Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite
Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a s...
Saved in:
Published in | Materials chemistry and physics Vol. 208; pp. 248 - 257 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.04.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications.
[Display omitted]
•Substitution RE (Sm and Ce) has led to micro strain in the crystal.•Cation distribution has been proposed.•Surface effect played an important role in magnetization.•YK angle increased with RE (Sm, Ce) concentration. |
---|---|
AbstractList | Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications.
[Display omitted]
•Substitution RE (Sm and Ce) has led to micro strain in the crystal.•Cation distribution has been proposed.•Surface effect played an important role in magnetization.•YK angle increased with RE (Sm, Ce) concentration. Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications. |
Author | Ravi Kumar, D. Ahmad, Syed Ismail Ansari, Shakeel Ahmed |
Author_xml | – sequence: 1 givenname: Syed Ismail orcidid: 0000-0003-3329-5127 surname: Ahmad fullname: Ahmad, Syed Ismail email: dr.syedismailahmad@gmail.com, sahmed@ibnsina.edu.sa organization: Physics Division, Basic Science Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia – sequence: 2 givenname: Shakeel Ahmed surname: Ansari fullname: Ansari, Shakeel Ahmed organization: Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 3 givenname: D. surname: Ravi Kumar fullname: Ravi Kumar, D. organization: Department of Chemistry, Osmania University, Hyderabad, Telangana State, India |
BookMark | eNqNkM1r3DAQxUVJoJu0_4NKr7WjD9srn0pZ-hEI9JDmLCR5lNViS640Luw1f3md3R5KTjkNj3nvDfO7IhcxRSDkA2c1Z7y7OdSTQbeHad4fSy0YVzXjNWvZG7LhattXUnJxQTZMtE3FWtW8JVelHBjjW87lhjzdY14cLtmMn-iU8rxPY3oM7iTNYwQMjs45zZAxQKEmDtQZDCnSIRTMwS4nkTzdwWl7P1GXqrLYggEXhIFGExN1-VjQjGOIsO6tGZF6yDkgvCOX3owF3v-b1-Th29dfux_V3c_vt7svd5WTTY9V10Pr-q20rVQMrBCd8WA7ZV3vOtH03jQDcOsH46VSwjHeqN5aB8wI0YCX1-TjuXd95_cCBfUhLTmuJ7VgjWol5y1fXZ_PLpdTKRm8dgFPD2M2YdSc6Wfw-qD_A6-fwWvG9Qp-behfNMw5TCYfX5XdnbOwgvgTIOviAkQHQ8jgUA8pvKLlLw-qrAU |
CitedBy_id | crossref_primary_10_1007_s00339_021_04907_w crossref_primary_10_1016_j_ceramint_2019_10_191 crossref_primary_10_1007_s10854_021_05928_0 crossref_primary_10_1016_j_jmmm_2024_172267 crossref_primary_10_1007_s11356_019_05286_9 crossref_primary_10_1016_j_ccr_2024_216198 crossref_primary_10_1007_s00339_022_05720_9 crossref_primary_10_1007_s41779_023_00982_9 crossref_primary_10_1016_j_molstruc_2023_137382 crossref_primary_10_1007_s11051_023_05879_z crossref_primary_10_1016_j_matpr_2023_03_585 crossref_primary_10_1016_j_jmmm_2021_167985 crossref_primary_10_1007_s00339_019_3048_0 crossref_primary_10_1016_j_nimb_2024_165592 crossref_primary_10_1016_j_ultsonch_2019_02_022 crossref_primary_10_1016_j_ceramint_2025_01_057 crossref_primary_10_1016_j_physb_2019_411676 crossref_primary_10_3390_nano9030430 crossref_primary_10_1016_j_jmmm_2025_172950 crossref_primary_10_1016_j_jmmm_2019_165666 crossref_primary_10_1016_j_rinp_2019_102166 crossref_primary_10_1016_j_jallcom_2024_173708 crossref_primary_10_1016_j_mssp_2022_107111 crossref_primary_10_1016_j_matchemphys_2020_122941 crossref_primary_10_1016_j_molstruc_2024_138241 crossref_primary_10_1016_j_mtcomm_2024_109838 crossref_primary_10_1016_j_matchemphys_2019_02_022 crossref_primary_10_1016_j_jmmm_2021_168664 crossref_primary_10_1016_j_ceramint_2019_10_122 crossref_primary_10_1007_s10854_019_00988_9 crossref_primary_10_1016_j_matchemphys_2025_130746 crossref_primary_10_15251_DJNB_2022_174_1283 crossref_primary_10_1007_s11664_020_08713_7 crossref_primary_10_1007_s00339_020_03894_8 crossref_primary_10_1016_j_ultsonch_2019_104638 crossref_primary_10_1007_s00339_021_04941_8 crossref_primary_10_1007_s10854_022_07912_8 crossref_primary_10_1080_21870764_2018_1563036 crossref_primary_10_1016_j_matchemphys_2021_124862 crossref_primary_10_3390_ma11112095 crossref_primary_10_1016_j_ceramint_2024_05_397 crossref_primary_10_1016_j_mtchem_2021_100588 crossref_primary_10_1007_s42250_023_00834_w crossref_primary_10_1016_j_inoche_2022_109969 crossref_primary_10_1080_00150193_2019_1691392 crossref_primary_10_1109_TMAG_2021_3092581 crossref_primary_10_1007_s10854_024_12047_z crossref_primary_10_1039_D0RA10140K crossref_primary_10_1016_j_ceramint_2025_02_138 crossref_primary_10_1007_s13369_024_09638_7 crossref_primary_10_32362_2410_6593_2025_20_1_63_74 crossref_primary_10_1016_j_ceramint_2019_01_125 crossref_primary_10_1016_j_physleta_2024_129476 crossref_primary_10_1007_s00339_024_07476_w crossref_primary_10_1007_s10854_021_06913_3 crossref_primary_10_1016_j_radphyschem_2024_112412 crossref_primary_10_1007_s00339_022_05470_8 crossref_primary_10_3103_S1061386221040038 crossref_primary_10_1016_j_jallcom_2020_158114 crossref_primary_10_1007_s11664_020_08414_1 crossref_primary_10_1080_21870764_2021_2004727 crossref_primary_10_1016_j_cjph_2018_12_018 crossref_primary_10_1016_j_jre_2019_07_002 crossref_primary_10_1016_j_jre_2019_07_005 crossref_primary_10_1016_j_ijbiomac_2024_131752 crossref_primary_10_1063_9_0000915 crossref_primary_10_1016_j_arabjc_2021_103261 crossref_primary_10_1016_j_jallcom_2023_172830 crossref_primary_10_1016_j_inoche_2023_110752 crossref_primary_10_1016_j_optmat_2024_115631 crossref_primary_10_1016_j_jmmm_2020_167662 crossref_primary_10_1007_s10832_021_00252_9 crossref_primary_10_1007_s10854_024_13334_5 crossref_primary_10_1016_j_jmmm_2021_168744 crossref_primary_10_1016_j_inoche_2023_111034 crossref_primary_10_1016_j_jallcom_2020_155669 crossref_primary_10_1016_j_physb_2023_414873 crossref_primary_10_1088_1361_6528_ac31e8 crossref_primary_10_1016_j_ceramint_2018_10_260 crossref_primary_10_21923_jesd_687757 crossref_primary_10_1016_j_jallcom_2021_159563 crossref_primary_10_1016_j_mseb_2023_116514 crossref_primary_10_1016_j_solidstatesciences_2025_107824 crossref_primary_10_1007_s10854_021_05487_4 crossref_primary_10_1016_j_ceramint_2024_03_115 crossref_primary_10_1016_j_jmmm_2022_170023 crossref_primary_10_1007_s11696_023_02670_1 crossref_primary_10_2139_ssrn_4139086 crossref_primary_10_1002_pssa_202200718 crossref_primary_10_1016_j_measen_2024_101307 crossref_primary_10_1016_j_jmmm_2021_168577 crossref_primary_10_1007_s00339_022_06096_6 crossref_primary_10_1007_s11696_023_02664_z crossref_primary_10_1016_j_matpr_2023_04_186 crossref_primary_10_1016_j_jhazmat_2020_124561 crossref_primary_10_1016_j_jmmm_2022_170095 crossref_primary_10_1016_j_matchemphys_2023_128832 crossref_primary_10_1016_j_jmmm_2022_169840 crossref_primary_10_1007_s00339_020_03997_2 crossref_primary_10_1007_s00339_020_3443_6 crossref_primary_10_1016_j_jssc_2023_124275 crossref_primary_10_3390_magnetochemistry8050051 crossref_primary_10_1016_j_mtcomm_2022_104964 crossref_primary_10_1016_j_matchemphys_2019_121902 crossref_primary_10_1016_j_physb_2019_02_055 crossref_primary_10_1007_s13399_024_05785_x crossref_primary_10_1007_s10973_022_11665_1 crossref_primary_10_1016_j_ceramint_2019_09_246 crossref_primary_10_1007_s11356_024_34978_0 |
Cites_doi | 10.1002/9780470386323 10.1016/j.jallcom.2009.08.086 10.1103/PhysRevLett.77.394 10.1016/j.jmmm.2016.05.035 10.1016/j.ceramint.2016.01.007 10.1016/j.jallcom.2012.07.050 10.1016/j.ceramint.2015.11.100 10.1039/C5RA14351A 10.1155/2015/294239 10.1016/j.ceramint.2016.04.121 10.1007/s13204-017-0567-x 10.1016/S0304-8853(99)00347-9 10.1016/j.jtusci.2015.04.003 10.1016/j.cej.2014.03.113 10.1016/j.ceramint.2012.02.065 10.1016/j.jallcom.2014.06.156 10.1007/s13369-016-2297-x 10.1016/j.jmatprotec.2007.07.012 10.1103/PhysRev.87.290 10.1111/j.1151-2916.1999.tb02241.x 10.1039/C4RA08342C 10.1016/j.mseb.2017.03.012 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Apr 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Apr 1, 2018 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.matchemphys.2018.01.050 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3312 |
EndPage | 257 |
ExternalDocumentID | 10_1016_j_matchemphys_2018_01_050 S0254058418300506 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SMS SPG SSH WUQ 7SR 7U5 8BQ 8FD AFXIZ EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c349t-69e5c973b5380eb226afeb68bc9c6249fa4de1bfdaf3882c01489bbce0a224ef3 |
IEDL.DBID | .~1 |
ISSN | 0254-0584 |
IngestDate | Fri Jul 25 03:04:15 EDT 2025 Tue Jul 01 00:04:49 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cation distribution VSM Y-K angle Cobalt ferrite Magnetic properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-69e5c973b5380eb226afeb68bc9c6249fa4de1bfdaf3882c01489bbce0a224ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3329-5127 |
PQID | 2048531151 |
PQPubID | 2045435 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2048531151 crossref_citationtrail_10_1016_j_matchemphys_2018_01_050 crossref_primary_10_1016_j_matchemphys_2018_01_050 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2018_01_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 2018-04-00 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Wu, Ding, Song, Li, Wang (bib9) 2016; 42 Kumar, Kar (bib1) 2016; 416 Ahmada, Koteshwar Rao, Syed (bib15) 2016; 10 Lin, Lin, He, Wang, Dong (bib6) 2015 Cullity, Graham (bib4) 2008 Ahmad, Ravi Kumar, Ahmed Syed, Satar, Ansari (bib18) 2017; 42 Srinivasa Rao, Mahesh Kumar, Chaitanya Varma, Choudary, Rao (bib19) 2009; 488 Mohamed, Yehia (bib23) 2014; 615 Tatarchuk, Boyko, Yaremiy, Rachiy, Fedorchenko (bib11) 2014; 15 Rashad, Mohamed, El-Shall (bib5) 2008; 198 Kumar, Kar (bib17) 2016; 42 Saafan, Assar, Mansour (bib2) 2012; 542 Zhao, Wang, Zhang, Wu, Li, Ping Liu (bib7) 2014; 250 Murugesan, Chandrasekaran (bib16) 2015; 5 Huang, Huang, Li, Yang (bib13) 2016; 10 Ahmad, Mohammed, Bahafi, Suresh (bib14) 2017; 7 Kumar, KrSingh, KumarZope, Kar (bib22) 2017; 220 Sickafus, Wills, Grimes (bib3) 1999; 82 Yafet, Kittle (bib10) 1952; 87 Kodama, Berkowitz, McNiff, Foner (bib21) 1996; 77 Virlan, Bulai, Caltun, Hempelmann, Pui (bib8) 2016; 42 Kumar, Kar (bib12) 2012; 38 Nikam, Jadhav, Khot, Bohara, Hong, Mali, Pawar (bib20) 2015; 5 Kodama (bib24) 1999; 200 Ahmad (10.1016/j.matchemphys.2018.01.050_bib14) 2017; 7 Ahmad (10.1016/j.matchemphys.2018.01.050_bib18) 2017; 42 Srinivasa Rao (10.1016/j.matchemphys.2018.01.050_bib19) 2009; 488 Cullity (10.1016/j.matchemphys.2018.01.050_bib4) 2008 Tatarchuk (10.1016/j.matchemphys.2018.01.050_bib11) 2014; 15 Wu (10.1016/j.matchemphys.2018.01.050_bib9) 2016; 42 Nikam (10.1016/j.matchemphys.2018.01.050_bib20) 2015; 5 Kumar (10.1016/j.matchemphys.2018.01.050_bib17) 2016; 42 Kodama (10.1016/j.matchemphys.2018.01.050_bib21) 1996; 77 Kumar (10.1016/j.matchemphys.2018.01.050_bib12) 2012; 38 Kodama (10.1016/j.matchemphys.2018.01.050_bib24) 1999; 200 Rashad (10.1016/j.matchemphys.2018.01.050_bib5) 2008; 198 Murugesan (10.1016/j.matchemphys.2018.01.050_bib16) 2015; 5 Saafan (10.1016/j.matchemphys.2018.01.050_bib2) 2012; 542 Mohamed (10.1016/j.matchemphys.2018.01.050_bib23) 2014; 615 Kumar (10.1016/j.matchemphys.2018.01.050_bib1) 2016; 416 Sickafus (10.1016/j.matchemphys.2018.01.050_bib3) 1999; 82 Yafet (10.1016/j.matchemphys.2018.01.050_bib10) 1952; 87 Huang (10.1016/j.matchemphys.2018.01.050_bib13) 2016; 10 Ahmada (10.1016/j.matchemphys.2018.01.050_bib15) 2016; 10 Lin (10.1016/j.matchemphys.2018.01.050_bib6) 2015 Zhao (10.1016/j.matchemphys.2018.01.050_bib7) 2014; 250 Kumar (10.1016/j.matchemphys.2018.01.050_bib22) 2017; 220 Virlan (10.1016/j.matchemphys.2018.01.050_bib8) 2016; 42 |
References_xml | – volume: 200 start-page: 359 year: 1999 end-page: 372 ident: bib24 article-title: Magnetic nanoparticles publication-title: J. Magn. Magn Mater. – volume: 42 start-page: 389 year: 2017 end-page: 398 ident: bib18 article-title: Structural, spectroscopic and magnetic study of nanocrystalline cerium-substituted magnesium ferrites publication-title: Arabian J. Sci. Eng. – volume: 488 start-page: L6 year: 2009 end-page: L9 ident: bib19 article-title: Cation distribution of titanium substituted cobalt ferrites publication-title: J. Alloy. Comp. – year: 2008 ident: bib4 article-title: Introduction to Magnetic Materials – volume: 42 start-page: 11958 year: 2016 end-page: 11965 ident: bib8 article-title: Rare earth metals' influence on the heat generating capability of cobalt ferrite nanoparticles publication-title: Ceram. Ind – volume: 198 start-page: 139 year: 2008 end-page: 146 ident: bib5 article-title: Magnetic properties of nanocrystalline Sm-substituted CoFe publication-title: J. Mater. Process. Technol. – volume: 7 start-page: 243 year: 2017 end-page: 252 ident: bib14 article-title: Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte publication-title: Appl. Nanosci. – year: 2015 ident: bib6 article-title: The structural and magnetic properties of gadolinium doped CoFe2O4 nanoferrites publication-title: J. Nanomater. – volume: 42 start-page: 4246 year: 2016 end-page: 4255 ident: bib9 article-title: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles publication-title: Ceram. Ind – volume: 416 start-page: 335 year: 2016 end-page: 341 ident: bib1 article-title: Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite publication-title: J. Magn. Magn Mater. – volume: 5 start-page: 73714 year: 2015 ident: bib16 article-title: Impact of Gd publication-title: RSC Adv. – volume: 15 start-page: 792 year: 2014 end-page: 797 ident: bib11 article-title: Synthesis, crystal chemistry and antistructure modelling of CoFe2O4 nanoparticles prepared by citrate sol-gel method publication-title: Phys. Chem. Space – volume: 77 start-page: 394 year: 1996 end-page: 397 ident: bib21 article-title: Surface spin disorder in NiFe2O4 nanoparticles publication-title: Phys. Rev. Lett. – volume: 5 start-page: 2338 year: 2015 end-page: 2345 ident: bib20 article-title: Cation distribution, structural, morphological and magnetic properties of Co publication-title: RSC Adv. – volume: 250 start-page: 164 year: 2014 end-page: 174 ident: bib7 article-title: Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red publication-title: Chem. Eng. J. – volume: 87 start-page: 290 year: 1952 end-page: 294 ident: bib10 article-title: Anti ferromagnetic arrangements in ferrites publication-title: Phys. Rev. – volume: 10 start-page: 381 year: 2016 end-page: 385 ident: bib15 article-title: Sintering temperature effect on density, structural and morphologicalproperties of Mg- and Sr-doped ceria publication-title: J. Taibah Univ. Sci. – volume: 38 start-page: 4771 year: 2012 end-page: 4782 ident: bib12 article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2_xLaxO4) publication-title: Ceram. Ind – volume: 42 start-page: 6640 year: 2016 end-page: 6647 ident: bib17 article-title: Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite publication-title: Ceram. Int. – volume: 542 start-page: 192 year: 2012 end-page: 198 ident: bib2 article-title: Magnetic and electrical properties of Co publication-title: J. Alloy. Comp. – volume: 10 start-page: 590 year: 2016 end-page: 593 ident: bib13 article-title: Structural and static magnetic properties of Ce –substituted NiZnCo ferrite nano powder, Optoelectronics publication-title: Adv. Mater– Rapid communications – volume: 220 start-page: 73 year: 2017 end-page: 81 ident: bib22 article-title: Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite publication-title: Mater. Sci. Eng., B – volume: 82 year: 1999 ident: bib3 article-title: Structure of spinel publication-title: J. Am. Ceram. Soc. – volume: 615 start-page: 181 year: 2014 end-page: 187 ident: bib23 article-title: Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite publication-title: J. Alloy. Comp. – volume: 15 start-page: 792 year: 2014 ident: 10.1016/j.matchemphys.2018.01.050_bib11 article-title: Synthesis, crystal chemistry and antistructure modelling of CoFe2O4 nanoparticles prepared by citrate sol-gel method publication-title: Phys. Chem. Space – year: 2008 ident: 10.1016/j.matchemphys.2018.01.050_bib4 doi: 10.1002/9780470386323 – volume: 488 start-page: L6 year: 2009 ident: 10.1016/j.matchemphys.2018.01.050_bib19 article-title: Cation distribution of titanium substituted cobalt ferrites publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2009.08.086 – volume: 77 start-page: 394 year: 1996 ident: 10.1016/j.matchemphys.2018.01.050_bib21 article-title: Surface spin disorder in NiFe2O4 nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.394 – volume: 416 start-page: 335 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib1 article-title: Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2016.05.035 – volume: 42 start-page: 6640 issue: 6 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib17 article-title: Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.01.007 – volume: 542 start-page: 192 year: 2012 ident: 10.1016/j.matchemphys.2018.01.050_bib2 article-title: Magnetic and electrical properties of Co1−x Cax Fe2O4nanoparticles synthesized by the auto combustion method publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2012.07.050 – volume: 42 start-page: 4246 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib9 article-title: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles publication-title: Ceram. Ind doi: 10.1016/j.ceramint.2015.11.100 – volume: 10 start-page: 590 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib13 article-title: Structural and static magnetic properties of Ce –substituted NiZnCo ferrite nano powder, Optoelectronics publication-title: Adv. Mater– Rapid communications – volume: 5 start-page: 73714 year: 2015 ident: 10.1016/j.matchemphys.2018.01.050_bib16 article-title: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles publication-title: RSC Adv. doi: 10.1039/C5RA14351A – year: 2015 ident: 10.1016/j.matchemphys.2018.01.050_bib6 article-title: The structural and magnetic properties of gadolinium doped CoFe2O4 nanoferrites publication-title: J. Nanomater. doi: 10.1155/2015/294239 – volume: 42 start-page: 11958 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib8 article-title: Rare earth metals' influence on the heat generating capability of cobalt ferrite nanoparticles publication-title: Ceram. Ind doi: 10.1016/j.ceramint.2016.04.121 – volume: 7 start-page: 243 issue: 5 year: 2017 ident: 10.1016/j.matchemphys.2018.01.050_bib14 article-title: Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte publication-title: Appl. Nanosci. doi: 10.1007/s13204-017-0567-x – volume: 200 start-page: 359 issue: 1–3 year: 1999 ident: 10.1016/j.matchemphys.2018.01.050_bib24 article-title: Magnetic nanoparticles publication-title: J. Magn. Magn Mater. doi: 10.1016/S0304-8853(99)00347-9 – volume: 10 start-page: 381 year: 2016 ident: 10.1016/j.matchemphys.2018.01.050_bib15 article-title: Sintering temperature effect on density, structural and morphologicalproperties of Mg- and Sr-doped ceria publication-title: J. Taibah Univ. Sci. doi: 10.1016/j.jtusci.2015.04.003 – volume: 250 start-page: 164 year: 2014 ident: 10.1016/j.matchemphys.2018.01.050_bib7 article-title: Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.113 – volume: 38 start-page: 4771 year: 2012 ident: 10.1016/j.matchemphys.2018.01.050_bib12 article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2_xLaxO4) publication-title: Ceram. Ind doi: 10.1016/j.ceramint.2012.02.065 – volume: 615 start-page: 181 year: 2014 ident: 10.1016/j.matchemphys.2018.01.050_bib23 article-title: Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.06.156 – volume: 42 start-page: 389 year: 2017 ident: 10.1016/j.matchemphys.2018.01.050_bib18 article-title: Structural, spectroscopic and magnetic study of nanocrystalline cerium-substituted magnesium ferrites publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-016-2297-x – volume: 198 start-page: 139 year: 2008 ident: 10.1016/j.matchemphys.2018.01.050_bib5 article-title: Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.07.012 – volume: 87 start-page: 290 issue: 2 year: 1952 ident: 10.1016/j.matchemphys.2018.01.050_bib10 article-title: Anti ferromagnetic arrangements in ferrites publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.290 – volume: 82 issue: 12 year: 1999 ident: 10.1016/j.matchemphys.2018.01.050_bib3 article-title: Structure of spinel publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1999.tb02241.x – volume: 5 start-page: 2338 year: 2015 ident: 10.1016/j.matchemphys.2018.01.050_bib20 article-title: Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles publication-title: RSC Adv. doi: 10.1039/C4RA08342C – volume: 220 start-page: 73 year: 2017 ident: 10.1016/j.matchemphys.2018.01.050_bib22 article-title: Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2017.03.012 |
SSID | ssj0017113 |
Score | 2.5436745 |
Snippet | Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 248 |
SubjectTerms | Agglomerates Cation distribution Cations Cobalt Cobalt ferrite Cobalt ferrites Coercivity Crystal structure Crystallinity Energy dispersive X ray spectroscopy Ferrites Fourier transforms Frequencies Infrared spectra Magnetic permeability Magnetic properties Magnetic saturation Magnetism Metal ions Morphology Rare earth elements Scanning electron microscopy Spinel Stoichiometry Substitutes Transmission electron microscopy VSM X-ray diffraction Y-K angle |
Title | Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite |
URI | https://dx.doi.org/10.1016/j.matchemphys.2018.01.050 https://www.proquest.com/docview/2048531151 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EwcdBfOJjlQgejdtus20DXpZFWRW9rIK3kKSJKLvtonvx4sFf7kwfvvAgeGzzoMxMJ1-GmW8ADk1IBZom4i6yCRdJprmMpOdOZs5JjVZlKaB_dR0PbsXFXfduBvpNLQylVda-v_Lppbeu37RrabYnDw_tIdVxB3h-olESiwnRbguRkJUfv36keYRJWLVIxsmcZs_DwWeOF4JCFM2YggiU5ZWWDJ5Ugv_7GfXDW5dH0NkKLNfYkfWqz1uFGZevwUK_adm2Bktf2AXX4W1YcsMSr8YRGxco0MbR4aO-z6l8kU0oGP9ErKpM5xmrAngsow3rTlis8KzvytHhmNmCP6OvqRIMMpbrvGD26QUxJpF7Oxw3ejRlnggfp24Dbs9Ob_oDXrdc4DYScspj6bpWJpFBPxjgpbsTa-9MnBorbYw3Na9F5kLjM-0jxOaW4pHSGOsCjVjA-WgTZvMid1vAbCJijXBAd4QRMkwN-taga43xiDh0KrYhbYSsbM1HTm0xRqpJPHtUX_SjSD8qCBXqZxs6H0snFSnHXxadNJpU3yxM4eHxl-WtRvuq_s1pXCDcQVAd7vxv911YpKcqJagFs2gfbg_RztTsl-a8D3O988vB9TvG-wSl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKpVyQJQWlUepkeit7ubhTWIJDmhbtJTHZUHi5tqOXVGxyQpWqrj0wF_iDzKTOJRWPSBVHBPLluUZz3wezXwDsGViKtA0KXepzbnIS81lKj13snROatQqSwH9o-NseCq-nvXPZuC2q4WhtMpg-1ub3ljr8KcXTrM3OT_vjaiOO0L_iUpJLCZZyKw8cNc_8d12tbP_GYX8IUn2vpwMhjy0FuA2FXLKM-n6Vuapwfse4eMyybR3JiuMlTbDF4nXonSx8aX2KWJQS3E3aYx1kUaf53yK6z6D5wKnU9uET7_u80riPG57MuPuOG3vBWz-TipDFIqyGFPUgtLKioYylGr-_-0U_3IPjc_bW4SFAFbZbnser2DGVUswN-h6xC3B_AM6w9dwM2rIaInI4yMb1yjBzrLip_5eUb0km1D0_5JoXJmuStZGDFlJC4bWW6z2bOCa0dGY2ZpfoXFrMxpKVumqZvbyGkEtsYk7HDf6Yso8MUxO3Rs4fRJBLMNsVVfuLTCbi0wj_tCJMELGhUFjHvWtMR4hji7EChTdISsbCNCpD8eF6jLdfqgH8lEkHxXFCuWzAsn91EnLAvKYSdudJNUfKq3QWz1m-nonfRXsCo0LxFeI4uPV_1v9PcwNT44O1eH-8cEavKSRNh9pHWZRV9w7hFpTs9GoNoNvT32X7gAhmEH9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+morphological%2C+magnetic+properties+and+cation+distribution+of+Ce+and+Sm+co-substituted+nano+crystalline+cobalt+ferrite&rft.jtitle=Materials+chemistry+and+physics&rft.au=Ahmad%2C+Syed+Ismail&rft.au=Ansari%2C+Shakeel+Ahmed&rft.au=Ravi+Kumar%2C+D.&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=208&rft.spage=248&rft.epage=257&rft_id=info:doi/10.1016%2Fj.matchemphys.2018.01.050&rft.externalDocID=S0254058418300506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |