossref_primary_10_1088_1361_6579_ad0f70
crossref_primary_10_3389_fcvm_2023_1276321
crossref_primary_10_1109_JBHI_2021_3128169
crossref_primary_10_1515_cmb_2024_0004
crossref_primary_10_3390_bioengineering11121290
crossref_primary_10_1080_10739149_2024_2306462
crossref_primary_10_3390_diagnostics14030239
crossref_primary_10_3390_biomed2040031
crossref_primary_10_1016_j_bspc_2025_107602
crossref_primary_10_1016_j_engappai_2024_108128
crossref_primary_10_1109_TIM_2023_3265089
crossref_primary_10_1136_bmjopen_2024_086433
crossref_primary_10_1016_j_suscom_2022_100732
crossref_primary_10_1088_1361_6560_ace497
crossref_primary_10_1109_TII_2021_3098306
crossref_primary_10_1016_j_bspc_2021_102820
crossref_primary_10_1016_j_measurement_2021_110471
crossref_primary_10_1007_s11042_021_11259_3
crossref_primary_10_1109_ACCESS_2022_3193769
crossref_primary_10_1088_2057_1976_ad40b1
crossref_primary_10_1016_j_procs_2023_01_107
crossref_primary_10_1088_1361_6501_ab4a45
crossref_primary_10_1016_j_ahjo_2024_100483
crossref_primary_10_1142_S0219519423300016
crossref_primary_10_7498_aps_70_20202121
crossref_primary_10_1080_21681163_2022_2162439
crossref_primary_10_1007_s12652_022_03823_y
crossref_primary_10_1109_OJAP_2022_3186643
crossref_primary_10_1007_s42979_022_01294_8
crossref_primary_10_3389_fcvm_2022_847206
crossref_primary_10_1096_fj_202300201RR
crossref_primary_10_31083_j_rcm2510379
crossref_primary_10_1016_j_heliyon_2024_e29092
crossref_primary_10_1038_s41598_025_90615_x
Cites_doi 10.1109/IEMBS.2001.1020539
10.1016/j.bspc.2016.08.018
10.1157/13108272
10.1007/11494621_15
10.1016/j.ins.2017.06.027
10.1145/2939672.2939785
10.1016/j.mathsocsci.2010.06.001
10.1007/s10916-010-9535-7
10.1371/journal.pone.0160999
10.1016/j.compbiomed.2017.12.023
10.1007/BF01797752
10.1016/j.compbiomed.2012.11.014
10.1016/j.bbe.2018.03.001
10.1109/10.846692
10.1016/j.compbiomed.2018.03.016
10.1109/ICSMC.2003.1244608
10.1016/j.procs.2015.09.132
10.1371/journal.pone.0171069
10.1093/eurheartj/ehn585
10.1016/j.compbiomed.2008.04.009
10.21037/atm.2016.06.33
10.1016/j.bspc.2016.07.003
10.1016/j.ijcard.2017.06.049
10.1016/j.jacc.2006.07.074
10.1007/s10916-014-0098-x
10.1007/s10916-011-9778-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2018.2877649
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1667
ExternalDocumentID 30369432
10_1109_TBME_2018_2877649
8502863
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 15DZ1940902
  funderid: 10.13039/501100003399
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-6bf0c4b1d2c4f71ff36b3a4b7b78dfb03c4271f871d84cd52bac8504f131ffe33
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Jul 10 19:08:43 EDT 2025
Mon Jun 30 08:19:00 EDT 2025
Wed Feb 19 02:31:36 EST 2025
Tue Jul 01 03:28:30 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6bf0c4b1d2c4f71ff36b3a4b7b78dfb03c4271f871d84cd52bac8504f131ffe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1284-1010
0000-0002-6843-3668
PMID 30369432
PQID 2227584233
PQPubID 85474
PageCount 10
ParticipantIDs proquest_journals_2227584233
pubmed_primary_30369432
proquest_miscellaneous_2126914024
ieee_primary_8502863
crossref_primary_10_1109_TBME_2018_2877649
crossref_citationtrail_10_1109_TBME_2018_2877649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
rabbani (ref27) 2011; 16
ref31
ref30
ref33
ref11
lih (ref32) 2017; 17
ref10
center (ref6) 2017; 32
ref2
ref1
weston (ref24) 2001; 13
ref16
ref19
kangwanariyakul (ref3) 2010; 9
guyon (ref25) 2008; 3
ref18
comani (ref36) 2003; 19
lim (ref17) 0
ref23
ref26
ref20
ref22
ref21
ref28
fan (ref5) 0
ref29
ref7
(ref8) 2013
ref9
ref4
References_xml – ident: ref31
  doi: 10.1109/IEMBS.2001.1020539
– volume: 19
  start-page: 119
  year: 2003
  ident: ref36
  article-title: Magnetocardiographic functional imaging and integration with 3-D MRI reconstruction of the heart: Preliminary results for source localization during myocardium activation
  publication-title: Physica Medica Eur J Med Phys
– ident: ref9
  doi: 10.1016/j.bspc.2016.08.018
– ident: ref34
  doi: 10.1157/13108272
– ident: ref2
  doi: 10.1007/11494621_15
– ident: ref13
  doi: 10.1016/j.ins.2017.06.027
– ident: ref22
  doi: 10.1145/2939672.2939785
– ident: ref28
  doi: 10.1016/j.mathsocsci.2010.06.001
– ident: ref18
  doi: 10.1007/s10916-010-9535-7
– start-page: 7334
  year: 0
  ident: ref5
  article-title: Detection of myocardial ischemia episode using morphological features
  publication-title: Annual Int Conf of the IEEE Engineering in Medicine and Biology Society
– volume: 17
  year: 2017
  ident: ref32
  article-title: Automated identification of coronary artery disease from short-term 12 lead electrocardiogram signals by using decomposition and common spatial pattern techniques
  publication-title: J Mech Med Biol
– ident: ref14
  doi: 10.1371/journal.pone.0160999
– ident: ref15
  doi: 10.1016/j.compbiomed.2017.12.023
– volume: 16
  start-page: 1473
  year: 2011
  ident: ref27
  article-title: Ischemia detection by electrocardiogram in wavelet domain using entropy measure
  publication-title: J Res Med Sci
– ident: ref33
  doi: 10.1007/BF01797752
– year: 2013
  ident: ref8
  article-title: World Health Report
– ident: ref7
  doi: 10.1016/j.compbiomed.2012.11.014
– ident: ref20
  doi: 10.1016/j.bbe.2018.03.001
– ident: ref26
  doi: 10.1109/10.846692
– ident: ref16
  doi: 10.1016/j.compbiomed.2018.03.016
– start-page: 74
  year: 0
  ident: ref17
  article-title: The evolution and future of magnetocardiography in identification of heart disease-induced electrophysiological changes
  publication-title: Proc World Med Conf
– ident: ref1
  doi: 10.1109/ICSMC.2003.1244608
– volume: 13
  start-page: 668
  year: 2001
  ident: ref24
  article-title: Feature selection for SVMs
  publication-title: Advances in Neural Information Processing Systems 13
– ident: ref21
  doi: 10.1016/j.procs.2015.09.132
– volume: 9
  start-page: 82
  year: 2010
  ident: ref3
  article-title: Data mining of magnetocardiograms for prediction on ischemic heart disease
  publication-title: EXCLI Journal
– ident: ref35
  doi: 10.1371/journal.pone.0171069
– volume: 3
  start-page: 1
  year: 2008
  ident: ref25
  article-title: Design and analysis of the causation and prediction challenge
  publication-title: J Mach Learn Res
– volume: 32
  start-page: 521
  year: 2017
  ident: ref6
  article-title: 2016 Report on cardiovascular diseases in China
  publication-title: Chinese Journal of circulation
– ident: ref30
  doi: 10.1093/eurheartj/ehn585
– ident: ref10
  doi: 10.1016/j.compbiomed.2008.04.009
– ident: ref4
  doi: 10.21037/atm.2016.06.33
– ident: ref11
  doi: 10.1016/j.bspc.2016.07.003
– ident: ref12
  doi: 10.1016/j.ijcard.2017.06.049
– ident: ref29
  doi: 10.1016/j.jacc.2006.07.074
– ident: ref19
  doi: 10.1007/s10916-014-0098-x
– ident: ref23
  doi: 10.1007/s10916-011-9778-y
SSID ssj0014846
Score 2.5793405
Snippet Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was...
This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. T wave was segmented from averaged...
Objective : This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was...
This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.OBJECTIVEThis study focused on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1658
SubjectTerms Adult
Arteries
Artificial intelligence
Biomagnetics
boosting
Cardiovascular disease
Cardiovascular diseases
Classifiers
Coronary artery
Coronary artery disease
Coronary Stenosis - diagnosis
Coronary Stenosis - physiopathology
Decision trees
Diagnosis, Computer-Assisted - methods
Disease detection
Diseases
Electrocardiography
Feature extraction
Heart - physiology
Heart - physiopathology
Heart diseases
Humans
Information theory
Ischemia
ischemic heart disease detection and localization
Learning algorithms
Localization
Machine Learning
Magnetic fields
Magnetic poles
Magnetocardiography
Magnetocardiography - methods
Male
Model accuracy
Myocardial Ischemia - diagnosis
Myocardial Ischemia - physiopathology
Signal Processing, Computer-Assisted
Stenosis
Support Vector Machine
Support vector machines
Time domain analysis
Title Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods
URI https://ieeexplore.ieee.org/document/8502863
https://www.ncbi.nlm.nih.gov/pubmed/30369432
https://www.proquest.com/docview/2227584233
https://www.proquest.com/docview/2126914024
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HRAc-NiAPRgoSJwQfUuTNE2OjG16IMppk3ar8okEqA9tfRf-epw0r5oQIG5V6raJbMt2_bMN8DoGKpxtTaVc4yvRaFHZaFnlrJLcqEaqNtUOd5_l6lJ8vGquduDtXAsTQsjgs7BMlzmX79duk36VHasGraHku7CLgdtUqzVnDISainJojQrMtCgZzJrq44uT7iyBuNQSw4NWpraZt2xQHqryd_8y25nzB9BtdzjBS74tN6Ndup-_NW_83yM8hPvF4STvJgl5BDth2Id7t9oQ7sOdriTYD-BrZ74MYUQDl2CqUzfr6gQtnScfMA5OSHqyQuUYyemU2SGnYcxoroGYwZNPyTSW0k6S4Qiky3DNQEonV1zIQ6tvHsPl-dnF-1VVxjFUjgs9VtJG6oStPXMitnWMXFpuhG1tq3y0lDvBcBkjMK-E8w2zxuFxRaw5EgfOn8DesB7CIZDGceacty31THjVoJcWWNQsNkYZGekC6JZBvSu9ytPIjO99jlmo7hNP-8TTvvB0AW_mR35MjTr-RXyQWDMTFq4s4GgrBX1R5Zs-FQujl8Y43n4130YlTJkVM4T1BmlqJjWGqkws4OkkPfO7k4-gBWfP_vzN53AXd6Yn9NkR7I3Xm_AC_ZzRvswC_gsZZPmG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKkXgceLQ8FgoMEidEtsm8MjlS2moLm562Um9R5oUEKIto9sKvx_PYqEKAuEUTJ5mRbdmOP9sAb7wrudF1XygjbMFFwwvtNS2MVpL1SkhVh9rh9lwuLvjHS3G5A--mWhjnXASfuXm4jLl8uzab8KvsUAm0hpLdgJsiFOOmaq0pZ8BVKsspK1Rh2vCcw6zK5nB11J4EGJeaY4BQy9A485oVimNV_u5hRktzeh_a7R4TwOTrfDPqufn5W_vG_z3EA7iXXU7yPsnIQ9hxwx7cvdaIcA9utTnFvg9f2v7z4EY0cQGomvpZF0do6yw5w0g4YOnJAtVjJMcpt0OO3RjxXAPpB0uWwTjm4k4SAQmkjYBNR3IvV1yIY6uvHsHF6cnqw6LIAxkKw3gzFlL70nBdWWq4ryvvmdSs57rWtbJel8xwissYg1nFjRVU9waPy33FkNgx9hh2h_XgngIRhlFjrK5LS7lVAv00R31DvehVL305g3LLoM7kbuVhaMa3LkYtZdMFnnaBp13m6QzeTo98T606_kW8H1gzEWauzOBgKwVdVuarLpQLo59GGd5-Pd1GNQy5lX5w6w3SVFQ2GKxSPoMnSXqmdwcvoeGMPvvzN1_B7cWqXXbLs_NPz-EO7rJJWLQD2B1_bNwL9HpG_TIK-y887vzO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetocardiography-Based+Ischemic+Heart+Disease+Detection+and+Localization+Using+Machine+Learning+Methods&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Tao%2C+Rong&rft.au=Zhang%2C+Shulin&rft.au=Huang%2C+Xiao&rft.au=Tao%2C+Minfang&rft.date=2019-06-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=6&rft.spage=1658&rft.epage=1667&rft_id=info:doi/10.1109%2FTBME.2018.2877649&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2018_2877649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon