Void coalescence mechanism for combined tension and large amplitude cyclic shearing
•Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying ca...
Saved in:
Published in | Engineering fracture mechanics Vol. 189; pp. 164 - 174 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.02.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying capacity.
Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence. |
---|---|
AbstractList | Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence. •Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying capacity. Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence. |
Author | Tvergaard, V. Nielsen, K.L. Andersen, R.G. |
Author_xml | – sequence: 1 givenname: K.L. surname: Nielsen fullname: Nielsen, K.L. email: kin@mek.dtu.dk – sequence: 2 givenname: R.G. surname: Andersen fullname: Andersen, R.G. – sequence: 3 givenname: V. surname: Tvergaard fullname: Tvergaard, V. |
BookMark | eNqNkMlqwzAQQEVJoUnaf1Dp2alkWbJ9KiV0g0APXa5ClsaJgi2lklPI31cmPZSechhmmOUNvBmaOO8AoWtKFpRQcbtdgFu3Qeke9GaRE1qm_oIwfoamtCpZVjLKJ2hKCE11XRQXaBbjlhBSiopM0duntwZrrzqIGpwGPIKUs7HHrQ9p0jfWgcEDuGi9w8oZ3KmwBqz6XWeHvQGsD7qzGscNqGDd-hKdt6qLcPWb5-jj8eF9-ZytXp9elverTLOiHjIhBFSGMAUqBeO8yRsm2rwt6tLUVQtNzhrOwGjKDSVNXUObC8VAGF7kpWZzdHPk7oL_2kMc5Nbvg0svZU4EzzkreZG26uOWDj7GAK3cBdurcJCUyNGh3Mo_DuXocBwlh-n27t-ttoMakochKNudRFgeCZBEfFsIMmo7ejY2gB6k8fYEyg9ywJju |
CitedBy_id | crossref_primary_10_1007_s11831_020_09444_y crossref_primary_10_1142_S2047684118500288 crossref_primary_10_1016_j_ijfatigue_2018_04_019 crossref_primary_10_1016_j_ijmecsci_2020_105426 crossref_primary_10_1016_j_tafmec_2020_102678 crossref_primary_10_1177_14644207221121976 crossref_primary_10_1016_j_euromechsol_2023_105114 crossref_primary_10_1016_j_mechmat_2024_104982 crossref_primary_10_1002_mdp2_214 |
Cites_doi | 10.1016/j.euromechsol.2014.09.001 10.1016/j.jmps.2010.06.006 10.1016/j.actamat.2014.10.002 10.1016/j.euromechsol.2015.08.010 10.1016/j.ijsolstr.2004.06.041 10.1016/S0065-2156(08)70195-9 10.1177/105678950000900203 10.1007/s10704-012-9757-4 10.1016/S0749-6419(95)00033-X 10.1115/1.3443401 10.1016/j.ijfatigue.2014.08.010 10.1016/j.ijsolstr.2011.01.008 10.1007/s10704-009-9364-1 10.1016/S0749-6419(95)00032-1 10.1115/1.4005565 10.1016/j.ijmecsci.2008.08.007 10.1016/j.ijfatigue.2006.08.001 10.1016/j.jcsr.2014.12.002 10.1016/j.jcsr.2009.08.004 10.1007/978-94-011-5642-4_28 10.1111/ffe.12311 10.1016/S0142-1123(01)00170-0 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Feb 15, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Feb 15, 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engfracmech.2017.10.035 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7315 |
EndPage | 174 |
ExternalDocumentID | 10_1016_j_engfracmech_2017_10_035 S0013794417308457 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c349t-666e8d03aea3ae355b2b36f2f497d98feb23b53edc15d10b99ef26a3e6d5427c3 |
IEDL.DBID | .~1 |
ISSN | 0013-7944 |
IngestDate | Fri Jul 25 05:48:33 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Fri Feb 23 02:33:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ductile failure Constant mean stress Damage Low cycle fatigue |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-666e8d03aea3ae355b2b36f2f497d98feb23b53edc15d10b99ef26a3e6d5427c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2065253754 |
PQPubID | 2045482 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2065253754 crossref_primary_10_1016_j_engfracmech_2017_10_035 crossref_citationtrail_10_1016_j_engfracmech_2017_10_035 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2017_10_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hofmann, Riedle, Altenberger, Cote, Burwell (b0040) 2015; 38 Gurson (b0035) 1977; 99 Nielsen, Dahl, Tvergaard (b0120) 2012; 177 Schmidt R, Wilkowski G, Mayfield M. The international Piping Research Group (IPIRG) program - an overview. In: 11th international conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G23/1; 1991. Nip, Gardner, Davies, Elghazouli (b0130) 2010; 66 Hopperstad, Langseth, Remseth (b0045) 1995; 11 Iwai P, Park Y-S, Nonaka T, Kameda H. Very low cycle fatigue tests of steel angle members under earthquake loading. In: Proc 10th world conf in earthquake engineering, Balkena, Rotterdam, The Netherlands, vol. 5; 1992. p. 2879–84. Jia, Kuwamura (b0060) 2015; 106 Kiran, Khandelwal (b0075) 2015; 70 Leblond, Perrin, Devaux (b0100) 1995; 14 Abaqus. Abaqus Documentation, Version 2016, SIMULIA Corp; 2016. Amstrong P, Frederick C. A mathematical representation of the multiaxial bauschinger effect. CEGB Report RD/B/N73, Berkeley Nuclear Laboratories; 1966. Tateishi, Takeshi, Minami (b0150) 2007; 29 Nielsen, Tvergaard (b0125) 2011; 48 Liu, Zhang, Zhang, Zhang (b0110) 2015; 83 Tvergaard, Nielsen (b0170) 2010; 58 Tvergaard (b0160) 2008; 50 Leblond J, Lacroix R, Morin L, Remmal A. New modes of ductile rupture under cyclic loading conditions. In: 14th international conference on fracture (ICF14), Rhodos, Greece; 2017. Gilles, Jullien, Mottet (b0030) 1992; 137 Kuroda (b0085) 2001; 24 Kobayashi H, Kusumoto T, Nakazawa H. Cyclic J-R-curve upper limit characteristic of fatigue crack growth in 2-1/2 Cr-Mo steel. In: 11th International conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G27/1; 1991. Hopperstad, Langseth, Remseth (b0050) 1995; 11 Tvergaard (b0155) 1990; 27 Dahl, Nielsen, Tvergaard (b0020) 2012; 79 Lemaitre, Chaboche (b0105) 1990 Devaux J, Gologanu M, Leblond J-B, Perrin G. On continued void growth in ductile metals subjected to cyclic loadins. In: Proceedings of the IUTAM symposium on nonlinear analysis of fracture, Kluwer, Cambridge, GB; 1997. p. 299–310. Kanvinde A, Deierlein G. Micromechanical simulation of earthquake-induced fracture in steel structures. Technical report 145, John A. Blume Earthquake Engineering Center, Stanford University, Calif; 2004. Lacroix, Leblond, Perrin (b0090) 2016; 55 Brocks, Steglich (b0015) 2005 Mbiakop, Constantinescu, Danas (b0115) 2015; 49 Steglich, Pirondi, Bonora, Brocks (b0145) 2005; 42 Kanvinde, Asce, Deierlein, Asce (b0065) 2007 Pedersen, Tvergaard (b0135) 2000; 9 Tvergaard (b0165) 2009; 158 Kuroda (10.1016/j.engfracmech.2017.10.035_b0085) 2001; 24 Mbiakop (10.1016/j.engfracmech.2017.10.035_b0115) 2015; 49 Tvergaard (10.1016/j.engfracmech.2017.10.035_b0160) 2008; 50 Tvergaard (10.1016/j.engfracmech.2017.10.035_b0170) 2010; 58 Dahl (10.1016/j.engfracmech.2017.10.035_b0020) 2012; 79 10.1016/j.engfracmech.2017.10.035_b0055 10.1016/j.engfracmech.2017.10.035_b0010 Leblond (10.1016/j.engfracmech.2017.10.035_b0100) 1995; 14 10.1016/j.engfracmech.2017.10.035_b0070 Pedersen (10.1016/j.engfracmech.2017.10.035_b0135) 2000; 9 10.1016/j.engfracmech.2017.10.035_b0095 Nielsen (10.1016/j.engfracmech.2017.10.035_b0120) 2012; 177 Kiran (10.1016/j.engfracmech.2017.10.035_b0075) 2015; 70 Lemaitre (10.1016/j.engfracmech.2017.10.035_b0105) 1990 Hopperstad (10.1016/j.engfracmech.2017.10.035_b0045) 1995; 11 Nip (10.1016/j.engfracmech.2017.10.035_b0130) 2010; 66 Kanvinde (10.1016/j.engfracmech.2017.10.035_b0065) 2007 Liu (10.1016/j.engfracmech.2017.10.035_b0110) 2015; 83 10.1016/j.engfracmech.2017.10.035_b0025 Nielsen (10.1016/j.engfracmech.2017.10.035_b0125) 2011; 48 10.1016/j.engfracmech.2017.10.035_b0140 Brocks (10.1016/j.engfracmech.2017.10.035_b0015) 2005 Tvergaard (10.1016/j.engfracmech.2017.10.035_b0155) 1990; 27 Tateishi (10.1016/j.engfracmech.2017.10.035_b0150) 2007; 29 Lacroix (10.1016/j.engfracmech.2017.10.035_b0090) 2016; 55 Gilles (10.1016/j.engfracmech.2017.10.035_b0030) 1992; 137 Tvergaard (10.1016/j.engfracmech.2017.10.035_b0165) 2009; 158 10.1016/j.engfracmech.2017.10.035_b0080 Steglich (10.1016/j.engfracmech.2017.10.035_b0145) 2005; 42 Hofmann (10.1016/j.engfracmech.2017.10.035_b0040) 2015; 38 Hopperstad (10.1016/j.engfracmech.2017.10.035_b0050) 1995; 11 Jia (10.1016/j.engfracmech.2017.10.035_b0060) 2015; 106 Gurson (10.1016/j.engfracmech.2017.10.035_b0035) 1977; 99 10.1016/j.engfracmech.2017.10.035_b0005 |
References_xml | – reference: Schmidt R, Wilkowski G, Mayfield M. The international Piping Research Group (IPIRG) program - an overview. In: 11th international conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G23/1; 1991. – volume: 27 start-page: 83 year: 1990 end-page: 151 ident: b0155 article-title: Material failure by void growth to coalescence publication-title: Adv Appl Mech – start-page: 389 year: 2005 end-page: 398 ident: b0015 article-title: Damage models for plasticity publication-title: Key Eng Mater – volume: 66 start-page: 96 year: 2010 end-page: 110 ident: b0130 article-title: Extremely low cycle fatigue tests on structural carbon steel and stainless steel publication-title: J Construct Steel Res – volume: 50 start-page: 1439 year: 2008 end-page: 1465 ident: b0160 article-title: Shear deformation of voids with contact modeled by internal pressure publication-title: Int J Mech Sci – volume: 79 start-page: 021003 year: 2012 ident: b0020 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J Appl Mech – volume: 42 start-page: 337 year: 2005 end-page: 351 ident: b0145 article-title: Micromechanical modelling of cyclic plasticty incorporating damage publication-title: Int J Solids Struct – volume: 14 start-page: 499 year: 1995 end-page: 527 ident: b0100 article-title: An improved Gurson-type model for hardenable ductile metals publication-title: Europ J Mech A/Solids – reference: Devaux J, Gologanu M, Leblond J-B, Perrin G. On continued void growth in ductile metals subjected to cyclic loadins. In: Proceedings of the IUTAM symposium on nonlinear analysis of fracture, Kluwer, Cambridge, GB; 1997. p. 299–310. – volume: 29 start-page: 887 year: 2007 end-page: 896 ident: b0150 article-title: A prediction model for extremely low cycle fatigue strength of structural steel publication-title: Int J Fatigue – volume: 24 start-page: 699 year: 2001 end-page: 703 ident: b0085 article-title: Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model publication-title: Int J Fatigue – reference: Leblond J, Lacroix R, Morin L, Remmal A. New modes of ductile rupture under cyclic loading conditions. In: 14th international conference on fracture (ICF14), Rhodos, Greece; 2017. – volume: 158 start-page: 41 year: 2009 end-page: 49 ident: b0165 article-title: Behaviour of voids in a shear field publication-title: Int J Fract – volume: 58 start-page: 1243 year: 2010 end-page: 1252 ident: b0170 article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear publication-title: J Mech Phys Solids – volume: 70 start-page: 24 year: 2015 end-page: 37 ident: b0075 article-title: A micromechanical cyclic void growth model for ultra-low cycle fatigue publication-title: Int J Fatigue – volume: 9 start-page: 154 year: 2000 end-page: 173 ident: b0135 article-title: On low cycle fatigue in metal matrix composites publication-title: Int J Damage Mech – reference: Amstrong P, Frederick C. A mathematical representation of the multiaxial bauschinger effect. CEGB Report RD/B/N73, Berkeley Nuclear Laboratories; 1966. – volume: 48 start-page: 1255 year: 2011 end-page: 1267 ident: b0125 article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing publication-title: Int J Solids Struct – volume: 49 start-page: 481 year: 2015 end-page: 499 ident: b0115 article-title: On void shape effects of periodic elasto-plastic materials subjected to cyclic loading publication-title: Europ J Mech A/Solids – volume: 99 start-page: 2 year: 1977 end-page: 15 ident: b0035 article-title: Continuum theory of ductile rupture by void nucleation and growth - Part I: Yield criteria and flow rules for porous ductile madia publication-title: ASME J Eng Mater Technol – start-page: 701 year: 2007 end-page: 712 ident: b0065 article-title: Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue publication-title: J Eng Nech – volume: 177 start-page: 97 year: 2012 end-page: 108 ident: b0120 article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D publication-title: Int J Fract – volume: 55 start-page: 100 year: 2016 end-page: 109 ident: b0090 article-title: Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loading publication-title: Europ J Mech A/Solids – year: 1990 ident: b0105 article-title: Mechanics of materials – volume: 106 start-page: 110 year: 2015 end-page: 121 ident: b0060 article-title: Ductile fracture model for structural steel under cyclic large strain loading publication-title: J Construct Steel Res – volume: 11 start-page: 725 year: 1995 end-page: 739 ident: b0045 article-title: Cyclic stress-strain behaviour of alloy AA6060, Part 1: Uniaxial experiments and modelling publication-title: Int J Plast – volume: 11 start-page: 741 year: 1995 end-page: 762 ident: b0050 article-title: Cyclic stress-strain behaviour of alloy AA6060 T4, Part 1I: Biaxial experiments and modelling publication-title: Int J Plast – volume: 83 start-page: 341 year: 2015 end-page: 356 ident: b0110 article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: damage mechanisms and life prediction publication-title: Acta Mater – reference: Iwai P, Park Y-S, Nonaka T, Kameda H. Very low cycle fatigue tests of steel angle members under earthquake loading. In: Proc 10th world conf in earthquake engineering, Balkena, Rotterdam, The Netherlands, vol. 5; 1992. p. 2879–84. – volume: 38 start-page: 1432 year: 2015 end-page: 1442 ident: b0040 article-title: Ultra-low cycle torsion fatigue of annealed copper publication-title: Fatigue Fract Eng Mater Struct – reference: Kobayashi H, Kusumoto T, Nakazawa H. Cyclic J-R-curve upper limit characteristic of fatigue crack growth in 2-1/2 Cr-Mo steel. In: 11th International conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G27/1; 1991. – reference: Kanvinde A, Deierlein G. Micromechanical simulation of earthquake-induced fracture in steel structures. Technical report 145, John A. Blume Earthquake Engineering Center, Stanford University, Calif; 2004. – reference: Abaqus. Abaqus Documentation, Version 2016, SIMULIA Corp; 2016. – volume: 137 start-page: 269 year: 1992 end-page: 284 ident: b0030 article-title: Analysis of cyclic effects on ductile tearing strength by a local approach of fracture publication-title: Adv Fract/Damage Models Anal Eng Probl – volume: 49 start-page: 481 year: 2015 ident: 10.1016/j.engfracmech.2017.10.035_b0115 article-title: On void shape effects of periodic elasto-plastic materials subjected to cyclic loading publication-title: Europ J Mech A/Solids doi: 10.1016/j.euromechsol.2014.09.001 – ident: 10.1016/j.engfracmech.2017.10.035_b0140 – volume: 58 start-page: 1243 year: 2010 ident: 10.1016/j.engfracmech.2017.10.035_b0170 article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2010.06.006 – volume: 83 start-page: 341 year: 2015 ident: 10.1016/j.engfracmech.2017.10.035_b0110 article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: damage mechanisms and life prediction publication-title: Acta Mater doi: 10.1016/j.actamat.2014.10.002 – ident: 10.1016/j.engfracmech.2017.10.035_b0070 – volume: 55 start-page: 100 year: 2016 ident: 10.1016/j.engfracmech.2017.10.035_b0090 article-title: Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loading publication-title: Europ J Mech A/Solids doi: 10.1016/j.euromechsol.2015.08.010 – ident: 10.1016/j.engfracmech.2017.10.035_b0010 – start-page: 389 year: 2005 ident: 10.1016/j.engfracmech.2017.10.035_b0015 article-title: Damage models for plasticity publication-title: Key Eng Mater – volume: 42 start-page: 337 year: 2005 ident: 10.1016/j.engfracmech.2017.10.035_b0145 article-title: Micromechanical modelling of cyclic plasticty incorporating damage publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2004.06.041 – volume: 27 start-page: 83 year: 1990 ident: 10.1016/j.engfracmech.2017.10.035_b0155 article-title: Material failure by void growth to coalescence publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70195-9 – volume: 9 start-page: 154 year: 2000 ident: 10.1016/j.engfracmech.2017.10.035_b0135 article-title: On low cycle fatigue in metal matrix composites publication-title: Int J Damage Mech doi: 10.1177/105678950000900203 – ident: 10.1016/j.engfracmech.2017.10.035_b0095 – volume: 177 start-page: 97 year: 2012 ident: 10.1016/j.engfracmech.2017.10.035_b0120 article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D publication-title: Int J Fract doi: 10.1007/s10704-012-9757-4 – volume: 11 start-page: 741 year: 1995 ident: 10.1016/j.engfracmech.2017.10.035_b0050 article-title: Cyclic stress-strain behaviour of alloy AA6060 T4, Part 1I: Biaxial experiments and modelling publication-title: Int J Plast doi: 10.1016/S0749-6419(95)00033-X – volume: 99 start-page: 2 year: 1977 ident: 10.1016/j.engfracmech.2017.10.035_b0035 article-title: Continuum theory of ductile rupture by void nucleation and growth - Part I: Yield criteria and flow rules for porous ductile madia publication-title: ASME J Eng Mater Technol doi: 10.1115/1.3443401 – volume: 70 start-page: 24 year: 2015 ident: 10.1016/j.engfracmech.2017.10.035_b0075 article-title: A micromechanical cyclic void growth model for ultra-low cycle fatigue publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2014.08.010 – volume: 48 start-page: 1255 year: 2011 ident: 10.1016/j.engfracmech.2017.10.035_b0125 article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2011.01.008 – ident: 10.1016/j.engfracmech.2017.10.035_b0005 – volume: 158 start-page: 41 year: 2009 ident: 10.1016/j.engfracmech.2017.10.035_b0165 article-title: Behaviour of voids in a shear field publication-title: Int J Fract doi: 10.1007/s10704-009-9364-1 – volume: 14 start-page: 499 year: 1995 ident: 10.1016/j.engfracmech.2017.10.035_b0100 article-title: An improved Gurson-type model for hardenable ductile metals publication-title: Europ J Mech A/Solids – volume: 11 start-page: 725 year: 1995 ident: 10.1016/j.engfracmech.2017.10.035_b0045 article-title: Cyclic stress-strain behaviour of alloy AA6060, Part 1: Uniaxial experiments and modelling publication-title: Int J Plast doi: 10.1016/S0749-6419(95)00032-1 – volume: 79 start-page: 021003 year: 2012 ident: 10.1016/j.engfracmech.2017.10.035_b0020 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J Appl Mech doi: 10.1115/1.4005565 – volume: 50 start-page: 1439 year: 2008 ident: 10.1016/j.engfracmech.2017.10.035_b0160 article-title: Shear deformation of voids with contact modeled by internal pressure publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2008.08.007 – start-page: 701 year: 2007 ident: 10.1016/j.engfracmech.2017.10.035_b0065 article-title: Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue publication-title: J Eng Nech – year: 1990 ident: 10.1016/j.engfracmech.2017.10.035_b0105 – ident: 10.1016/j.engfracmech.2017.10.035_b0055 – volume: 29 start-page: 887 year: 2007 ident: 10.1016/j.engfracmech.2017.10.035_b0150 article-title: A prediction model for extremely low cycle fatigue strength of structural steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.08.001 – volume: 106 start-page: 110 year: 2015 ident: 10.1016/j.engfracmech.2017.10.035_b0060 article-title: Ductile fracture model for structural steel under cyclic large strain loading publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2014.12.002 – volume: 66 start-page: 96 year: 2010 ident: 10.1016/j.engfracmech.2017.10.035_b0130 article-title: Extremely low cycle fatigue tests on structural carbon steel and stainless steel publication-title: J Construct Steel Res doi: 10.1016/j.jcsr.2009.08.004 – ident: 10.1016/j.engfracmech.2017.10.035_b0025 doi: 10.1007/978-94-011-5642-4_28 – volume: 38 start-page: 1432 year: 2015 ident: 10.1016/j.engfracmech.2017.10.035_b0040 article-title: Ultra-low cycle torsion fatigue of annealed copper publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.12311 – volume: 24 start-page: 699 year: 2001 ident: 10.1016/j.engfracmech.2017.10.035_b0085 article-title: Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model publication-title: Int J Fatigue doi: 10.1016/S0142-1123(01)00170-0 – volume: 137 start-page: 269 year: 1992 ident: 10.1016/j.engfracmech.2017.10.035_b0030 article-title: Analysis of cyclic effects on ductile tearing strength by a local approach of fracture publication-title: Adv Fract/Damage Models Anal Eng Probl – ident: 10.1016/j.engfracmech.2017.10.035_b0080 |
SSID | ssj0007680 |
Score | 2.2643318 |
Snippet | •Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each... Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 164 |
SubjectTerms | Amplitudes Bearing strength Coalescing Constant mean stress Cracks Cyclic loads Damage Deformation Deformation mechanisms Ductile failure Elongation Fatigue failure Load Load carrying capacity Low cycle fatigue Shear deformation Shearing Strain hardening Tensile stress Voids |
Title | Void coalescence mechanism for combined tension and large amplitude cyclic shearing |
URI | https://dx.doi.org/10.1016/j.engfracmech.2017.10.035 https://www.proquest.com/docview/2065253754 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQn7i-iOC1btMkbQJeZFFWRS8-2FtJk6lUdrvL7nrw4m930m1dFQ-Chx7aadIymc6DfpmPkBPNrLSZVEGcOxsIloWBNugMgWsLDKSNK27A27u4-yiue7K3QDrNXhgPq6x9_8ynV966vtKutdkeFYXf48s4WpNgaKRKSL-jXIjEW_np-xzmgel02LAY-LuXyfEc4wXlcz42dgDVfwmWnHqgV8X89muM-uGtqxB0uU7W6tyRns9eb4MsQLlJVr90FNwi90_DwlE7NLM2TRaof6opi8mAYnqKkgGWwuBoBVwfltSUjvY9Gpwajy33nS6pfbP9wtKJJ7vGWbfJ4-XFQ6cb1LwJgeVCTwOsSEC5kBsweGBCkUUZj_MoFzpxWuVYTPNMcnCWScfCTGvIo9hwiJ0UUWL5DlkshyXsEooRFBKUKIBMgFZG5SoCh0lRGNvIyBZRjaZSWzcV99wW_bRBj72kX5SceiV7ESq5RaLPoaNZZ42_DDprliP9ZiYpRoC_DD9oljCtv9UJymMZSU8FvPe_2ffJCp4pj-lm8oAsTsevcIgpyzQ7qmzyiCydX9107z4A9WzuxQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BK_E4IF6rhe2CkbgG4jhObGkvCC0qr154iFvk2BMU1KaIlgP_nnGa8NIekPaQS0bjROPJPJTP8wHsa26lzaUKksLZIOZ5GGhDwRCFtshR2qTmBrwcJP2b-OxO3s3BcXsWxsMqm9g_i-l1tG7uHDbWPHwsS3_GlwvyppiTk6pYpvPQ9dOpZAe6R6fn_cFbQKaKOmyJDLzCAuy9w7ywui-ejB1h_WuCpwce61WTv_0zTX0J2HUWOlmFlaZ8ZEezN1yDOazWYfnDUMENuLodl47ZsZlNarLI_FNNVU5GjCpUkoyoG0bHauz6uGKmcmzoAeHMeHi5H3bJ7IsdlpZNPN81rboJNyd_r4_7QUOdEFgR62lATQkqFwqDhi6qKfIoF0kRFbFOnVYF9dMilwKd5dLxMNcaiygxAhMn4yi14gd0qnGFP4FREsWUJAoxj1ErowoVoaO6KExsZOQWqNZSmW3mint6i2HWAsgesg9GzryRvYiMvAXRm-rjbLjGd5T-tNuRffKUjJLAd9R77RZmzec6IXkiI-nZgLf_b_VdWOxfX15kF6eD81-wRBLlId5c9qAzfXrG31TBTPOdxkNfAR708XY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Void+coalescence+mechanism+for+combined+tension+and+large+amplitude+cyclic+shearing&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nielsen%2C+K.L.&rft.au=Andersen%2C+R.G.&rft.au=Tvergaard%2C+V.&rft.date=2018-02-15&rft.issn=0013-7944&rft.volume=189&rft.spage=164&rft.epage=174&rft_id=info:doi/10.1016%2Fj.engfracmech.2017.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfracmech_2017_10_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |