Real-time human body tracking based on data fusion from multiple RGB-D sensors

In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the senso...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 76; no. 3; pp. 4249 - 4271
Main Authors Núñez, Juan C., Cabido, Raúl, Montemayor, Antonio S., Pantrigo, Juan J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the sensors at two different levels: the whole skeleton and each joint individually. Then, each joint is tracked by a Kalman filter, resulting in a smooth tracking performance. We have also developed a new dataset consisting of six subjects performing seven different gestures, recorded with four Kinect devices simultaneously. Experimental results performed on this dataset show that the system obtains better smoothness results than the most representative methods found in the literature. The proposed system operates at a processing rate of 25 frames per second (including the whole algorithm loop, i.e., data acquisition and processing) without the explicit use of the multithreading capabilities of the system.
AbstractList In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers the skeletons provided by each RGB-D device and constructs an improved skeleton, taking into account the quality measures provided by the sensors at two different levels: the whole skeleton and each joint individually. Then, each joint is tracked by a Kalman filter, resulting in a smooth tracking performance. We have also developed a new dataset consisting of six subjects performing seven different gestures, recorded with four Kinect devices simultaneously. Experimental results performed on this dataset show that the system obtains better smoothness results than the most representative methods found in the literature. The proposed system operates at a processing rate of 25 frames per second (including the whole algorithm loop, i.e., data acquisition and processing) without the explicit use of the multithreading capabilities of the system.
Author Núñez, Juan C.
Cabido, Raúl
Pantrigo, Juan J.
Montemayor, Antonio S.
Author_xml – sequence: 1
  givenname: Juan C.
  surname: Núñez
  fullname: Núñez, Juan C.
  email: jc.nunezm@alumnos.urjc.es
  organization: Universidad Rey Juan Carlos
– sequence: 2
  givenname: Raúl
  surname: Cabido
  fullname: Cabido, Raúl
  organization: Universidad Rey Juan Carlos
– sequence: 3
  givenname: Antonio S.
  surname: Montemayor
  fullname: Montemayor, Antonio S.
  organization: Universidad Rey Juan Carlos
– sequence: 4
  givenname: Juan J.
  surname: Pantrigo
  fullname: Pantrigo, Juan J.
  organization: Universidad Rey Juan Carlos
BookMark eNp9kD1PwzAQhi0EElD4AWyWWFgMvtiO05HPglSBVMFsOY5dAold7GTov8dVGVAlmO6G5zm99x6jfR-8RegM6CVQKq8SAOUFoVASJsWUlHvoCIRkRMoC9vPOKkqkoHCIjlP6oBkUBT9CzwurOzK0vcXvY689rkOzxkPU5rP1S1zrZBscPG70oLEbU5t3F0OP-7Eb2lVn8WJ2Q-5wsj6FmE7QgdNdsqc_c4LeHu5fbx_J_GX2dHs9J4bx6UDKqRS1pkaAE4w609AaQHJeGluALbmpKidcIZ1j3NWMMWNyYsNkqauGM84m6GJ7dxXD12jToPo2Gdt12tswJgVVxQG4KGRGz3fQjzBGn9NlSoIsWQEbSm4pE0NK0Tpl2kEP-d3cRdspoGrTs9r2rHJ9atOzKrMJO-Yqtr2O63-dYuukzPqljb8y_Sl9A-ZPj60
CitedBy_id crossref_primary_10_1016_j_measurement_2019_107455
crossref_primary_10_1016_j_imavis_2019_05_003
crossref_primary_10_1007_s11042_019_7433_7
crossref_primary_10_1016_j_cag_2024_103917
crossref_primary_10_1016_j_neucom_2018_10_009
crossref_primary_10_1007_s10515_021_00293_y
crossref_primary_10_1016_j_heliyon_2023_e21606
crossref_primary_10_3390_s22093155
crossref_primary_10_1186_s13673_020_00256_4
crossref_primary_10_3389_fspor_2021_809898
crossref_primary_10_1155_2022_3419951
crossref_primary_10_1016_j_ijleo_2020_164563
Cites_doi 10.1109/CVPR.2016.156
10.1115/1.3662552
10.1115/1.4025810
10.1007/978-3-319-08651-4_2
10.1115/1.4025404
10.1109/CVPR.2016.108
10.1109/CVPRW.2012.6239174
10.1109/CVPR.2016.109
10.1109/IROS.2012.6385968
10.1007/s11263-016-0880-y
10.1016/j.patrec.2013.02.006
10.1007/3-540-45053-X_1
10.1007/978-3-642-44964-2_8
10.1109/CVPR.2016.153
10.1109/TPAMI.2013.250
10.1109/TCSVT.2016.2540978
10.1145/2643188.2643195
10.1007/978-3-319-04114-8_40
10.3233/ICA-160523
10.1109/CVPR.2000.854758
10.1007/978-1-4471-0679-1
10.1109/CVPR.2011.5995316
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Multimedia Tools and Applications is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Multimedia Tools and Applications is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-016-3759-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 4271
ExternalDocumentID 4317053411
10_1007_s11042_016_3759_6
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c349t-6975ba0c51f530fcd0b117446ce21e64c88f5f27ff34fb333cc001c376a8d4343
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Mon Jul 21 09:58:17 EDT 2025
Fri Jul 25 10:39:34 EDT 2025
Tue Jul 01 02:06:38 EDT 2025
Thu Apr 24 23:13:32 EDT 2025
Fri Feb 21 02:32:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords RGBD sensors
Sensor fusion
Human body tracking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6975ba0c51f530fcd0b117446ce21e64c88f5f27ff34fb333cc001c376a8d4343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1871763217
PQPubID 54626
PageCount 23
ParticipantIDs proquest_miscellaneous_1884114527
proquest_journals_1871763217
crossref_citationtrail_10_1007_s11042_016_3759_6
crossref_primary_10_1007_s11042_016_3759_6
springer_journals_10_1007_s11042_016_3759_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170200
2017-2-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Berger K (2013) The role of RGB-D benchmark datasets: an overview. Comput Res Reposit:4321–4326
Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1401–1409
Bünger M (2013) Evaluation of skeleton trackers and gesture recognition for human-robot interaction. Master Thesis, Aalborg University
Hong Yoon J, Lee C-R, Yang M-H, Yoon K-J (2016) Online multi-object tracking via structural constraint event aggregation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1392–1400
Lacabex B, Cuesta A, Montemayor AS, Pantrigo JJ (2016) Lightweight tracking-by-detection system for multiple pedestrian targets. Integrated computer-aided engineering. In press
PerniciFDel BimboAObject tracking by oversampling local featuresIEEE Trans Pattern Anal Mach Intell201436122538255110.1109/TPAMI.2013.250
Willianson B, LaViola J, Roberts T, Garrity P. (2012) Multi-kinect tracking for dismounted soldier training. In: Interservice/industry training, simulation and education conference (I/ITSEC)
Yeung K-Y, Kwok T-H, Wang CC (2013) Improved skeleton tracking by duplex kinects: a practical approach for real-time applications. J Comput Inf Sci Eng 13(4)
Zhang B, Li Z, Perina A, Del Bue A, Murino V (in press 2016) Adaptive local movement modelling (ALMM) for object tracking. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2540978
ChenLWeiHFerrymanJA survey of human motion analysis using depth imageryPattern Recogn Lett201334151995200610.1016/j.patrec.2013.02.006
KalmanREA new approach to linear filtering and prediction problemsJ Basic Eng1960823510.1115/1.3662552
Deutscher J, Blake A, Reid I (2000) Articulated body motion capture by annealed particle filtering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 126–133
MoratoCKaipaKNZhaoBGuptaSKToward safe human robot collaboration by using multiple kinects based real-time human trackingJ Comput Inform Sci Eng201414101100610.1115/1.4025810
Wang L, Ouyang W, Wang X, Lu H (2016) STCT: sequentially training convolutional networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1373–1381
Ye M, Zhang Q, Wang L, Zhu J, Yang R, Gall J (2013) A survey on human motion analysis from depth data. In: Grzegorzek M, Theobalt C, Reinhard K, Andreas K (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications, lecture notes in computer science, pp 149–187
MacCormick J (2002) Stochastic algorithm for visual tracking. Springer
Papadopoulos G, Axenopoulos A, Daras P (2014) Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin C, Hopfgartner F, Hurst W, Johansen H, Lee H, Connor N (eds) MultiMedia modeling, lecture notes in computer science, pp 473–483
Behún K, Herout A, Páldy A (2014) Kinect-supported dataset creation for human pose estimation. In: Proceedings of the 30th Spring conference on computer graphics (SCCG), pp 55–62
MacCormick J, Isard M (2000) Partitioned sampling, articulated objects and interface-quality hand tracking. In: Proceedings of the 6th European conference on computer vision (ECCV), part II, pp 3–19
Destelle F, Ahmadi A, O’Connor N, Moran K, Chatzitofis A, Zarpalas D, Daras P (2014) Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: Proceedings of signal processing conference (EUSIPCO), pp 371–375
Zhang L, Sturm J, Cremers D, Lee D. (2012) Real-time human motion tracking using multiple depth cameras. In: Proceedings of the international conference on intelligent robot systems (IROS)
Souvenir R, Hajja A, Spurlock S (2012) Gamesourcing to acquire labeled human pose estimation data. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 1--6
Yu H, Zhou Y, Simmons J, Przybyla C P, Lin Y, Fan X, Mi Y, Wang S (2016) Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 952–960
Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images, In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, pp 1297–1304
Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (in press 2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis. doi:10.1007/s11263-016-0880-y
Berger K (2014) A state of the art report on multiple RGB-D sensor research and on publicly available RGB-D datasets. In: Computer vision and machine learning with RGB-d sensors. Springer International Publishing, pp 27–44
Zhu G, Porikli F, Hongdong L (2016) Beyond local search: tracking objects everywhere with instance-specific proposals
3759_CR27
3759_CR26
3759_CR25
3759_CR24
C Morato (3759_CR14) 2014; 14
3759_CR23
3759_CR22
3759_CR21
3759_CR20
L Chen (3759_CR6) 2013; 34
RE Kalman (3759_CR10) 1960; 82
3759_CR8
3759_CR9
3759_CR15
3759_CR7
3759_CR13
3759_CR19
3759_CR18
3759_CR17
3759_CR12
3759_CR11
3759_CR1
F Pernici (3759_CR16) 2014; 36
3759_CR4
3759_CR5
3759_CR2
3759_CR3
References_xml – reference: KalmanREA new approach to linear filtering and prediction problemsJ Basic Eng1960823510.1115/1.3662552
– reference: MacCormick J (2002) Stochastic algorithm for visual tracking. Springer
– reference: Bünger M (2013) Evaluation of skeleton trackers and gesture recognition for human-robot interaction. Master Thesis, Aalborg University
– reference: ChenLWeiHFerrymanJA survey of human motion analysis using depth imageryPattern Recogn Lett201334151995200610.1016/j.patrec.2013.02.006
– reference: PerniciFDel BimboAObject tracking by oversampling local featuresIEEE Trans Pattern Anal Mach Intell201436122538255110.1109/TPAMI.2013.250
– reference: Deutscher J, Blake A, Reid I (2000) Articulated body motion capture by annealed particle filtering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 126–133
– reference: MoratoCKaipaKNZhaoBGuptaSKToward safe human robot collaboration by using multiple kinects based real-time human trackingJ Comput Inform Sci Eng201414101100610.1115/1.4025810
– reference: Berger K (2014) A state of the art report on multiple RGB-D sensor research and on publicly available RGB-D datasets. In: Computer vision and machine learning with RGB-d sensors. Springer International Publishing, pp 27–44
– reference: Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (in press 2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis. doi:10.1007/s11263-016-0880-y
– reference: Willianson B, LaViola J, Roberts T, Garrity P. (2012) Multi-kinect tracking for dismounted soldier training. In: Interservice/industry training, simulation and education conference (I/ITSEC)
– reference: Zhu G, Porikli F, Hongdong L (2016) Beyond local search: tracking objects everywhere with instance-specific proposals
– reference: Zhang L, Sturm J, Cremers D, Lee D. (2012) Real-time human motion tracking using multiple depth cameras. In: Proceedings of the international conference on intelligent robot systems (IROS)
– reference: Zhang B, Li Z, Perina A, Del Bue A, Murino V (in press 2016) Adaptive local movement modelling (ALMM) for object tracking. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2016.2540978
– reference: Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images, In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, pp 1297–1304
– reference: Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1401–1409
– reference: Yu H, Zhou Y, Simmons J, Przybyla C P, Lin Y, Fan X, Mi Y, Wang S (2016) Groupwise tracking of crowded similar-appearance targets from low-continuity image sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 952–960
– reference: Behún K, Herout A, Páldy A (2014) Kinect-supported dataset creation for human pose estimation. In: Proceedings of the 30th Spring conference on computer graphics (SCCG), pp 55–62
– reference: Ye M, Zhang Q, Wang L, Zhu J, Yang R, Gall J (2013) A survey on human motion analysis from depth data. In: Grzegorzek M, Theobalt C, Reinhard K, Andreas K (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications, lecture notes in computer science, pp 149–187
– reference: MacCormick J, Isard M (2000) Partitioned sampling, articulated objects and interface-quality hand tracking. In: Proceedings of the 6th European conference on computer vision (ECCV), part II, pp 3–19
– reference: Yeung K-Y, Kwok T-H, Wang CC (2013) Improved skeleton tracking by duplex kinects: a practical approach for real-time applications. J Comput Inf Sci Eng 13(4)
– reference: Berger K (2013) The role of RGB-D benchmark datasets: an overview. Comput Res Reposit:4321–4326
– reference: Lacabex B, Cuesta A, Montemayor AS, Pantrigo JJ (2016) Lightweight tracking-by-detection system for multiple pedestrian targets. Integrated computer-aided engineering. In press
– reference: Papadopoulos G, Axenopoulos A, Daras P (2014) Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin C, Hopfgartner F, Hurst W, Johansen H, Lee H, Connor N (eds) MultiMedia modeling, lecture notes in computer science, pp 473–483
– reference: Destelle F, Ahmadi A, O’Connor N, Moran K, Chatzitofis A, Zarpalas D, Daras P (2014) Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors. In: Proceedings of signal processing conference (EUSIPCO), pp 371–375
– reference: Hong Yoon J, Lee C-R, Yang M-H, Yoon K-J (2016) Online multi-object tracking via structural constraint event aggregation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1392–1400
– reference: Souvenir R, Hajja A, Spurlock S (2012) Gamesourcing to acquire labeled human pose estimation data. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 1--6
– reference: Wang L, Ouyang W, Wang X, Lu H (2016) STCT: sequentially training convolutional networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1373–1381
– ident: 3759_CR4
  doi: 10.1109/CVPR.2016.156
– volume: 82
  start-page: 35
  year: 1960
  ident: 3759_CR10
  publication-title: J Basic Eng
  doi: 10.1115/1.3662552
– volume: 14
  start-page: 011006
  issue: 1
  year: 2014
  ident: 3759_CR14
  publication-title: J Comput Inform Sci Eng
  doi: 10.1115/1.4025810
– ident: 3759_CR9
– ident: 3759_CR3
  doi: 10.1007/978-3-319-08651-4_2
– ident: 3759_CR22
  doi: 10.1115/1.4025404
– ident: 3759_CR27
  doi: 10.1109/CVPR.2016.108
– ident: 3759_CR7
– ident: 3759_CR17
  doi: 10.1109/CVPRW.2012.6239174
– ident: 3759_CR5
– ident: 3759_CR2
– ident: 3759_CR23
  doi: 10.1109/CVPR.2016.109
– ident: 3759_CR24
  doi: 10.1109/IROS.2012.6385968
– ident: 3759_CR25
  doi: 10.1007/s11263-016-0880-y
– volume: 34
  start-page: 1995
  issue: 15
  year: 2013
  ident: 3759_CR6
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.02.006
– ident: 3759_CR12
  doi: 10.1007/3-540-45053-X_1
– ident: 3759_CR20
– ident: 3759_CR21
  doi: 10.1007/978-3-642-44964-2_8
– ident: 3759_CR19
  doi: 10.1109/CVPR.2016.153
– volume: 36
  start-page: 2538
  issue: 12
  year: 2014
  ident: 3759_CR16
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.250
– ident: 3759_CR26
  doi: 10.1109/TCSVT.2016.2540978
– ident: 3759_CR1
  doi: 10.1145/2643188.2643195
– ident: 3759_CR15
  doi: 10.1007/978-3-319-04114-8_40
– ident: 3759_CR11
  doi: 10.3233/ICA-160523
– ident: 3759_CR8
  doi: 10.1109/CVPR.2000.854758
– ident: 3759_CR13
  doi: 10.1007/978-1-4471-0679-1
– ident: 3759_CR18
  doi: 10.1109/CVPR.2011.5995316
SSID ssj0016524
Score 2.195912
Snippet In this work we present a human pose estimation method based on the skeleton fusion and tracking using multiple RGB-D sensors. The proposed method considers...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4249
SubjectTerms Algorithms
Cameras
Computer Communication Networks
Computer Science
Computer vision
Data integration
Data Structures and Information Theory
Devices
Frames per second
Human body
Methods
Movement
Multimedia
Multimedia communications
Multimedia Information Systems
Position tracking
Sensors
Smoothness
Special Purpose and Application-Based Systems
Studies
Tracking
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnrwAzWiaGriSdO4sbZsJyMKEhOJIZJwW9auPZkNYRz8731vdIAmel63Ja99fb_3-SPkWopEy1ApBj6yZlwaj6nIWGa1Be85Sq1fDp5_HcrBmL9MxMQF3OaurLK6E8uLOs01xsjvfED2oAuAoO-nnwxZozC76ig0tkkdruAQnK96tzd8G63yCFI4WtvQY2Ab_SqvWTbP-diaAmtAyUTE5E_LtIabvzKkpeHpH5A9hxjpw3KLD8mWyRpkv2JjoE45G2R3Y7TgERmOAAEyZI6nJQ0fVXn6RYtZojE2TtF4pTTPKFaIUrvAmBnFVhNaVRjS0XOXPdE5uLn5bH5Mxv3e--OAOe4EpgMeFUxGHaESTwvfisCzOvWUD84HRwIw30iuw9AK2-5YG3CrgiDQGsSl4bpJwhS7TU9ILcszc0poyo3qIHADJMBFh0cyjWRkhFYW0IVUTeJVcou1GyyO_BYf8XokMoo6xmIyFHUsm-Rm9cp0OVXjv8WtajNip2DzeH0cmuRq9RhUA_MdSWbyBa4JObh7og1rbqtN3PjEXz88-_-H52Snjba9LN1ukVoxW5gLQCaFunTH7xu8gd0w
  priority: 102
  providerName: ProQuest
Title Real-time human body tracking based on data fusion from multiple RGB-D sensors
URI https://link.springer.com/article/10.1007/s11042-016-3759-6
https://www.proquest.com/docview/1871763217
https://www.proquest.com/docview/1884114527
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BXWDgjSiUykhMIEtJY7vJ2EJbBKJCFZVgimLHnlCC-hj499ylSQsIkJg85OxIZ5_vPt8L4ELJxKhQa44Y2XChrMd1ZB13xiF6jlLnF4XnH4bqdizunuVzmcc9raLdK5dkcVOvkt18SiVBEwWFQkZcrUNNEnTHQzxudZauAyXLTrahx1Ed-pUr86clviqjlYX5zSla6Jr-LmyXRiLrLHZ1D9Zstg87VQMGVsrjPmx9qiZ4AMMRGn2cmsWzovMe03n6zmaTxNBzOCN9lbI8YxQUytycnskYZZewKqiQjQZdfsOmiGzzyfQQxv3e0_UtL9slcBOIaMZV1JY68Yz0nQw8Z1JP-4g3BPX88q0SJgyddK22c4FwOggCY5BdBm-YJEwpwfQINrI8s8fAUmF1m2w1VP5CtkWk0khFVhrt0KBQug5exbfYlLXEqaXFa7yqgkysjil-jFgdqzpcLqe8LQpp_EXcqDYjLmVqGvuI7fA2RAxVh_PlZ5QGcnEkmc3nRBMKRHiyhTRX1SZ-WuK3H578i_oUNluk3Yvg7QZszCZze4a2yUw3YT3sD5pQ6_S73SGNg5f7Ho7d3vBx1CxO6ge-8d3h
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPRQOtDwqltLWSO0FZJGH7Y0PVdWWLkuBPSCQuIXYsU9VsuxDiD_V39iZbLxLK5Ub5zi2ZM-Mv_E8PoCPShZWZcZw9JEtF8pF3GjnubcevWdd-rhpPH8xUP1r8fNG3izB71ALQ2mVwSY2hrqsLb2RH8WI7FEXEEF_Gd5xYo2i6Gqg0JiJxZl7uEeXbfz59BjP91OS9H5cfe_zllWA21ToCVe6K00RWRl7mUbelpGJEZYLosaKnRI2y7z0Sdf7VHiTpqm1aMotKmKRlVSHifMuwwuRppo0KuudzKMWSrYkulnE8SaOQxS1KdWLqRAGx6BKS83V3_fgAtz-E49trrnea1hv8Sn7OhOoDVhy1Sa8CtwPrDUFm7D2qJHhFgwuEW9y4qlnDekfM3X5wCajwtJLPKOrsmR1xSgflfkpvdAxKmxhIZ-RXZ5848dsjE51PRpvw_Wz7OkbWKnqyu0AK4UzXYKJiDuE7AqtSq20k9Z4xDLKdCAK-5bbto05sWn8yhcNmGmrc0pdo63OVQcO5r8MZz08nhq8Fw4jb9V5nC-ErwP788-oiBRdKSpXT2lMJtC5lAmOOQyH-GiK_y24-_SCH-Bl_-riPD8_HZy9hdWEUEWTNL4HK5PR1L1DTDQx7xtBZHD73JL_B_s1GBM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlVwKBSK2BaoK5ULlUUetpMcUFW6bKG0K7QCiVuIHftUJXQfqvhr_XWdyca7UKncOMexJXtm_I3n8QF8ULIwKtWao49suFA24Dqzjjvj0HvOShc2jed_DNTZtfh2I2-W4I-vhaG0Sm8TG0Nd1obeyI9CRPaoC4igj1ybFnHZ63-6-8WJQYoirZ5OYyYiF_b-N7pv4-PzHp71QRT1T6--nPGWYYCbWGQTrrJE6iIwMnQyDpwpAx0iRBdEkxVaJUyaOumixLlYOB3HsTFo1g0qZZGWVJOJ8y7DSoJeUdCBlZPTweVwHsNQsqXUTQOO93LoY6pN4V5IZTE4BhVcZlw9vhUXUPef6Gxz6fU34GWLVtnnmXi9giVbbcK6Z4JgrWHYhLUHbQ23YDBE9MmJtZ41FIBM1-U9m4wKQ-_yjC7OktUVo-xU5qb0XseozIX57EY2_HrCe2yMLnY9Gr-G62fZ1W3oVHVld4CVwuqEQCOiECETkakyU5mVRjtENkp3IfD7lpu2qTlxa_zMF-2YaatzSmSjrc5VFw7nv9zNOno8NXjXH0beKvc4X4hiF97PP6NaUqylqGw9pTGpQFdTRjjmoz_EB1P8b8E3Ty_4Dl6g1OffzwcXb2E1IojRZJDvQmcymto9BEgTvd9KIoPb5xb-v_0uHaU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+human+body+tracking+based+on+data+fusion+from+multiple+RGB-D+sensors&rft.jtitle=Multimedia+tools+and+applications&rft.au=N%C3%BA%C3%B1ez%2C+Juan+C.&rft.au=Cabido%2C+Ra%C3%BAl&rft.au=Montemayor%2C+Antonio+S.&rft.au=Pantrigo%2C+Juan+J.&rft.date=2017-02-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=76&rft.issue=3&rft.spage=4249&rft.epage=4271&rft_id=info:doi/10.1007%2Fs11042-016-3759-6&rft.externalDocID=10_1007_s11042_016_3759_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon