Real-time human body tracking based on data fusion from multiple RGB-D sensors
In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the senso...
Saved in:
Published in | Multimedia tools and applications Vol. 76; no. 3; pp. 4249 - 4271 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the sensors at two different levels: the whole skeleton and each joint individually. Then, each joint is tracked by a Kalman filter, resulting in a smooth tracking performance. We have also developed a new dataset consisting of six subjects performing seven different gestures, recorded with four Kinect devices simultaneously. Experimental results performed on this dataset show that the system obtains better smoothness results than the most representative methods found in the literature. The proposed system operates at a processing rate of 25 frames per second (including the whole algorithm loop, i.e., data acquisition and processing) without the explicit use of the multithreading capabilities of the system. |
---|---|
AbstractList | In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the sensors at two different levels: the whole skeleton and each joint individually. Then, each joint is tracked by a Kalman filter, resulting in a smooth tracking performance. We have also developed a new dataset consisting of six subjects performing seven different gestures, recorded with four Kinect devices simultaneously. Experimental results performed on this dataset show that the system obtains better smoothness results than the most representative methods found in the literature. The proposed system operates at a processing rate of 25 frames per second (including the whole algorithm loop, i.e., data acquisition and processing) without the explicit use of the multithreading capabilities of the system. |
Author | Núñez, Juan C. Cabido, Raúl Pantrigo, Juan J. Montemayor, Antonio S. |
Author_xml | – sequence: 1 givenname: Juan C. surname: Núñez fullname: Núñez, Juan C. email: jc.nunezm@alumnos.urjc.es organization: Universidad Rey Juan Carlos – sequence: 2 givenname: Raúl surname: Cabido fullname: Cabido, Raúl organization: Universidad Rey Juan Carlos – sequence: 3 givenname: Antonio S. surname: Montemayor fullname: Montemayor, Antonio S. organization: Universidad Rey Juan Carlos – sequence: 4 givenname: Juan J. surname: Pantrigo fullname: Pantrigo, Juan J. organization: Universidad Rey Juan Carlos |
BookMark | eNp9kD1PwzAQhi0EElD4AWyWWFgMvtiO05HPglSBVMFsOY5dAold7GTov8dVGVAlmO6G5zm99x6jfR-8RegM6CVQKq8SAOUFoVASJsWUlHvoCIRkRMoC9vPOKkqkoHCIjlP6oBkUBT9CzwurOzK0vcXvY689rkOzxkPU5rP1S1zrZBscPG70oLEbU5t3F0OP-7Eb2lVn8WJ2Q-5wsj6FmE7QgdNdsqc_c4LeHu5fbx_J_GX2dHs9J4bx6UDKqRS1pkaAE4w609AaQHJeGluALbmpKidcIZ1j3NWMMWNyYsNkqauGM84m6GJ7dxXD12jToPo2Gdt12tswJgVVxQG4KGRGz3fQjzBGn9NlSoIsWQEbSm4pE0NK0Tpl2kEP-d3cRdspoGrTs9r2rHJ9atOzKrMJO-Yqtr2O63-dYuukzPqljb8y_Sl9A-ZPj60 |
CitedBy_id | crossref_primary_10_1016_j_measurement_2019_107455 crossref_primary_10_1016_j_imavis_2019_05_003 crossref_primary_10_1007_s11042_019_7433_7 crossref_primary_10_1016_j_cag_2024_103917 crossref_primary_10_1016_j_neucom_2018_10_009 crossref_primary_10_1007_s10515_021_00293_y crossref_primary_10_1016_j_heliyon_2023_e21606 crossref_primary_10_3390_s22093155 crossref_primary_10_1186_s13673_020_00256_4 crossref_primary_10_3389_fspor_2021_809898 crossref_primary_10_1155_2022_3419951 crossref_primary_10_1016_j_ijleo_2020_164563 |
Cites_doi | 10.1109/CVPR.2016.156 10.1115/1.3662552 10.1115/1.4025810 10.1007/978-3-319-08651-4_2 10.1115/1.4025404 10.1109/CVPR.2016.108 10.1109/CVPRW.2012.6239174 10.1109/CVPR.2016.109 10.1109/IROS.2012.6385968 10.1007/s11263-016-0880-y 10.1016/j.patrec.2013.02.006 10.1007/3-540-45053-X_1 10.1007/978-3-642-44964-2_8 10.1109/CVPR.2016.153 10.1109/TPAMI.2013.250 10.1109/TCSVT.2016.2540978 10.1145/2643188.2643195 10.1007/978-3-319-04114-8_40 10.3233/ICA-160523 10.1109/CVPR.2000.854758 10.1007/978-1-4471-0679-1 10.1109/CVPR.2011.5995316 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Multimedia Tools and Applications is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Multimedia Tools and Applications is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-016-3759-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 4271 |
ExternalDocumentID | 4317053411 10_1007_s11042_016_3759_6 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c349t-6975ba0c51f530fcd0b117446ce21e64c88f5f27ff34fb333cc001c376a8d4343 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Mon Jul 21 09:58:17 EDT 2025 Fri Jul 25 10:39:34 EDT 2025 Tue Jul 01 02:06:38 EDT 2025 Thu Apr 24 23:13:32 EDT 2025 Fri Feb 21 02:32:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | RGBD sensors Sensor fusion Human body tracking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-6975ba0c51f530fcd0b117446ce21e64c88f5f27ff34fb333cc001c376a8d4343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1871763217 |
PQPubID | 54626 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1884114527 proquest_journals_1871763217 crossref_citationtrail_10_1007_s11042_016_3759_6 crossref_primary_10_1007_s11042_016_3759_6 springer_journals_10_1007_s11042_016_3759_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170200 2017-2-00 20170201 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Berger K (2013) The role of RGB-D benchmark datasets: an overview. Comput Res Reposit:4321–4326 Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1401–1409 Bünger M (2013) Evaluation of skeleton trackers and gesture recognition for human-robot interaction. Master Thesis, Aalborg University Hong Yoon J, Lee C-R, Yang M-H, Yoon K-J (2016) Online multi-object tracking via structural constraint event aggregation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1392–1400 Lacabex B, Cuesta A, Montemayor AS, Pantrigo JJ (2016) Lightweight tracking-by-detection system for multiple pedestrian targets. Integrated computer-aided engineering. In press PerniciFDel BimboAObject tracking by oversampling local featuresIEEE Trans Pattern Anal Mach Intell201436122538255110.1109/TPAMI.2013.250 Willianson B, LaViola J, Roberts T, Garrity P. (2012) Multi-kinect tracking for dismounted soldier training. In: Interservice/industry training, simulation and education conference (I/ITSEC) Yeung K-Y, Kwok T-H, Wang CC (2013) Improved skeleton tracking by duplex kinects: a practical approach for real-time applications. J Comput Inf Sci Eng 13(4) Zhang B, Li Z, Perina A, Del Bue A, Murino V (in press 2016) Adaptive local movement modelling (ALMM) for object tracking. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2540978 ChenLWeiHFerrymanJA survey of human motion analysis using depth imageryPattern Recogn Lett201334151995200610.1016/j.patrec.2013.02.006 KalmanREA new approach to linear filtering and prediction problemsJ Basic Eng1960823510.1115/1.3662552 Deutscher J, Blake A, Reid I (2000) Articulated body motion capture by annealed particle filtering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 126–133 MoratoCKaipaKNZhaoBGuptaSKToward safe human robot collaboration by using multiple kinects based real-time human trackingJ Comput Inform Sci Eng201414101100610.1115/1.4025810 Wang L, Ouyang W, Wang X, Lu H (2016) STCT: sequentially training convolutional networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1373–1381 Ye M, Zhang Q, Wang L, Zhu J, Yang R, Gall J (2013) A survey on human motion analysis from depth data. In: Grzegorzek M, Theobalt C, Reinhard K, Andreas K (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications, lecture notes in computer science, pp 149–187 MacCormick J (2002) Stochastic algorithm for visual tracking. Springer Papadopoulos G, Axenopoulos A, Daras P (2014) Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin C, Hopfgartner F, Hurst W, Johansen H, Lee H, Connor N (eds) MultiMedia modeling, lecture notes in computer science, pp 473–483 Behún K, Herout A, Páldy A (2014) Kinect-supported dataset creation for human pose estimation. In: Proceedings of the 30th Spring conference on computer graphics (SCCG), pp 55–62 MacCormick J, Isard M (2000) Partitioned sampling, articulated objects and interface-quality hand tracking. In: Proceedings of the 6th European conference on computer vision (ECCV), part II, pp 3–19 Destelle F, Ahmadi A, O’Connor N, Moran K, Chatzitofis A, Zarpalas D, Daras P (2014) Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: Proceedings of signal processing conference (EUSIPCO), pp 371–375 Zhang L, Sturm J, Cremers D, Lee D. (2012) Real-time human motion tracking using multiple depth cameras. In: Proceedings of the international conference on intelligent robot systems (IROS) Souvenir R, Hajja A, Spurlock S (2012) Gamesourcing to acquire labeled human pose estimation data. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 1--6 Yu H, Zhou Y, Simmons J, Przybyla C P, Lin Y, Fan X, Mi Y, Wang S (2016) Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 952–960 Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images, In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, pp 1297–1304 Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (in press 2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis. doi:10.1007/s11263-016-0880-y Berger K (2014) A state of the art report on multiple RGB-D sensor research and on publicly available RGB-D datasets. In: Computer vision and machine learning with RGB-d sensors. Springer International Publishing, pp 27–44 Zhu G, Porikli F, Hongdong L (2016) Beyond local search: tracking objects everywhere with instance-specific proposals 3759_CR27 3759_CR26 3759_CR25 3759_CR24 C Morato (3759_CR14) 2014; 14 3759_CR23 3759_CR22 3759_CR21 3759_CR20 L Chen (3759_CR6) 2013; 34 RE Kalman (3759_CR10) 1960; 82 3759_CR8 3759_CR9 3759_CR15 3759_CR7 3759_CR13 3759_CR19 3759_CR18 3759_CR17 3759_CR12 3759_CR11 3759_CR1 F Pernici (3759_CR16) 2014; 36 3759_CR4 3759_CR5 3759_CR2 3759_CR3 |
References_xml | – reference: KalmanREA new approach to linear filtering and prediction problemsJ Basic Eng1960823510.1115/1.3662552 – reference: MacCormick J (2002) Stochastic algorithm for visual tracking. Springer – reference: Bünger M (2013) Evaluation of skeleton trackers and gesture recognition for human-robot interaction. Master Thesis, Aalborg University – reference: ChenLWeiHFerrymanJA survey of human motion analysis using depth imageryPattern Recogn Lett201334151995200610.1016/j.patrec.2013.02.006 – reference: PerniciFDel BimboAObject tracking by oversampling local featuresIEEE Trans Pattern Anal Mach Intell201436122538255110.1109/TPAMI.2013.250 – reference: Deutscher J, Blake A, Reid I (2000) Articulated body motion capture by annealed particle filtering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 126–133 – reference: MoratoCKaipaKNZhaoBGuptaSKToward safe human robot collaboration by using multiple kinects based real-time human trackingJ Comput Inform Sci Eng201414101100610.1115/1.4025810 – reference: Berger K (2014) A state of the art report on multiple RGB-D sensor research and on publicly available RGB-D datasets. In: Computer vision and machine learning with RGB-d sensors. Springer International Publishing, pp 27–44 – reference: Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (in press 2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis. doi:10.1007/s11263-016-0880-y – reference: Willianson B, LaViola J, Roberts T, Garrity P. (2012) Multi-kinect tracking for dismounted soldier training. In: Interservice/industry training, simulation and education conference (I/ITSEC) – reference: Zhu G, Porikli F, Hongdong L (2016) Beyond local search: tracking objects everywhere with instance-specific proposals – reference: Zhang L, Sturm J, Cremers D, Lee D. (2012) Real-time human motion tracking using multiple depth cameras. In: Proceedings of the international conference on intelligent robot systems (IROS) – reference: Zhang B, Li Z, Perina A, Del Bue A, Murino V (in press 2016) Adaptive local movement modelling (ALMM) for object tracking. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2540978 – reference: Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images, In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, pp 1297–1304 – reference: Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1401–1409 – reference: Yu H, Zhou Y, Simmons J, Przybyla C P, Lin Y, Fan X, Mi Y, Wang S (2016) Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 952–960 – reference: Behún K, Herout A, Páldy A (2014) Kinect-supported dataset creation for human pose estimation. In: Proceedings of the 30th Spring conference on computer graphics (SCCG), pp 55–62 – reference: Ye M, Zhang Q, Wang L, Zhu J, Yang R, Gall J (2013) A survey on human motion analysis from depth data. In: Grzegorzek M, Theobalt C, Reinhard K, Andreas K (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications, lecture notes in computer science, pp 149–187 – reference: MacCormick J, Isard M (2000) Partitioned sampling, articulated objects and interface-quality hand tracking. In: Proceedings of the 6th European conference on computer vision (ECCV), part II, pp 3–19 – reference: Yeung K-Y, Kwok T-H, Wang CC (2013) Improved skeleton tracking by duplex kinects: a practical approach for real-time applications. J Comput Inf Sci Eng 13(4) – reference: Berger K (2013) The role of RGB-D benchmark datasets: an overview. Comput Res Reposit:4321–4326 – reference: Lacabex B, Cuesta A, Montemayor AS, Pantrigo JJ (2016) Lightweight tracking-by-detection system for multiple pedestrian targets. Integrated computer-aided engineering. In press – reference: Papadopoulos G, Axenopoulos A, Daras P (2014) Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin C, Hopfgartner F, Hurst W, Johansen H, Lee H, Connor N (eds) MultiMedia modeling, lecture notes in computer science, pp 473–483 – reference: Destelle F, Ahmadi A, O’Connor N, Moran K, Chatzitofis A, Zarpalas D, Daras P (2014) Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: Proceedings of signal processing conference (EUSIPCO), pp 371–375 – reference: Hong Yoon J, Lee C-R, Yang M-H, Yoon K-J (2016) Online multi-object tracking via structural constraint event aggregation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1392–1400 – reference: Souvenir R, Hajja A, Spurlock S (2012) Gamesourcing to acquire labeled human pose estimation data. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 1--6 – reference: Wang L, Ouyang W, Wang X, Lu H (2016) STCT: sequentially training convolutional networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1373–1381 – ident: 3759_CR4 doi: 10.1109/CVPR.2016.156 – volume: 82 start-page: 35 year: 1960 ident: 3759_CR10 publication-title: J Basic Eng doi: 10.1115/1.3662552 – volume: 14 start-page: 011006 issue: 1 year: 2014 ident: 3759_CR14 publication-title: J Comput Inform Sci Eng doi: 10.1115/1.4025810 – ident: 3759_CR9 – ident: 3759_CR3 doi: 10.1007/978-3-319-08651-4_2 – ident: 3759_CR22 doi: 10.1115/1.4025404 – ident: 3759_CR27 doi: 10.1109/CVPR.2016.108 – ident: 3759_CR7 – ident: 3759_CR17 doi: 10.1109/CVPRW.2012.6239174 – ident: 3759_CR5 – ident: 3759_CR2 – ident: 3759_CR23 doi: 10.1109/CVPR.2016.109 – ident: 3759_CR24 doi: 10.1109/IROS.2012.6385968 – ident: 3759_CR25 doi: 10.1007/s11263-016-0880-y – volume: 34 start-page: 1995 issue: 15 year: 2013 ident: 3759_CR6 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2013.02.006 – ident: 3759_CR12 doi: 10.1007/3-540-45053-X_1 – ident: 3759_CR20 – ident: 3759_CR21 doi: 10.1007/978-3-642-44964-2_8 – ident: 3759_CR19 doi: 10.1109/CVPR.2016.153 – volume: 36 start-page: 2538 issue: 12 year: 2014 ident: 3759_CR16 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.250 – ident: 3759_CR26 doi: 10.1109/TCSVT.2016.2540978 – ident: 3759_CR1 doi: 10.1145/2643188.2643195 – ident: 3759_CR15 doi: 10.1007/978-3-319-04114-8_40 – ident: 3759_CR11 doi: 10.3233/ICA-160523 – ident: 3759_CR8 doi: 10.1109/CVPR.2000.854758 – ident: 3759_CR13 doi: 10.1007/978-1-4471-0679-1 – ident: 3759_CR18 doi: 10.1109/CVPR.2011.5995316 |
SSID | ssj0016524 |
Score | 2.195912 |
Snippet | In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4249 |
SubjectTerms | Algorithms Cameras Computer Communication Networks Computer Science Computer vision Data integration Data Structures and Information Theory Devices Frames per second Human body Methods Movement Multimedia Multimedia communications Multimedia Information Systems Position tracking Sensors Smoothness Special Purpose and Application-Based Systems Studies Tracking |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnrwAzWiaGriSdO4sbZsJyMKEhOJIZJwW9auPZkNYRz8731vdIAmel63Ja99fb_3-SPkWopEy1ApBj6yZlwaj6nIWGa1Be85Sq1fDp5_HcrBmL9MxMQF3OaurLK6E8uLOs01xsjvfED2oAuAoO-nnwxZozC76ig0tkkdruAQnK96tzd8G63yCFI4WtvQY2Ab_SqvWTbP-diaAmtAyUTE5E_LtIabvzKkpeHpH5A9hxjpw3KLD8mWyRpkv2JjoE45G2R3Y7TgERmOAAEyZI6nJQ0fVXn6RYtZojE2TtF4pTTPKFaIUrvAmBnFVhNaVRjS0XOXPdE5uLn5bH5Mxv3e--OAOe4EpgMeFUxGHaESTwvfisCzOvWUD84HRwIw30iuw9AK2-5YG3CrgiDQGsSl4bpJwhS7TU9ILcszc0poyo3qIHADJMBFh0cyjWRkhFYW0IVUTeJVcou1GyyO_BYf8XokMoo6xmIyFHUsm-Rm9cp0OVXjv8WtajNip2DzeH0cmuRq9RhUA_MdSWbyBa4JObh7og1rbqtN3PjEXz88-_-H52Snjba9LN1ukVoxW5gLQCaFunTH7xu8gd0w priority: 102 providerName: ProQuest |
Title | Real-time human body tracking based on data fusion from multiple RGB-D sensors |
URI | https://link.springer.com/article/10.1007/s11042-016-3759-6 https://www.proquest.com/docview/1871763217 https://www.proquest.com/docview/1884114527 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgjSiUykhMIEtJY7vJ2EJbBKJCFZVgimLHnlCC-hj499ylSQsIkJg85OxIZ5_vPt8L4ELJxKhQa44Y2XChrMd1ZB13xiF6jlLnF4XnH4bqdizunuVzmcc9raLdK5dkcVOvkt18SiVBEwWFQkZcrUNNEnTHQzxudZauAyXLTrahx1Ed-pUr86clviqjlYX5zSla6Jr-LmyXRiLrLHZ1D9Zstg87VQMGVsrjPmx9qiZ4AMMRGn2cmsWzovMe03n6zmaTxNBzOCN9lbI8YxQUytycnskYZZewKqiQjQZdfsOmiGzzyfQQxv3e0_UtL9slcBOIaMZV1JY68Yz0nQw8Z1JP-4g3BPX88q0SJgyddK22c4FwOggCY5BdBm-YJEwpwfQINrI8s8fAUmF1m2w1VP5CtkWk0khFVhrt0KBQug5exbfYlLXEqaXFa7yqgkysjil-jFgdqzpcLqe8LQpp_EXcqDYjLmVqGvuI7fA2RAxVh_PlZ5QGcnEkmc3nRBMKRHiyhTRX1SZ-WuK3H578i_oUNluk3Yvg7QZszCZze4a2yUw3YT3sD5pQ6_S73SGNg5f7Ho7d3vBx1CxO6ge-8d3h |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPRQOtDwqltLWSO0FZJGH7Y0PVdWWLkuBPSCQuIXYsU9VsuxDiD_V39iZbLxLK5Ub5zi2ZM-Mv_E8PoCPShZWZcZw9JEtF8pF3GjnubcevWdd-rhpPH8xUP1r8fNG3izB71ALQ2mVwSY2hrqsLb2RH8WI7FEXEEF_Gd5xYo2i6Gqg0JiJxZl7uEeXbfz59BjP91OS9H5cfe_zllWA21ToCVe6K00RWRl7mUbelpGJEZYLosaKnRI2y7z0Sdf7VHiTpqm1aMotKmKRlVSHifMuwwuRppo0KuudzKMWSrYkulnE8SaOQxS1KdWLqRAGx6BKS83V3_fgAtz-E49trrnea1hv8Sn7OhOoDVhy1Sa8CtwPrDUFm7D2qJHhFgwuEW9y4qlnDekfM3X5wCajwtJLPKOrsmR1xSgflfkpvdAxKmxhIZ-RXZ5848dsjE51PRpvw_Wz7OkbWKnqyu0AK4UzXYKJiDuE7AqtSq20k9Z4xDLKdCAK-5bbto05sWn8yhcNmGmrc0pdo63OVQcO5r8MZz08nhq8Fw4jb9V5nC-ErwP788-oiBRdKSpXT2lMJtC5lAmOOQyH-GiK_y24-_SCH-Bl_-riPD8_HZy9hdWEUEWTNL4HK5PR1L1DTDQx7xtBZHD73JL_B_s1GBM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlVwKBSK2BaoK5ULlUUetpMcUFW6bKG0K7QCiVuIHftUJXQfqvhr_XWdyca7UKncOMexJXtm_I3n8QF8ULIwKtWao49suFA24Dqzjjvj0HvOShc2jed_DNTZtfh2I2-W4I-vhaG0Sm8TG0Nd1obeyI9CRPaoC4igj1ybFnHZ63-6-8WJQYoirZ5OYyYiF_b-N7pv4-PzHp71QRT1T6--nPGWYYCbWGQTrrJE6iIwMnQyDpwpAx0iRBdEkxVaJUyaOumixLlYOB3HsTFo1g0qZZGWVJOJ8y7DSoJeUdCBlZPTweVwHsNQsqXUTQOO93LoY6pN4V5IZTE4BhVcZlw9vhUXUPef6Gxz6fU34GWLVtnnmXi9giVbbcK6Z4JgrWHYhLUHbQ23YDBE9MmJtZ41FIBM1-U9m4wKQ-_yjC7OktUVo-xU5qb0XseozIX57EY2_HrCe2yMLnY9Gr-G62fZ1W3oVHVld4CVwuqEQCOiECETkakyU5mVRjtENkp3IfD7lpu2qTlxa_zMF-2YaatzSmSjrc5VFw7nv9zNOno8NXjXH0beKvc4X4hiF97PP6NaUqylqGw9pTGpQFdTRjjmoz_EB1P8b8E3Ty_4Dl6g1OffzwcXb2E1IojRZJDvQmcymto9BEgTvd9KIoPb5xb-v_0uHaU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+human+body+tracking+based+on+data+fusion+from+multiple+RGB-D+sensors&rft.jtitle=Multimedia+tools+and+applications&rft.au=N%C3%BA%C3%B1ez%2C+Juan+C.&rft.au=Cabido%2C+Ra%C3%BAl&rft.au=Montemayor%2C+Antonio+S.&rft.au=Pantrigo%2C+Juan+J.&rft.date=2017-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=76&rft.issue=3&rft.spage=4249&rft.epage=4271&rft_id=info:doi/10.1007%2Fs11042-016-3759-6&rft.externalDocID=10_1007_s11042_016_3759_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |