Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods
Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into thr...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 66; no. 6; pp. 1658 - 1667 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2018.2877649 |
Cover
Loading…
Abstract | Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features. Results: For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively. Conclusion: we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location. Significance: The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia. |
---|---|
AbstractList | This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.
T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.
For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.
we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.
The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia. Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features. Results: For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively. Conclusion: we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location. Significance: The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia. This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.OBJECTIVEThis study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.T wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.METHODST wave was segmented from averaged Magnetocardiography (MCG) recordings and 164 features were subsequently extracted. These features were categorized into three groups: time domain features, frequency domain features, and information theory features. Next, we compared different machine learning classifiers including: k-nearest neighbor, decision tree, support vector machine (SVM), and XGBoost. To identify ischemia heart disease (IHD) case, we selected three classifiers with best performance and applied model ensemble to average results. All 164 features were used in this stage. To localize ischemia, we classified IHD group according to stenosis locations, including left anterior descending (LAD), left circumflex artery (LCX), and right coronary artery (RCA). For this task, we used XGBoost classifier and 18 time domain features.For IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.RESULTSFor IHD detection, the SVM-XGBoost model achieved best results with accuracy = 94.03%, precision = 86.56%, recall = 97.78%, F-score = 92.79%, AUC = 0.98, and average precision = 0.98. For ischemia localization, XGBoost model achieved accuracy = 0.74, 0.68, and 0.65, for LAD, LCX, and RCA, respectively.we have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.CONCLUSIONwe have developed an automatic IHD detection and localization system. We find that 1. T wave repolarization synchronicity is an important factor to distinguish IHD from normal subjects 2. Magnetic field pattern is associated with stenosis location.The proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia.SIGNIFICANCEThe proposed machine learning method provides the clinicians a fast and accurate diagnosis tool to interpret MCG data, boosting its acceptance into clinics. Furthermore, the magnetic pole characteristics revealed by the method shows to be related to ischemia location, presenting the opportunity to noninvasively locate ischemia. |
Author | Tao, Rong Lu, Jianping Huang, Xiao Xie, Xiaoming Ma, Jian Zhang, Tongxin Zhang, Shulin Shen, Chenxing Zhang, Chaoxiang Ma, Shixin Tang, Fakuan Tao, Minfang |
Author_xml | – sequence: 1 givenname: Rong orcidid: 0000-0002-6843-3668 surname: Tao fullname: Tao, Rong organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina – sequence: 2 givenname: Jianping surname: Lu fullname: Lu, Jianping organization: Shanghai 6th People's Hospital – sequence: 3 givenname: Chenxing surname: Shen fullname: Shen, Chenxing organization: Shanghai 6th People's Hospital – sequence: 4 givenname: Xiaoming surname: Xie fullname: Xie, Xiaoming organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina – sequence: 5 givenname: Shulin orcidid: 0000-0003-1284-1010 surname: Zhang fullname: Zhang, Shulin email: zhangsl@mail.sim.ac.cn organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina – sequence: 6 givenname: Xiao surname: Huang fullname: Huang, Xiao organization: 309th Hospital of Beijing – sequence: 7 givenname: Minfang surname: Tao fullname: Tao, Minfang organization: Shanghai 6th People's Hospital – sequence: 8 givenname: Jian surname: Ma fullname: Ma, Jian organization: Shanghai 6th People's Hospital – sequence: 9 givenname: Shixin surname: Ma fullname: Ma, Shixin organization: Shanghai 6th People's Hospital – sequence: 10 givenname: Chaoxiang surname: Zhang fullname: Zhang, Chaoxiang organization: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, ShanghaiChina – sequence: 11 givenname: Tongxin surname: Zhang fullname: Zhang, Tongxin organization: 309th Hospital of Beijing – sequence: 12 givenname: Fakuan surname: Tang fullname: Tang, Fakuan organization: 309th Hospital of Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30369432$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtPIzEUhS0EWgLsD0BIaKRtaCb4NTOecgMsICWigdry2HcSRxM7azsF--txHktBQWX5-Dv3WuecoWPnHSB0SfCYENzevk5mD2OKiRhT0TQ1b4_QiFSVKGnFyDEa4fxUtrTlp-gsxmW-csHrH-iUYVa3nNERWs7U3EHyWgVj_Tyo9eK9nKgIpniOegErq4snUCEV9zZC1ot7SKCT9a5QzhTT7BzsP7UT3qJ182Km9MI6KKbZ5nYCpIU38QKd9GqI8PNwnqO3Pw-vd0_l9OXx-e73tNSMt6msux5r3hFDNe8b0ves7pjiXdM1wvQdZprTLIuGGMG1qWintKgw7wnLMDB2jm72c9fB_91ATHJlo4ZhUA78JkpKaN0SjinP6K8v6NJvgsu_k5TSphKcsu3A6wO16VZg5DrYlQrv8n-KGSB7QAcfY4D-EyFYbpuS26bktil5aCp7mi8ebdMuxhSUHb51Xu2dFgA-N-UIqKgZ-wCFD6B6 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_dajour_2023_100242 crossref_primary_10_1109_ACCESS_2022_3165966 crossref_primary_10_1080_21681163_2022_2032361 crossref_primary_10_3390_info11040207 crossref_primary_10_1111_exsy_12882 crossref_primary_10_1016_j_patrec_2019_02_016 crossref_primary_10_1109_TIM_2023_3239936 crossref_primary_10_1007_s12046_021_01574_8 crossref_primary_10_1016_j_bspc_2022_104509 crossref_primary_10_3389_fdata_2022_1021518 crossref_primary_10_1080_10255842_2021_1937611 crossref_primary_10_3390_s23094218 crossref_primary_10_1016_j_isci_2024_110167 crossref_primary_10_1088_1742_6596_1950_1_012081 crossref_primary_10_1109_JTEHM_2020_2990073 crossref_primary_10_2139_ssrn_4831739 crossref_primary_10_1016_j_infrared_2020_103442 crossref_primary_10_1109_ACCESS_2024_3350996 crossref_primary_10_7498_aps_68_20190005 crossref_primary_10_1016_j_ahjo_2024_100424 crossref_primary_10_1109_TBME_2024_3486119 crossref_primary_10_1007_s00530_020_00728_8 crossref_primary_10_3390_mi13091538 crossref_primary_10_1063_5_0201950 crossref_primary_10_1109_ACCESS_2020_3016116 crossref_primary_10_1007_s11517_022_02618_9 crossref_primary_10_1088_1361_6579_ad0f70 crossref_primary_10_3389_fcvm_2023_1276321 crossref_primary_10_1109_JBHI_2021_3128169 crossref_primary_10_1515_cmb_2024_0004 crossref_primary_10_3390_bioengineering11121290 crossref_primary_10_1080_10739149_2024_2306462 crossref_primary_10_3390_diagnostics14030239 crossref_primary_10_3390_biomed2040031 crossref_primary_10_1016_j_bspc_2025_107602 crossref_primary_10_1016_j_engappai_2024_108128 crossref_primary_10_1109_TIM_2023_3265089 crossref_primary_10_1136_bmjopen_2024_086433 crossref_primary_10_1016_j_suscom_2022_100732 crossref_primary_10_1088_1361_6560_ace497 crossref_primary_10_1109_TII_2021_3098306 crossref_primary_10_1016_j_bspc_2021_102820 crossref_primary_10_1016_j_measurement_2021_110471 crossref_primary_10_1007_s11042_021_11259_3 crossref_primary_10_1109_ACCESS_2022_3193769 crossref_primary_10_1088_2057_1976_ad40b1 crossref_primary_10_1016_j_procs_2023_01_107 crossref_primary_10_1088_1361_6501_ab4a45 crossref_primary_10_1016_j_ahjo_2024_100483 crossref_primary_10_1142_S0219519423300016 crossref_primary_10_7498_aps_70_20202121 crossref_primary_10_1080_21681163_2022_2162439 crossref_primary_10_1007_s12652_022_03823_y crossref_primary_10_1109_OJAP_2022_3186643 crossref_primary_10_1007_s42979_022_01294_8 crossref_primary_10_3389_fcvm_2022_847206 crossref_primary_10_1096_fj_202300201RR crossref_primary_10_31083_j_rcm2510379 crossref_primary_10_1016_j_heliyon_2024_e29092 crossref_primary_10_1038_s41598_025_90615_x |
Cites_doi | 10.1109/IEMBS.2001.1020539 10.1016/j.bspc.2016.08.018 10.1157/13108272 10.1007/11494621_15 10.1016/j.ins.2017.06.027 10.1145/2939672.2939785 10.1016/j.mathsocsci.2010.06.001 10.1007/s10916-010-9535-7 10.1371/journal.pone.0160999 10.1016/j.compbiomed.2017.12.023 10.1007/BF01797752 10.1016/j.compbiomed.2012.11.014 10.1016/j.bbe.2018.03.001 10.1109/10.846692 10.1016/j.compbiomed.2018.03.016 10.1109/ICSMC.2003.1244608 10.1016/j.procs.2015.09.132 10.1371/journal.pone.0171069 10.1093/eurheartj/ehn585 10.1016/j.compbiomed.2008.04.009 10.21037/atm.2016.06.33 10.1016/j.bspc.2016.07.003 10.1016/j.ijcard.2017.06.049 10.1016/j.jacc.2006.07.074 10.1007/s10916-014-0098-x 10.1007/s10916-011-9778-y |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2018.2877649 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1667 |
ExternalDocumentID | 30369432 10_1109_TBME_2018_2877649 8502863 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality grantid: 15DZ1940902 funderid: 10.13039/501100003399 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-6bf0c4b1d2c4f71ff36b3a4b7b78dfb03c4271f871d84cd52bac8504f131ffe33 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Jul 10 19:08:43 EDT 2025 Mon Jun 30 08:19:00 EDT 2025 Wed Feb 19 02:31:36 EST 2025 Tue Jul 01 03:28:30 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-6bf0c4b1d2c4f71ff36b3a4b7b78dfb03c4271f871d84cd52bac8504f131ffe33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1284-1010 0000-0002-6843-3668 |
PMID | 30369432 |
PQID | 2227584233 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2227584233 pubmed_primary_30369432 proquest_miscellaneous_2126914024 ieee_primary_8502863 crossref_primary_10_1109_TBME_2018_2877649 crossref_citationtrail_10_1109_TBME_2018_2877649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref14 rabbani (ref27) 2011; 16 ref31 ref30 ref33 ref11 lih (ref32) 2017; 17 ref10 center (ref6) 2017; 32 ref2 ref1 weston (ref24) 2001; 13 ref16 ref19 kangwanariyakul (ref3) 2010; 9 guyon (ref25) 2008; 3 ref18 comani (ref36) 2003; 19 lim (ref17) 0 ref23 ref26 ref20 ref22 ref21 ref28 fan (ref5) 0 ref29 ref7 (ref8) 2013 ref9 ref4 |
References_xml | – ident: ref31 doi: 10.1109/IEMBS.2001.1020539 – volume: 19 start-page: 119 year: 2003 ident: ref36 article-title: Magnetocardiographic functional imaging and integration with 3-D MRI reconstruction of the heart: Preliminary results for source localization during myocardium activation publication-title: Physica Medica Eur J Med Phys – ident: ref9 doi: 10.1016/j.bspc.2016.08.018 – ident: ref34 doi: 10.1157/13108272 – ident: ref2 doi: 10.1007/11494621_15 – ident: ref13 doi: 10.1016/j.ins.2017.06.027 – ident: ref22 doi: 10.1145/2939672.2939785 – ident: ref28 doi: 10.1016/j.mathsocsci.2010.06.001 – ident: ref18 doi: 10.1007/s10916-010-9535-7 – start-page: 7334 year: 0 ident: ref5 article-title: Detection of myocardial ischemia episode using morphological features publication-title: Annual Int Conf of the IEEE Engineering in Medicine and Biology Society – volume: 17 year: 2017 ident: ref32 article-title: Automated identification of coronary artery disease from short-term 12 lead electrocardiogram signals by using decomposition and common spatial pattern techniques publication-title: J Mech Med Biol – ident: ref14 doi: 10.1371/journal.pone.0160999 – ident: ref15 doi: 10.1016/j.compbiomed.2017.12.023 – volume: 16 start-page: 1473 year: 2011 ident: ref27 article-title: Ischemia detection by electrocardiogram in wavelet domain using entropy measure publication-title: J Res Med Sci – ident: ref33 doi: 10.1007/BF01797752 – year: 2013 ident: ref8 article-title: World Health Report – ident: ref7 doi: 10.1016/j.compbiomed.2012.11.014 – ident: ref20 doi: 10.1016/j.bbe.2018.03.001 – ident: ref26 doi: 10.1109/10.846692 – ident: ref16 doi: 10.1016/j.compbiomed.2018.03.016 – start-page: 74 year: 0 ident: ref17 article-title: The evolution and future of magnetocardiography in identification of heart disease-induced electrophysiological changes publication-title: Proc World Med Conf – ident: ref1 doi: 10.1109/ICSMC.2003.1244608 – volume: 13 start-page: 668 year: 2001 ident: ref24 article-title: Feature selection for SVMs publication-title: Advances in Neural Information Processing Systems 13 – ident: ref21 doi: 10.1016/j.procs.2015.09.132 – volume: 9 start-page: 82 year: 2010 ident: ref3 article-title: Data mining of magnetocardiograms for prediction on ischemic heart disease publication-title: EXCLI Journal – ident: ref35 doi: 10.1371/journal.pone.0171069 – volume: 3 start-page: 1 year: 2008 ident: ref25 article-title: Design and analysis of the causation and prediction challenge publication-title: J Mach Learn Res – volume: 32 start-page: 521 year: 2017 ident: ref6 article-title: 2016 Report on cardiovascular diseases in China publication-title: Chinese Journal of circulation – ident: ref30 doi: 10.1093/eurheartj/ehn585 – ident: ref10 doi: 10.1016/j.compbiomed.2008.04.009 – ident: ref4 doi: 10.21037/atm.2016.06.33 – ident: ref11 doi: 10.1016/j.bspc.2016.07.003 – ident: ref12 doi: 10.1016/j.ijcard.2017.06.049 – ident: ref29 doi: 10.1016/j.jacc.2006.07.074 – ident: ref19 doi: 10.1007/s10916-014-0098-x – ident: ref23 doi: 10.1007/s10916-011-9778-y |
SSID | ssj0014846 |
Score | 2.5793405 |
Snippet | Objective: This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was... This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. T wave was segmented from averaged... Objective : This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology. Methods: T wave was... This study focused on developing a fast and accurate automatic ischemic heart disease detection/localization methodology.OBJECTIVEThis study focused on... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1658 |
SubjectTerms | Adult Arteries Artificial intelligence Biomagnetics boosting Cardiovascular disease Cardiovascular diseases Classifiers Coronary artery Coronary artery disease Coronary Stenosis - diagnosis Coronary Stenosis - physiopathology Decision trees Diagnosis, Computer-Assisted - methods Disease detection Diseases Electrocardiography Feature extraction Heart - physiology Heart - physiopathology Heart diseases Humans Information theory Ischemia ischemic heart disease detection and localization Learning algorithms Localization Machine Learning Magnetic fields Magnetic poles Magnetocardiography Magnetocardiography - methods Male Model accuracy Myocardial Ischemia - diagnosis Myocardial Ischemia - physiopathology Signal Processing, Computer-Assisted Stenosis Support Vector Machine Support vector machines Time domain analysis |
Title | Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods |
URI | https://ieeexplore.ieee.org/document/8502863 https://www.ncbi.nlm.nih.gov/pubmed/30369432 https://www.proquest.com/docview/2227584233 https://www.proquest.com/docview/2126914024 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLe2HRAc-NiAPRgoSJwQfUuTNE2OjG16IMppk3ar8okEqA9tfRf-epw0r5oQIG5V6raJbMt2_bMN8DoGKpxtTaVc4yvRaFHZaFnlrJLcqEaqNtUOd5_l6lJ8vGquduDtXAsTQsjgs7BMlzmX79duk36VHasGraHku7CLgdtUqzVnDISainJojQrMtCgZzJrq44uT7iyBuNQSw4NWpraZt2xQHqryd_8y25nzB9BtdzjBS74tN6Ndup-_NW_83yM8hPvF4STvJgl5BDth2Id7t9oQ7sOdriTYD-BrZ74MYUQDl2CqUzfr6gQtnScfMA5OSHqyQuUYyemU2SGnYcxoroGYwZNPyTSW0k6S4Qiky3DNQEonV1zIQ6tvHsPl-dnF-1VVxjFUjgs9VtJG6oStPXMitnWMXFpuhG1tq3y0lDvBcBkjMK-E8w2zxuFxRaw5EgfOn8DesB7CIZDGceacty31THjVoJcWWNQsNkYZGekC6JZBvSu9ytPIjO99jlmo7hNP-8TTvvB0AW_mR35MjTr-RXyQWDMTFq4s4GgrBX1R5Zs-FQujl8Y43n4130YlTJkVM4T1BmlqJjWGqkws4OkkPfO7k4-gBWfP_vzN53AXd6Yn9NkR7I3Xm_AC_ZzRvswC_gsZZPmG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKkXgceLQ8FgoMEidEtsm8MjlS2moLm562Um9R5oUEKIto9sKvx_PYqEKAuEUTJ5mRbdmOP9sAb7wrudF1XygjbMFFwwvtNS2MVpL1SkhVh9rh9lwuLvjHS3G5A--mWhjnXASfuXm4jLl8uzab8KvsUAm0hpLdgJsiFOOmaq0pZ8BVKsspK1Rh2vCcw6zK5nB11J4EGJeaY4BQy9A485oVimNV_u5hRktzeh_a7R4TwOTrfDPqufn5W_vG_z3EA7iXXU7yPsnIQ9hxwx7cvdaIcA9utTnFvg9f2v7z4EY0cQGomvpZF0do6yw5w0g4YOnJAtVjJMcpt0OO3RjxXAPpB0uWwTjm4k4SAQmkjYBNR3IvV1yIY6uvHsHF6cnqw6LIAxkKw3gzFlL70nBdWWq4ryvvmdSs57rWtbJel8xwissYg1nFjRVU9waPy33FkNgx9hh2h_XgngIRhlFjrK5LS7lVAv00R31DvehVL305g3LLoM7kbuVhaMa3LkYtZdMFnnaBp13m6QzeTo98T606_kW8H1gzEWauzOBgKwVdVuarLpQLo59GGd5-Pd1GNQy5lX5w6w3SVFQ2GKxSPoMnSXqmdwcvoeGMPvvzN1_B7cWqXXbLs_NPz-EO7rJJWLQD2B1_bNwL9HpG_TIK-y887vzO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetocardiography-Based+Ischemic+Heart+Disease+Detection+and+Localization+Using+Machine+Learning+Methods&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Tao%2C+Rong&rft.au=Zhang%2C+Shulin&rft.au=Huang%2C+Xiao&rft.au=Tao%2C+Minfang&rft.date=2019-06-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=6&rft.spage=1658&rft.epage=1667&rft_id=info:doi/10.1109%2FTBME.2018.2877649&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2018_2877649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |