Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite

Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a s...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 208; pp. 248 - 257
Main Authors Ahmad, Syed Ismail, Ansari, Shakeel Ahmed, Ravi Kumar, D.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.04.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications. [Display omitted] •Substitution RE (Sm and Ce) has led to micro strain in the crystal.•Cation distribution has been proposed.•Surface effect played an important role in magnetization.•YK angle increased with RE (Sm, Ce) concentration.
AbstractList Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications. [Display omitted] •Substitution RE (Sm and Ce) has led to micro strain in the crystal.•Cation distribution has been proposed.•Surface effect played an important role in magnetization.•YK angle increased with RE (Sm, Ce) concentration.
Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel combustion method to study structural, morphological and magnetic properties. X-ray diffraction (XRD) revealed the spinel structure with a secondary phase of RE2O3 for higher molar concentration of rare earth ions. Williamson-Hall equation used to determine crystallite size and strain produced. An increase in specific surface area and Strain, while a decrease in the crystallite size were observed with increasing Sm and Ce concentrations. Scanning electron microscopy (SEM) micrographs showed inhomogeneous grain distributions with some agglomerates, an average grain size was found to be 0.15 μm. Energy dispersive x-ray spectroscopy (EDAX) confirmed the stoichiometry of the samples. Surface morphology studies were carried out by Transmission electron microscopy (TEM) studies which corroborates the presence of agglomerations in the sample. Fourier transform infrared spectroscopy (FTIR) spectra confirmed the spinel phase by showing two frequency bands υ1 in frequency range 580-559 cm−1 and lower frequency band υ2 at 392-372 cm-1. The force constants calculated for tetrahedral position was found to be more than that of octahedral position. Based on structural properties a cation distribution was proposed. Vibrating sample magnetometer (VSM) technique at room temperature used to study the magnetic properties, saturation magnetization (Ms), coercivity (Hc), anisotropy constant and initial permeability. Ms and Hc were found decreasing with increasing concentration of rare earth ions which has been attributed to weakening of A-B interaction, due to decrease in particle size and surface effect. Yafet-Kittle (YK) angle was found increasing with rare earth concentrations. The Ms and Hc of cobalt ferrite particles can be tailored for various applications.
Author Ravi Kumar, D.
Ahmad, Syed Ismail
Ansari, Shakeel Ahmed
Author_xml – sequence: 1
  givenname: Syed Ismail
  orcidid: 0000-0003-3329-5127
  surname: Ahmad
  fullname: Ahmad, Syed Ismail
  email: dr.syedismailahmad@gmail.com, sahmed@ibnsina.edu.sa
  organization: Physics Division, Basic Science Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
– sequence: 2
  givenname: Shakeel Ahmed
  surname: Ansari
  fullname: Ansari, Shakeel Ahmed
  organization: Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 3
  givenname: D.
  surname: Ravi Kumar
  fullname: Ravi Kumar, D.
  organization: Department of Chemistry, Osmania University, Hyderabad, Telangana State, India
BookMark eNqNkM1r3DAQxUVJoJu0_4NKr7WjD9srn0pZ-hEI9JDmLCR5lNViS640Luw1f3md3R5KTjkNj3nvDfO7IhcxRSDkA2c1Z7y7OdSTQbeHad4fSy0YVzXjNWvZG7LhattXUnJxQTZMtE3FWtW8JVelHBjjW87lhjzdY14cLtmMn-iU8rxPY3oM7iTNYwQMjs45zZAxQKEmDtQZDCnSIRTMwS4nkTzdwWl7P1GXqrLYggEXhIFGExN1-VjQjGOIsO6tGZF6yDkgvCOX3owF3v-b1-Th29dfux_V3c_vt7svd5WTTY9V10Pr-q20rVQMrBCd8WA7ZV3vOtH03jQDcOsH46VSwjHeqN5aB8wI0YCX1-TjuXd95_cCBfUhLTmuJ7VgjWol5y1fXZ_PLpdTKRm8dgFPD2M2YdSc6Wfw-qD_A6-fwWvG9Qp-behfNMw5TCYfX5XdnbOwgvgTIOviAkQHQ8jgUA8pvKLlLw-qrAU
CitedBy_id crossref_primary_10_1007_s00339_021_04907_w
crossref_primary_10_1016_j_ceramint_2019_10_191
crossref_primary_10_1007_s10854_021_05928_0
crossref_primary_10_1016_j_jmmm_2024_172267
crossref_primary_10_1007_s11356_019_05286_9
crossref_primary_10_1016_j_ccr_2024_216198
crossref_primary_10_1007_s00339_022_05720_9
crossref_primary_10_1007_s41779_023_00982_9
crossref_primary_10_1016_j_molstruc_2023_137382
crossref_primary_10_1007_s11051_023_05879_z
crossref_primary_10_1016_j_matpr_2023_03_585
crossref_primary_10_1016_j_jmmm_2021_167985
crossref_primary_10_1007_s00339_019_3048_0
crossref_primary_10_1016_j_nimb_2024_165592
crossref_primary_10_1016_j_ultsonch_2019_02_022
crossref_primary_10_1016_j_ceramint_2025_01_057
crossref_primary_10_1016_j_physb_2019_411676
crossref_primary_10_3390_nano9030430
crossref_primary_10_1016_j_jmmm_2025_172950
crossref_primary_10_1016_j_jmmm_2019_165666
crossref_primary_10_1016_j_rinp_2019_102166
crossref_primary_10_1016_j_jallcom_2024_173708
crossref_primary_10_1016_j_mssp_2022_107111
crossref_primary_10_1016_j_matchemphys_2020_122941
crossref_primary_10_1016_j_molstruc_2024_138241
crossref_primary_10_1016_j_mtcomm_2024_109838
crossref_primary_10_1016_j_matchemphys_2019_02_022
crossref_primary_10_1016_j_jmmm_2021_168664
crossref_primary_10_1016_j_ceramint_2019_10_122
crossref_primary_10_1007_s10854_019_00988_9
crossref_primary_10_1016_j_matchemphys_2025_130746
crossref_primary_10_15251_DJNB_2022_174_1283
crossref_primary_10_1007_s11664_020_08713_7
crossref_primary_10_1007_s00339_020_03894_8
crossref_primary_10_1016_j_ultsonch_2019_104638
crossref_primary_10_1007_s00339_021_04941_8
crossref_primary_10_1007_s10854_022_07912_8
crossref_primary_10_1080_21870764_2018_1563036
crossref_primary_10_1016_j_matchemphys_2021_124862
crossref_primary_10_3390_ma11112095
crossref_primary_10_1016_j_ceramint_2024_05_397
crossref_primary_10_1016_j_mtchem_2021_100588
crossref_primary_10_1007_s42250_023_00834_w
crossref_primary_10_1016_j_inoche_2022_109969
crossref_primary_10_1080_00150193_2019_1691392
crossref_primary_10_1109_TMAG_2021_3092581
crossref_primary_10_1007_s10854_024_12047_z
crossref_primary_10_1039_D0RA10140K
crossref_primary_10_1016_j_ceramint_2025_02_138
crossref_primary_10_1007_s13369_024_09638_7
crossref_primary_10_32362_2410_6593_2025_20_1_63_74
crossref_primary_10_1016_j_ceramint_2019_01_125
crossref_primary_10_1016_j_physleta_2024_129476
crossref_primary_10_1007_s00339_024_07476_w
crossref_primary_10_1007_s10854_021_06913_3
crossref_primary_10_1016_j_radphyschem_2024_112412
crossref_primary_10_1007_s00339_022_05470_8
crossref_primary_10_3103_S1061386221040038
crossref_primary_10_1016_j_jallcom_2020_158114
crossref_primary_10_1007_s11664_020_08414_1
crossref_primary_10_1080_21870764_2021_2004727
crossref_primary_10_1016_j_cjph_2018_12_018
crossref_primary_10_1016_j_jre_2019_07_002
crossref_primary_10_1016_j_jre_2019_07_005
crossref_primary_10_1016_j_ijbiomac_2024_131752
crossref_primary_10_1063_9_0000915
crossref_primary_10_1016_j_arabjc_2021_103261
crossref_primary_10_1016_j_jallcom_2023_172830
crossref_primary_10_1016_j_inoche_2023_110752
crossref_primary_10_1016_j_optmat_2024_115631
crossref_primary_10_1016_j_jmmm_2020_167662
crossref_primary_10_1007_s10832_021_00252_9
crossref_primary_10_1007_s10854_024_13334_5
crossref_primary_10_1016_j_jmmm_2021_168744
crossref_primary_10_1016_j_inoche_2023_111034
crossref_primary_10_1016_j_jallcom_2020_155669
crossref_primary_10_1016_j_physb_2023_414873
crossref_primary_10_1088_1361_6528_ac31e8
crossref_primary_10_1016_j_ceramint_2018_10_260
crossref_primary_10_21923_jesd_687757
crossref_primary_10_1016_j_jallcom_2021_159563
crossref_primary_10_1016_j_mseb_2023_116514
crossref_primary_10_1016_j_solidstatesciences_2025_107824
crossref_primary_10_1007_s10854_021_05487_4
crossref_primary_10_1016_j_ceramint_2024_03_115
crossref_primary_10_1016_j_jmmm_2022_170023
crossref_primary_10_1007_s11696_023_02670_1
crossref_primary_10_2139_ssrn_4139086
crossref_primary_10_1002_pssa_202200718
crossref_primary_10_1016_j_measen_2024_101307
crossref_primary_10_1016_j_jmmm_2021_168577
crossref_primary_10_1007_s00339_022_06096_6
crossref_primary_10_1007_s11696_023_02664_z
crossref_primary_10_1016_j_matpr_2023_04_186
crossref_primary_10_1016_j_jhazmat_2020_124561
crossref_primary_10_1016_j_jmmm_2022_170095
crossref_primary_10_1016_j_matchemphys_2023_128832
crossref_primary_10_1016_j_jmmm_2022_169840
crossref_primary_10_1007_s00339_020_03997_2
crossref_primary_10_1007_s00339_020_3443_6
crossref_primary_10_1016_j_jssc_2023_124275
crossref_primary_10_3390_magnetochemistry8050051
crossref_primary_10_1016_j_mtcomm_2022_104964
crossref_primary_10_1016_j_matchemphys_2019_121902
crossref_primary_10_1016_j_physb_2019_02_055
crossref_primary_10_1007_s13399_024_05785_x
crossref_primary_10_1007_s10973_022_11665_1
crossref_primary_10_1016_j_ceramint_2019_09_246
crossref_primary_10_1007_s11356_024_34978_0
Cites_doi 10.1002/9780470386323
10.1016/j.jallcom.2009.08.086
10.1103/PhysRevLett.77.394
10.1016/j.jmmm.2016.05.035
10.1016/j.ceramint.2016.01.007
10.1016/j.jallcom.2012.07.050
10.1016/j.ceramint.2015.11.100
10.1039/C5RA14351A
10.1155/2015/294239
10.1016/j.ceramint.2016.04.121
10.1007/s13204-017-0567-x
10.1016/S0304-8853(99)00347-9
10.1016/j.jtusci.2015.04.003
10.1016/j.cej.2014.03.113
10.1016/j.ceramint.2012.02.065
10.1016/j.jallcom.2014.06.156
10.1007/s13369-016-2297-x
10.1016/j.jmatprotec.2007.07.012
10.1103/PhysRev.87.290
10.1111/j.1151-2916.1999.tb02241.x
10.1039/C4RA08342C
10.1016/j.mseb.2017.03.012
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2018
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.matchemphys.2018.01.050
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3312
EndPage 257
ExternalDocumentID 10_1016_j_matchemphys_2018_01_050
S0254058418300506
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SMS
SPG
SSH
WUQ
7SR
7U5
8BQ
8FD
AFXIZ
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c349t-69e5c973b5380eb226afeb68bc9c6249fa4de1bfdaf3882c01489bbce0a224ef3
IEDL.DBID .~1
ISSN 0254-0584
IngestDate Fri Jul 25 03:04:15 EDT 2025
Tue Jul 01 00:04:49 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cation distribution
VSM
Y-K angle
Cobalt ferrite
Magnetic properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-69e5c973b5380eb226afeb68bc9c6249fa4de1bfdaf3882c01489bbce0a224ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3329-5127
PQID 2048531151
PQPubID 2045435
PageCount 10
ParticipantIDs proquest_journals_2048531151
crossref_citationtrail_10_1016_j_matchemphys_2018_01_050
crossref_primary_10_1016_j_matchemphys_2018_01_050
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2018_01_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials chemistry and physics
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wu, Ding, Song, Li, Wang (bib9) 2016; 42
Kumar, Kar (bib1) 2016; 416
Ahmada, Koteshwar Rao, Syed (bib15) 2016; 10
Lin, Lin, He, Wang, Dong (bib6) 2015
Cullity, Graham (bib4) 2008
Ahmad, Ravi Kumar, Ahmed Syed, Satar, Ansari (bib18) 2017; 42
Srinivasa Rao, Mahesh Kumar, Chaitanya Varma, Choudary, Rao (bib19) 2009; 488
Mohamed, Yehia (bib23) 2014; 615
Tatarchuk, Boyko, Yaremiy, Rachiy, Fedorchenko (bib11) 2014; 15
Rashad, Mohamed, El-Shall (bib5) 2008; 198
Kumar, Kar (bib17) 2016; 42
Saafan, Assar, Mansour (bib2) 2012; 542
Zhao, Wang, Zhang, Wu, Li, Ping Liu (bib7) 2014; 250
Murugesan, Chandrasekaran (bib16) 2015; 5
Huang, Huang, Li, Yang (bib13) 2016; 10
Ahmad, Mohammed, Bahafi, Suresh (bib14) 2017; 7
Kumar, KrSingh, KumarZope, Kar (bib22) 2017; 220
Sickafus, Wills, Grimes (bib3) 1999; 82
Yafet, Kittle (bib10) 1952; 87
Kodama, Berkowitz, McNiff, Foner (bib21) 1996; 77
Virlan, Bulai, Caltun, Hempelmann, Pui (bib8) 2016; 42
Kumar, Kar (bib12) 2012; 38
Nikam, Jadhav, Khot, Bohara, Hong, Mali, Pawar (bib20) 2015; 5
Kodama (bib24) 1999; 200
Ahmad (10.1016/j.matchemphys.2018.01.050_bib14) 2017; 7
Ahmad (10.1016/j.matchemphys.2018.01.050_bib18) 2017; 42
Srinivasa Rao (10.1016/j.matchemphys.2018.01.050_bib19) 2009; 488
Cullity (10.1016/j.matchemphys.2018.01.050_bib4) 2008
Tatarchuk (10.1016/j.matchemphys.2018.01.050_bib11) 2014; 15
Wu (10.1016/j.matchemphys.2018.01.050_bib9) 2016; 42
Nikam (10.1016/j.matchemphys.2018.01.050_bib20) 2015; 5
Kumar (10.1016/j.matchemphys.2018.01.050_bib17) 2016; 42
Kodama (10.1016/j.matchemphys.2018.01.050_bib21) 1996; 77
Kumar (10.1016/j.matchemphys.2018.01.050_bib12) 2012; 38
Kodama (10.1016/j.matchemphys.2018.01.050_bib24) 1999; 200
Rashad (10.1016/j.matchemphys.2018.01.050_bib5) 2008; 198
Murugesan (10.1016/j.matchemphys.2018.01.050_bib16) 2015; 5
Saafan (10.1016/j.matchemphys.2018.01.050_bib2) 2012; 542
Mohamed (10.1016/j.matchemphys.2018.01.050_bib23) 2014; 615
Kumar (10.1016/j.matchemphys.2018.01.050_bib1) 2016; 416
Sickafus (10.1016/j.matchemphys.2018.01.050_bib3) 1999; 82
Yafet (10.1016/j.matchemphys.2018.01.050_bib10) 1952; 87
Huang (10.1016/j.matchemphys.2018.01.050_bib13) 2016; 10
Ahmada (10.1016/j.matchemphys.2018.01.050_bib15) 2016; 10
Lin (10.1016/j.matchemphys.2018.01.050_bib6) 2015
Zhao (10.1016/j.matchemphys.2018.01.050_bib7) 2014; 250
Kumar (10.1016/j.matchemphys.2018.01.050_bib22) 2017; 220
Virlan (10.1016/j.matchemphys.2018.01.050_bib8) 2016; 42
References_xml – volume: 200
  start-page: 359
  year: 1999
  end-page: 372
  ident: bib24
  article-title: Magnetic nanoparticles
  publication-title: J. Magn. Magn Mater.
– volume: 42
  start-page: 389
  year: 2017
  end-page: 398
  ident: bib18
  article-title: Structural, spectroscopic and magnetic study of nanocrystalline cerium-substituted magnesium ferrites
  publication-title: Arabian J. Sci. Eng.
– volume: 488
  start-page: L6
  year: 2009
  end-page: L9
  ident: bib19
  article-title: Cation distribution of titanium substituted cobalt ferrites
  publication-title: J. Alloy. Comp.
– year: 2008
  ident: bib4
  article-title: Introduction to Magnetic Materials
– volume: 42
  start-page: 11958
  year: 2016
  end-page: 11965
  ident: bib8
  article-title: Rare earth metals' influence on the heat generating capability of cobalt ferrite nanoparticles
  publication-title: Ceram. Ind
– volume: 198
  start-page: 139
  year: 2008
  end-page: 146
  ident: bib5
  article-title: Magnetic properties of nanocrystalline Sm-substituted CoFe
  publication-title: J. Mater. Process. Technol.
– volume: 7
  start-page: 243
  year: 2017
  end-page: 252
  ident: bib14
  article-title: Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte
  publication-title: Appl. Nanosci.
– year: 2015
  ident: bib6
  article-title: The structural and magnetic properties of gadolinium doped CoFe2O4 nanoferrites
  publication-title: J. Nanomater.
– volume: 42
  start-page: 4246
  year: 2016
  end-page: 4255
  ident: bib9
  article-title: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles
  publication-title: Ceram. Ind
– volume: 416
  start-page: 335
  year: 2016
  end-page: 341
  ident: bib1
  article-title: Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite
  publication-title: J. Magn. Magn Mater.
– volume: 5
  start-page: 73714
  year: 2015
  ident: bib16
  article-title: Impact of Gd
  publication-title: RSC Adv.
– volume: 15
  start-page: 792
  year: 2014
  end-page: 797
  ident: bib11
  article-title: Synthesis, crystal chemistry and antistructure modelling of CoFe2O4 nanoparticles prepared by citrate sol-gel method
  publication-title: Phys. Chem. Space
– volume: 77
  start-page: 394
  year: 1996
  end-page: 397
  ident: bib21
  article-title: Surface spin disorder in NiFe2O4 nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 2338
  year: 2015
  end-page: 2345
  ident: bib20
  article-title: Cation distribution, structural, morphological and magnetic properties of Co
  publication-title: RSC Adv.
– volume: 250
  start-page: 164
  year: 2014
  end-page: 174
  ident: bib7
  article-title: Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red
  publication-title: Chem. Eng. J.
– volume: 87
  start-page: 290
  year: 1952
  end-page: 294
  ident: bib10
  article-title: Anti ferromagnetic arrangements in ferrites
  publication-title: Phys. Rev.
– volume: 10
  start-page: 381
  year: 2016
  end-page: 385
  ident: bib15
  article-title: Sintering temperature effect on density, structural and morphologicalproperties of Mg- and Sr-doped ceria
  publication-title: J. Taibah Univ. Sci.
– volume: 38
  start-page: 4771
  year: 2012
  end-page: 4782
  ident: bib12
  article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2_xLaxO4)
  publication-title: Ceram. Ind
– volume: 42
  start-page: 6640
  year: 2016
  end-page: 6647
  ident: bib17
  article-title: Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite
  publication-title: Ceram. Int.
– volume: 542
  start-page: 192
  year: 2012
  end-page: 198
  ident: bib2
  article-title: Magnetic and electrical properties of Co
  publication-title: J. Alloy. Comp.
– volume: 10
  start-page: 590
  year: 2016
  end-page: 593
  ident: bib13
  article-title: Structural and static magnetic properties of Ce –substituted NiZnCo ferrite nano powder, Optoelectronics
  publication-title: Adv. Mater– Rapid communications
– volume: 220
  start-page: 73
  year: 2017
  end-page: 81
  ident: bib22
  article-title: Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite
  publication-title: Mater. Sci. Eng., B
– volume: 82
  year: 1999
  ident: bib3
  article-title: Structure of spinel
  publication-title: J. Am. Ceram. Soc.
– volume: 615
  start-page: 181
  year: 2014
  end-page: 187
  ident: bib23
  article-title: Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite
  publication-title: J. Alloy. Comp.
– volume: 15
  start-page: 792
  year: 2014
  ident: 10.1016/j.matchemphys.2018.01.050_bib11
  article-title: Synthesis, crystal chemistry and antistructure modelling of CoFe2O4 nanoparticles prepared by citrate sol-gel method
  publication-title: Phys. Chem. Space
– year: 2008
  ident: 10.1016/j.matchemphys.2018.01.050_bib4
  doi: 10.1002/9780470386323
– volume: 488
  start-page: L6
  year: 2009
  ident: 10.1016/j.matchemphys.2018.01.050_bib19
  article-title: Cation distribution of titanium substituted cobalt ferrites
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2009.08.086
– volume: 77
  start-page: 394
  year: 1996
  ident: 10.1016/j.matchemphys.2018.01.050_bib21
  article-title: Surface spin disorder in NiFe2O4 nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.394
– volume: 416
  start-page: 335
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib1
  article-title: Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2016.05.035
– volume: 42
  start-page: 6640
  issue: 6
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib17
  article-title: Correlation between lattice strain and magnetic behavior in non-magnetic Ca substituted nano-crystalline cobalt ferrite
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.01.007
– volume: 542
  start-page: 192
  year: 2012
  ident: 10.1016/j.matchemphys.2018.01.050_bib2
  article-title: Magnetic and electrical properties of Co1−x Cax Fe2O4nanoparticles synthesized by the auto combustion method
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2012.07.050
– volume: 42
  start-page: 4246
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib9
  article-title: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles
  publication-title: Ceram. Ind
  doi: 10.1016/j.ceramint.2015.11.100
– volume: 10
  start-page: 590
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib13
  article-title: Structural and static magnetic properties of Ce –substituted NiZnCo ferrite nano powder, Optoelectronics
  publication-title: Adv. Mater– Rapid communications
– volume: 5
  start-page: 73714
  year: 2015
  ident: 10.1016/j.matchemphys.2018.01.050_bib16
  article-title: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14351A
– year: 2015
  ident: 10.1016/j.matchemphys.2018.01.050_bib6
  article-title: The structural and magnetic properties of gadolinium doped CoFe2O4 nanoferrites
  publication-title: J. Nanomater.
  doi: 10.1155/2015/294239
– volume: 42
  start-page: 11958
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib8
  article-title: Rare earth metals' influence on the heat generating capability of cobalt ferrite nanoparticles
  publication-title: Ceram. Ind
  doi: 10.1016/j.ceramint.2016.04.121
– volume: 7
  start-page: 243
  issue: 5
  year: 2017
  ident: 10.1016/j.matchemphys.2018.01.050_bib14
  article-title: Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-017-0567-x
– volume: 200
  start-page: 359
  issue: 1–3
  year: 1999
  ident: 10.1016/j.matchemphys.2018.01.050_bib24
  article-title: Magnetic nanoparticles
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/S0304-8853(99)00347-9
– volume: 10
  start-page: 381
  year: 2016
  ident: 10.1016/j.matchemphys.2018.01.050_bib15
  article-title: Sintering temperature effect on density, structural and morphologicalproperties of Mg- and Sr-doped ceria
  publication-title: J. Taibah Univ. Sci.
  doi: 10.1016/j.jtusci.2015.04.003
– volume: 250
  start-page: 164
  year: 2014
  ident: 10.1016/j.matchemphys.2018.01.050_bib7
  article-title: Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.113
– volume: 38
  start-page: 4771
  year: 2012
  ident: 10.1016/j.matchemphys.2018.01.050_bib12
  article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2_xLaxO4)
  publication-title: Ceram. Ind
  doi: 10.1016/j.ceramint.2012.02.065
– volume: 615
  start-page: 181
  year: 2014
  ident: 10.1016/j.matchemphys.2018.01.050_bib23
  article-title: Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2014.06.156
– volume: 42
  start-page: 389
  year: 2017
  ident: 10.1016/j.matchemphys.2018.01.050_bib18
  article-title: Structural, spectroscopic and magnetic study of nanocrystalline cerium-substituted magnesium ferrites
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-016-2297-x
– volume: 198
  start-page: 139
  year: 2008
  ident: 10.1016/j.matchemphys.2018.01.050_bib5
  article-title: Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.07.012
– volume: 87
  start-page: 290
  issue: 2
  year: 1952
  ident: 10.1016/j.matchemphys.2018.01.050_bib10
  article-title: Anti ferromagnetic arrangements in ferrites
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.290
– volume: 82
  issue: 12
  year: 1999
  ident: 10.1016/j.matchemphys.2018.01.050_bib3
  article-title: Structure of spinel
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02241.x
– volume: 5
  start-page: 2338
  year: 2015
  ident: 10.1016/j.matchemphys.2018.01.050_bib20
  article-title: Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08342C
– volume: 220
  start-page: 73
  year: 2017
  ident: 10.1016/j.matchemphys.2018.01.050_bib22
  article-title: Tuning of magnetic property by lattice strain in lead substituted cobalt ferrite
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2017.03.012
SSID ssj0017113
Score 2.5436745
Snippet Rare earth Sm and Ce co-substituted nano crystalline cobalt ferrite, CoFe2-x-ySmxCeyO4 (x = y = 0.00, 0.5, 0.1, 0.12 and 0.25) have been synthesized by sol-gel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 248
SubjectTerms Agglomerates
Cation distribution
Cations
Cobalt
Cobalt ferrite
Cobalt ferrites
Coercivity
Crystal structure
Crystallinity
Energy dispersive X ray spectroscopy
Ferrites
Fourier transforms
Frequencies
Infrared spectra
Magnetic permeability
Magnetic properties
Magnetic saturation
Magnetism
Metal ions
Morphology
Rare earth elements
Scanning electron microscopy
Spinel
Stoichiometry
Substitutes
Transmission electron microscopy
VSM
X-ray diffraction
Y-K angle
Title Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite
URI https://dx.doi.org/10.1016/j.matchemphys.2018.01.050
https://www.proquest.com/docview/2048531151
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EwcdBfOJjlQgejdtus20DXpZFWRW9rIK3kKSJKLvtonvx4sFf7kwfvvAgeGzzoMxMJ1-GmW8ADk1IBZom4i6yCRdJprmMpOdOZs5JjVZlKaB_dR0PbsXFXfduBvpNLQylVda-v_Lppbeu37RrabYnDw_tIdVxB3h-olESiwnRbguRkJUfv36keYRJWLVIxsmcZs_DwWeOF4JCFM2YggiU5ZWWDJ5Ugv_7GfXDW5dH0NkKLNfYkfWqz1uFGZevwUK_adm2Bktf2AXX4W1YcsMSr8YRGxco0MbR4aO-z6l8kU0oGP9ErKpM5xmrAngsow3rTlis8KzvytHhmNmCP6OvqRIMMpbrvGD26QUxJpF7Oxw3ejRlnggfp24Dbs9Ob_oDXrdc4DYScspj6bpWJpFBPxjgpbsTa-9MnBorbYw3Na9F5kLjM-0jxOaW4pHSGOsCjVjA-WgTZvMid1vAbCJijXBAd4QRMkwN-taga43xiDh0KrYhbYSsbM1HTm0xRqpJPHtUX_SjSD8qCBXqZxs6H0snFSnHXxadNJpU3yxM4eHxl-WtRvuq_s1pXCDcQVAd7vxv911YpKcqJagFs2gfbg_RztTsl-a8D3O988vB9TvG-wSl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKpVyQJQWlUepkeit7ubhTWIJDmhbtJTHZUHi5tqOXVGxyQpWqrj0wF_iDzKTOJRWPSBVHBPLluUZz3wezXwDsGViKtA0KXepzbnIS81lKj13snROatQqSwH9o-NseCq-nvXPZuC2q4WhtMpg-1ub3ljr8KcXTrM3OT_vjaiOO0L_iUpJLCZZyKw8cNc_8d12tbP_GYX8IUn2vpwMhjy0FuA2FXLKM-n6Vuapwfse4eMyybR3JiuMlTbDF4nXonSx8aX2KWJQS3E3aYx1kUaf53yK6z6D5wKnU9uET7_u80riPG57MuPuOG3vBWz-TipDFIqyGFPUgtLKioYylGr-_-0U_3IPjc_bW4SFAFbZbnser2DGVUswN-h6xC3B_AM6w9dwM2rIaInI4yMb1yjBzrLip_5eUb0km1D0_5JoXJmuStZGDFlJC4bWW6z2bOCa0dGY2ZpfoXFrMxpKVumqZvbyGkEtsYk7HDf6Yso8MUxO3Rs4fRJBLMNsVVfuLTCbi0wj_tCJMELGhUFjHvWtMR4hji7EChTdISsbCNCpD8eF6jLdfqgH8lEkHxXFCuWzAsn91EnLAvKYSdudJNUfKq3QWz1m-nonfRXsCo0LxFeI4uPV_1v9PcwNT44O1eH-8cEavKSRNh9pHWZRV9w7hFpTs9GoNoNvT32X7gAhmEH9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural%2C+morphological%2C+magnetic+properties+and+cation+distribution+of+Ce+and+Sm+co-substituted+nano+crystalline+cobalt+ferrite&rft.jtitle=Materials+chemistry+and+physics&rft.au=Ahmad%2C+Syed+Ismail&rft.au=Ansari%2C+Shakeel+Ahmed&rft.au=Ravi+Kumar%2C+D.&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=208&rft.spage=248&rft.epage=257&rft_id=info:doi/10.1016%2Fj.matchemphys.2018.01.050&rft.externalDocID=S0254058418300506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon