Finite-Time Observer-Based Sliding-Mode Control for Markovian Jump Systems With Switching Chain: Average Dwell-Time Method

In this article, the finite-time observer-based sliding-mode control (SMC) problem is considered for stochastic Markovian jump systems (MJSs) with a deterministic switching chain (DSC) subject to time-varying delay and packet losses (PLs). First, the stochastic MJSs with DSC are appropriately modele...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 1; pp. 248 - 261
Main Authors Zhang, Panpan, Kao, Yonggui, Hu, Jun, Niu, Ben, Xia, Hongwei, Wang, Changhong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, the finite-time observer-based sliding-mode control (SMC) problem is considered for stochastic Markovian jump systems (MJSs) with a deterministic switching chain (DSC) subject to time-varying delay and packet losses (PLs). First, the stochastic MJSs with DSC are appropriately modeled and the PLs case is characterized by using some Bernoulli random variables. Then, a nonfragile finite-time bounded sliding-mode observer is designed. Our objective is to propose a finite-time observer-based SMC approach such that for the above addressed system, the finite-time boundedness in a certain time interval can be guaranteed by giving sufficient criteria via the stochastic analysis skills and average dwell time (ADT) method. Moreover, a new robust finite-time sliding-mode controller can be designed to ensure reachability of the common sliding surface in the estimation space. Finally, a numerical example is provided to illustrate our theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3093162