Hardness Distribution and Growth Behavior of Micro-Arc Oxide Ceramic Film with Positive and Negative Pulse Coordination

Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 14; no. 10; p. 842
Main Authors Li, Haomin, Kong, Shiqin, Liu, Zhiming, Wang, Zhenxing, Geng, Yingsan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm , and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al O crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20-30 μm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.
AbstractList Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm2, and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al2O3 crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20-30 μm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.
Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm , and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al O crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20-30 μm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.
Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on the surface of light aluminum engine cylinders. However, the positive and negative pulse coordination, voltage characteristic signal, hardness distribution characteristics of the ceramic film, and their internal mechanism during the growth process are still unclear. This paper investigates the synergistic effect mechanism of cathodic and anodic current on the growth behaviour of alumina, dynamic voltage signal, and hardness distribution of micro-arc oxidation film. Ceramic film samples were fabricated under various conditions, including current densities of 10, 12, 14, and 16 A/dm[sup.2] , and current density ratios of cathode and anode of 1.1, 1.2, and 1.3, respectively. Based on the observed characteristics of the process voltage curve and the spark signal changes, the growth of the ceramic film can be divided into five stages. The influence of positive and negative current density parameters on the segmented growth process of the ceramic film is mainly reflected in the transition time, voltage variation rate, and the voltage value of different growth stages. Enhancing the cathode pulse effect or increasing the current density level can effectively shorten the transition time and accelerate the voltage drop rate. The microhardness of the ceramic film cross-section presents a discontinuous soft-hard-soft regional distribution. Multiple thermal cycles lead to a gradient differentiation of the Al[sub.2] O[sub.3] crystal phase transition ratio along the thickness direction of the layer. The layer grown on the outer surface of the initial substrate exhibits the highest hardness, with a small gradient change in hardness, forming a high hardness zone approximately 20–30 μm wide. This high hardness zone extends to both sides, with hardness decreasing rapidly.
Audience Academic
Author Geng, Yingsan
Liu, Zhiming
Wang, Zhenxing
Kong, Shiqin
Li, Haomin
Author_xml – sequence: 1
  givenname: Haomin
  orcidid: 0000-0002-8521-3632
  surname: Li
  fullname: Li, Haomin
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 2
  givenname: Shiqin
  surname: Kong
  fullname: Kong, Shiqin
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 3
  givenname: Zhiming
  surname: Liu
  fullname: Liu, Zhiming
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 4
  givenname: Zhenxing
  surname: Wang
  fullname: Wang, Zhenxing
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
– sequence: 5
  givenname: Yingsan
  surname: Geng
  fullname: Geng, Yingsan
  organization: State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38786798$$D View this record in MEDLINE/PubMed
BookMark eNpdks9vFCEUx4mpsbX25tmQePHgVBiYAY7r2l9JtT3ombwBZstmBirMdO1_L7tbm0Y4AC-f9328H2_RQYjBIfSeklPGFPkSIETKKSGS16_QUU2EqrhS9ODF_RCd5LwmZSnKZMPeoEMmhWyFkkdocwnJBpcz_ubzlHw3Tz4GDMHiixQ30x3-6u7gwceEY4-_e5NitUgG3_zx1uGlSzB6g8_9MOKNL_RtzH7yD26n8MOtYPe4nYdc6BiT9QG2Ed6h1z0U48nTeYx-nZ_9XF5W1zcXV8vFdWUYV1PVduAkJ7yvWSONtNSojpiaSsm5pEKp2qhGgQSuDBdUMGl77kxrhaKWsYYdo6u9ro2w1vfJj5AedQSvd4aYVhrS5M3gdMONkYx3rSWlpHULtaQ16zome-q4JUXr017rPsXfs8uTHn02bhgguDhnzUhLmChlVQX9-B-6jnMKJdNCNarlnNdtoU731ApKfB_6OCUwZVtXqlo63ftiXwjVcCG42jp83juUNuScXP-cESV6OxD65UAU_MPTL-ZudPYZ_td-9hcJI7B_
Cites_doi 10.1016/j.apsusc.2013.12.028
10.1007/s11003-012-9489-7
10.1016/j.surfcoat.2014.10.048
10.1088/0022-3727/36/17/314
10.1557/JMR.2008.0057
10.1021/acs.langmuir.7b02284
10.1016/j.surfcoat.2023.129578
10.3390/met8020105
10.3390/coatings12081191
10.1016/S0257-8972(99)00441-7
10.1016/0040-6090(82)90054-2
10.1149/1945-7111/ac82cc
10.1016/j.surfcoat.2018.09.080
10.1007/BF02887157
10.1016/j.surfcoat.2010.08.059
10.1016/j.surfcoat.2020.125853
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/nano14100842
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DAOJ: Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Materials Business File
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Civil Engineering Abstracts
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
ProQuest SciTech Collection
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_54cc834b6d014126a28123bb38f1e4d0
A795477496
10_3390_nano14100842
38786798
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
NPM
OK1
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c349t-6bae8404f2358c8d1c9b0c218844817992c959a8a49c471738df4ec6d791d3353
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Fri Oct 04 13:10:00 EDT 2024
Sat Aug 17 05:07:52 EDT 2024
Wed Sep 25 00:12:52 EDT 2024
Tue Jun 25 19:21:26 EDT 2024
Thu Sep 26 18:04:00 EDT 2024
Wed Oct 09 10:19:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords growth behavior
micro-arc oxidation
hardness distribution
bipolar pulse
synergistic effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6bae8404f2358c8d1c9b0c218844817992c959a8a49c471738df4ec6d791d3353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8521-3632
OpenAccessLink https://doaj.org/article/54cc834b6d014126a28123bb38f1e4d0
PMID 38786798
PQID 3059644426
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_54cc834b6d014126a28123bb38f1e4d0
proquest_miscellaneous_3060377989
proquest_journals_3059644426
gale_infotracacademiconefile_A795477496
crossref_primary_10_3390_nano14100842
pubmed_primary_38786798
PublicationCentury 2000
PublicationDate 2024-May-10
PublicationDateYYYYMMDD 2024-05-10
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_20) 2020; 394
Chunyan (ref_22) 2023; 466
Rogov (ref_17) 2017; 33
Hussein (ref_9) 2010; 205
ref_10
Arrabal (ref_12) 2015; 269
Wang (ref_13) 2014; 292
Yerokhin (ref_18) 2003; 36
Bai (ref_24) 2008; 19
Tsai (ref_14) 2019; 357
Xu (ref_1) 2008; 22
ref_19
Wriedt (ref_23) 1985; 6
ref_15
He (ref_8) 2002; 31
Di (ref_25) 2014; 43
Lei (ref_2) 2019; 48
Yingliang (ref_26) 2022; 169
Li (ref_6) 2021; 50
Yerokhin (ref_16) 1999; 122
Student (ref_11) 2012; 48
ref_3
Shimizu (ref_21) 1982; 88
ref_5
ref_4
ref_7
References_xml – volume: 50
  start-page: 15+13
  year: 2021
  ident: ref_6
  article-title: Research status of micro-arc oxidation process for aluminum alloys
  publication-title: Hot Work. Technol.
  contributor:
    fullname: Li
– ident: ref_7
– volume: 292
  start-page: 658
  year: 2014
  ident: ref_13
  article-title: Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.12.028
  contributor:
    fullname: Wang
– ident: ref_5
– ident: ref_3
– volume: 48
  start-page: 180
  year: 2012
  ident: ref_11
  article-title: Tribological Properties of Combined Metal-Oxide-Ceramic Layers on Light Alloys
  publication-title: Mater. Sci.
  doi: 10.1007/s11003-012-9489-7
  contributor:
    fullname: Student
– volume: 269
  start-page: 64
  year: 2015
  ident: ref_12
  article-title: Characterization and wear behaviour of PEO coatings on 6082-T6 aluminium alloy with incorporated α-Al2O3 particles
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.10.048
  contributor:
    fullname: Arrabal
– volume: 36
  start-page: 2110
  year: 2003
  ident: ref_18
  article-title: Discharge characterization in plasma electrolytic oxidation of aluminium
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/36/17/314
  contributor:
    fullname: Yerokhin
– volume: 22
  start-page: 409
  year: 2008
  ident: ref_1
  article-title: Research on strengthening of cast aluminum alloys
  publication-title: Mater. Rep.
  doi: 10.1557/JMR.2008.0057
  contributor:
    fullname: Xu
– volume: 33
  start-page: 11059
  year: 2017
  ident: ref_17
  article-title: The Role of Cathodic Current in Plasma Electrolytic Oxidation of Aluminum: Phenomenological Concepts of the “Soft Sparking” Mode
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02284
  contributor:
    fullname: Rogov
– volume: 466
  start-page: 129578
  year: 2023
  ident: ref_22
  article-title: Rational design of compact ceramic coating on SiCp/Al composites by tailoring soft sparking discharge of plasma electrolytic oxidation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2023.129578
  contributor:
    fullname: Chunyan
– ident: ref_10
  doi: 10.3390/met8020105
– volume: 19
  start-page: 1274
  year: 2008
  ident: ref_24
  article-title: Micro Arc Oxidation Process on LY12 Aluminum Alloy Using Bipolar Square Pulse Power Source
  publication-title: China Mech. Eng.
  contributor:
    fullname: Bai
– ident: ref_15
  doi: 10.3390/coatings12081191
– volume: 122
  start-page: 73
  year: 1999
  ident: ref_16
  article-title: Plasma electrolysis for surface engineering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00441-7
  contributor:
    fullname: Yerokhin
– volume: 88
  start-page: 255
  year: 1982
  ident: ref_21
  article-title: Direct observations of ion-implanted xenon marker layers in anodic barrier films on aluminum
  publication-title: Thin Solid Film.
  doi: 10.1016/0040-6090(82)90054-2
  contributor:
    fullname: Shimizu
– volume: 43
  start-page: 1432
  year: 2014
  ident: ref_25
  article-title: Study on heat conduction and laser remelting behavior of porous micro-arc oxidation film
  publication-title: Rare Met. Mater. Eng.
  contributor:
    fullname: Di
– ident: ref_4
– volume: 169
  start-page: 071505
  year: 2022
  ident: ref_26
  article-title: A Systematic Study of the Role of Cathodic Polarization and New Findings on the Soft Sparking Phenomenon from Plasma Electrolytic Oxidation of an Al-Cu-Li Alloy
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac82cc
  contributor:
    fullname: Yingliang
– volume: 357
  start-page: 235
  year: 2019
  ident: ref_14
  article-title: Probe the micro arc softening phenomenon with pulse transient analysis in plasma electrolytic oxidation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.09.080
  contributor:
    fullname: Tsai
– volume: 6
  start-page: 548
  year: 1985
  ident: ref_23
  article-title: The Al-O (Aluminum-Oxygen) system
  publication-title: Bull. Alloy Phase Diagr.
  doi: 10.1007/BF02887157
  contributor:
    fullname: Wriedt
– volume: 205
  start-page: 1659
  year: 2010
  ident: ref_9
  article-title: Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.08.059
  contributor:
    fullname: Hussein
– volume: 394
  start-page: 125853
  year: 2020
  ident: ref_20
  article-title: Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125853
  contributor:
    fullname: Li
– volume: 48
  start-page: 10
  year: 2019
  ident: ref_2
  article-title: Research progress on micro-arc oxidation of aluminum alloys
  publication-title: Surf. Technol.
  contributor:
    fullname: Lei
– ident: ref_19
– volume: 31
  start-page: 776
  year: 2002
  ident: ref_8
  article-title: Research on the generation of ceramic films by micro-arc oxidation on different substrate materials
  publication-title: Mater. Prot.
  contributor:
    fullname: He
SSID ssj0000913853
Score 2.3099422
Snippet Micro-arc oxidation (MAO) is a promising technology for enhancing the wear resistance of engine cylinders by growing a high hardness alumina ceramic film on...
SourceID doaj
proquest
gale
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 842
SubjectTerms Alloys
Alumina
Aluminum
Aluminum alloys
Aluminum oxide
Amine oxidase (flavin-containing)
bipolar pulse
Cathodes
Ceramic glazes
Ceramic materials
Ceramics
Coordination
Current density
Dielectric films
Electric properties
Electrolytes
Engine cylinders
growth behavior
Hardness
hardness distribution
Mechanical properties
micro-arc oxidation
Microhardness
Oxidation
Oxidation resistance
Phase transitions
Potash
Potassium
Power supply
Protective coatings
Sodium
Substrates
Synergistic effect
Thickness
Thin films
Voltage
Voltage drop
Wear resistance
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoFDVd6BgowE4mRtEjtZ-1RtF7YrpJYeqNRb5FfKSpC0IQv8_M442aWAxDWxLMsz43l_A_DGGBGUtYaHzAiOklhwrX3KM23RgJiKWsZUzMlpuTyXHy-Kix1YbnphqKxy8ybGh9q3jmLkE0FzYqREhTIxlqIArp8cXl1zmh9FedZxmMYduJsRJh71jC-Ot9EWQr9ExTRUvgv08yeNaVqqcUyVzP_QSRG6_98H-i-zM6qfxT7sjXYjmw2EfgA7oXkI92-hCT6Cn5SFp5eLvSc03HGQFTONZ8fobPdf2AiG2LG2ZidUicdnnWOffq18YPPQ0Wh6tlh9_cYoOsvOYj3XjxB3OA2XESKcna1RmbJ5i07raogkPobzxYfP8yUf5ypwJ6TueWlNQL9O1tQm65TPHBLGoa5X6KsRQlzudKGNMlI7SVl65WsZXOmnOvNCFOIJ7DZtE54BEz7NjA21djVSVQVVutoJUwpZF7irSODt5marqwE-o0K3gyhQ3aZAAkd07ds1BHodP7TdZTXKUFVI55SQtvRUnZqXJkfrRFgrVJ0F6dME3hHRKhJNYhAzdhjgUQnkqppNdSHR3NVlAgcbulajzH6vfnNYAq-3v1HaKIVimtCuaU2ZEkSj0gk8Hfhhe2ahpoReqJ7_f_MXcC9Hw4hHBNgD2O27dXiJhk1vX0WevQFVBPeX
  priority: 102
  providerName: ProQuest
Title Hardness Distribution and Growth Behavior of Micro-Arc Oxide Ceramic Film with Positive and Negative Pulse Coordination
URI https://www.ncbi.nlm.nih.gov/pubmed/38786798
https://www.proquest.com/docview/3059644426/abstract/
https://www.proquest.com/docview/3060377989/abstract/
https://doaj.org/article/54cc834b6d014126a28123bb38f1e4d0
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoED4pvAUhkJxMnaJnZc-9gt210hbakQK-3Nchx7qQQJCinw85lxslWBAxeuiWU5frZnXmb8BuCVcyLoqnI85E5w3IklN6ae8txU6EDMRJQpFHO-UmcX8t1leblX6otywgZ54GHijkrpvRayUjWlJBbKFWiSRFUJHfMg64Gt5-UemUpnsMkFGqIh010grz9qXNNSTuNUy-I3G5Sk-v8-kP9wM5O5Wd6Du6OfyObD-O7DjdA8gDt76oEP4QdF3emkYm9J_XYsXMVcU7NTJNf9JzaKH3asjeycMu_4vPPs_c9NHdgidFSKni03n78w-hvL1il_63tIPazCVZIEZ-stGk-2aJGkboY_h4_gYnnycXHGxzoK3Atpeq4qF5DHyUjXYr2uc49AeLTtGrkZKcIV3pTGaSeNlxSV13WUwat6ZvJaiFI8hoOmbcJTYAJRcFWIxkdEUQetfPTCKSFjib2KDF5fz6z9OshlWKQZhIDdRyCDY5r2XRsSuU4PEHo7Qm__BX0Gbwg0S1ux75x3440CHCqJWtn5zJQS3VujMji8xtWOe_SbFVR5SEp0UTJ4uXuNu4tCJq4J7ZbaqClJMmqTwZNhPezGLPSM1Ar1s__xLc_hdoHuEk-6sIdw0Hfb8ALdnb6awE29PJ3AreOT1frDJK3zX_pF_gQ
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33409,33779,33780,43635,43840,74392,74659
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHIADKq8SKGAkECerSexk7VO1Xdgu0F16aKXeLMd2ykqQlDQL_PzOON6lgMQ1sSzL43nPfEPIa2O4l1VlmM8MZ8CJBVPKpSxTFRgQI16LkIqZL8rZqfh4VpzFgNtlLKtcy8QgqF1rMUa-x3FOjBCgUPYvvjOcGoXZ1ThC4ya5JTioTuwUnx5uYiyIeQnqaKh35-Dd7zWmabGyMZUi_0MTBcD-f8XyX8ZmUDrTbXIvWot0PJD3Prnhmwfk7jUMwYfkJ-beUV7Rd4iBG8dXUdM4eggudv-FRgjEjrY1nWP9HRt3ln7-tXSeTnyHA-npdPn1G8WYLD0OVVw_fNhh4c8DMDg9XoEKpZMWXNXlED98RE6n708mMxanKTDLhepZWRkP3pyosTnWSpdZIIcFDS_BQ0NcuNyqQhlphLICc_PS1cLb0o1U5jgv-GOy1bSNf0Iod2lmKl8rWwMtpZelrS03JRd1AbvyhLxZ36y-GEAzNDgbSAF9nQIJOcBr36xBqOvwoe3OdeQcXQhrJRdV6bAmNS9NDjYJryou68wLlybkLRJNI0P2nbEm9hXAURHaSo9HqhBg5KoyIbtruurIqZf697tKyKvNb-AxTJyYxrcrXFOmCMwoVUJ2hvewOTOXI8QslE__v_lLcnt2Mj_SRx8Wn56ROzmYRixgwO6Srb5b-edg2vTVi_B-rwAsM_bF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagSAgOiJ1AASOBOFmTxE7GPqFhSlqWDnOgUm-WYztlpDYpaQb4-bzneIYCEtfEsiy_ffH3CHlpDPeyrg3zmeEMJLFgSrmUZaoGB2LKGxFKMYeL8uBIfDgujmP_00Vsq9zoxKCoXWcxRz7hOCdGCDAokya2RSz3qjfn3xhOkMJKaxyncZVcQycbpxnIan-bb0H8SzBNY-87h0h_0pq2wy7HVIr8D6sUwPv_VdF_OZ7BAFW3ya3oOdLZSOo75Ipv75Kbl_AE75EfWIdH3UX3EA83jrKipnV0H8Lt4SuNcIg97Rp6iL14bNZb-vnnynk69z0Op6fV6vSMYn6WLkNH13cfdlj4kwASTpdrMKd03kHYuhpziffJUfXuy_yAxckKzHKhBlbWxkNkJxp8KGulyyyQxoK1lxCtIUZcblWhjDRCWYF1euka4W3ppipznBf8Adlpu9Y_IpS7NDO1b5RtgK7Sy9I2lpuSi6aAXXlCXm1uVp-PABoaAg-kgL5MgYS8xWvfrkHY6_Ch6090lCJdCGslF3XpsD81L00O_gmvay6bzAuXJuQ1Ek2jcA69sSa-MYCjIsyVnk1VIcDhVWVCdjd01VFqL_RvHkvIi-1vkDcsopjWd2tcU6YI0ihVQh6O_LA9M5dTxC-Uj_-_-XNyHVhXf3q_-PiE3MjBS2IBDnaX7Az92j8FL2eonwX2_QW3OPr6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardness+Distribution+and+Growth+Behavior+of+Micro-Arc+Oxide+Ceramic+Film+with+Positive+and+Negative+Pulse+Coordination&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Haomin&rft.au=Kong%2C+Shiqin&rft.au=Liu%2C+Zhiming&rft.au=Wang%2C+Zhenxing&rft.date=2024-05-10&rft.pub=MDPI+AG&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fnano14100842&rft.externalDocID=A795477496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon