Void coalescence mechanism for combined tension and large amplitude cyclic shearing

•Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying ca...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 189; pp. 164 - 174
Main Authors Nielsen, K.L., Andersen, R.G., Tvergaard, V.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.02.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying capacity. Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence.
AbstractList Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence.
•Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each cycle.•The far-field loading, the void shape, and the void growth are monitored.•Calculations are pushed to complete loss of load carrying capacity. Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flattened, such that the void volume diminishes, whereafter the flattened crack-like voids rotate and elongate until interaction with neighboring micro-voids dominates the material response and coalescence sets in. Eventually, this leads to a complete loss of load carrying capacity. The severe shear loading, imposed at the far boundary, is in an early state of the deformation associated with significant stretching of parts of the void surface, while other parts remain practically un-deformed. A largely uneven distribution of the strain hardening, therefore, evolves along the void circumference and, thus, one cannot expect the void to return to its original shape in the case where the far-field loading is reversed. The present numerical work aims to investigate the evolution of micro-voids subject to constant tension and large amplitude cyclic shearing. The far-field loading, the void shape, and the void growth are monitored, and the calculations are pushed to coalescence and complete loss of load carrying capacity. The initially circular cylindrical voids are predicted to develop protrusions in the shearing plane with normal in the direction of the applied tensile load. These protrusions evolve during repeated cyclic shearing and spread towards neighboring voids - eventually being responsible for void coalescence.
Author Tvergaard, V.
Nielsen, K.L.
Andersen, R.G.
Author_xml – sequence: 1
  givenname: K.L.
  surname: Nielsen
  fullname: Nielsen, K.L.
  email: kin@mek.dtu.dk
– sequence: 2
  givenname: R.G.
  surname: Andersen
  fullname: Andersen, R.G.
– sequence: 3
  givenname: V.
  surname: Tvergaard
  fullname: Tvergaard, V.
BookMark eNqNkMlqwzAQQEVJoUnaf1Dp2alkWbJ9KiV0g0APXa5ClsaJgi2lklPI31cmPZSechhmmOUNvBmaOO8AoWtKFpRQcbtdgFu3Qeke9GaRE1qm_oIwfoamtCpZVjLKJ2hKCE11XRQXaBbjlhBSiopM0duntwZrrzqIGpwGPIKUs7HHrQ9p0jfWgcEDuGi9w8oZ3KmwBqz6XWeHvQGsD7qzGscNqGDd-hKdt6qLcPWb5-jj8eF9-ZytXp9elverTLOiHjIhBFSGMAUqBeO8yRsm2rwt6tLUVQtNzhrOwGjKDSVNXUObC8VAGF7kpWZzdHPk7oL_2kMc5Nbvg0svZU4EzzkreZG26uOWDj7GAK3cBdurcJCUyNGh3Mo_DuXocBwlh-n27t-ttoMakochKNudRFgeCZBEfFsIMmo7ejY2gB6k8fYEyg9ywJju
CitedBy_id crossref_primary_10_1007_s11831_020_09444_y
crossref_primary_10_1142_S2047684118500288
crossref_primary_10_1016_j_ijfatigue_2018_04_019
crossref_primary_10_1016_j_ijmecsci_2020_105426
crossref_primary_10_1016_j_tafmec_2020_102678
crossref_primary_10_1177_14644207221121976
crossref_primary_10_1016_j_euromechsol_2023_105114
crossref_primary_10_1016_j_mechmat_2024_104982
crossref_primary_10_1002_mdp2_214
Cites_doi 10.1016/j.euromechsol.2014.09.001
10.1016/j.jmps.2010.06.006
10.1016/j.actamat.2014.10.002
10.1016/j.euromechsol.2015.08.010
10.1016/j.ijsolstr.2004.06.041
10.1016/S0065-2156(08)70195-9
10.1177/105678950000900203
10.1007/s10704-012-9757-4
10.1016/S0749-6419(95)00033-X
10.1115/1.3443401
10.1016/j.ijfatigue.2014.08.010
10.1016/j.ijsolstr.2011.01.008
10.1007/s10704-009-9364-1
10.1016/S0749-6419(95)00032-1
10.1115/1.4005565
10.1016/j.ijmecsci.2008.08.007
10.1016/j.ijfatigue.2006.08.001
10.1016/j.jcsr.2014.12.002
10.1016/j.jcsr.2009.08.004
10.1007/978-94-011-5642-4_28
10.1111/ffe.12311
10.1016/S0142-1123(01)00170-0
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Feb 15, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 15, 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2017.10.035
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
EndPage 174
ExternalDocumentID 10_1016_j_engfracmech_2017_10_035
S0013794417308457
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-666e8d03aea3ae355b2b36f2f497d98feb23b53edc15d10b99ef26a3e6d5427c3
IEDL.DBID .~1
ISSN 0013-7944
IngestDate Fri Jul 25 05:48:33 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ductile failure
Constant mean stress
Damage
Low cycle fatigue
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-666e8d03aea3ae355b2b36f2f497d98feb23b53edc15d10b99ef26a3e6d5427c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2065253754
PQPubID 2045482
PageCount 11
ParticipantIDs proquest_journals_2065253754
crossref_primary_10_1016_j_engfracmech_2017_10_035
crossref_citationtrail_10_1016_j_engfracmech_2017_10_035
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2017_10_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hofmann, Riedle, Altenberger, Cote, Burwell (b0040) 2015; 38
Gurson (b0035) 1977; 99
Nielsen, Dahl, Tvergaard (b0120) 2012; 177
Schmidt R, Wilkowski G, Mayfield M. The international Piping Research Group (IPIRG) program - an overview. In: 11th international conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G23/1; 1991.
Nip, Gardner, Davies, Elghazouli (b0130) 2010; 66
Hopperstad, Langseth, Remseth (b0045) 1995; 11
Iwai P, Park Y-S, Nonaka T, Kameda H. Very low cycle fatigue tests of steel angle members under earthquake loading. In: Proc 10th world conf in earthquake engineering, Balkena, Rotterdam, The Netherlands, vol. 5; 1992. p. 2879–84.
Jia, Kuwamura (b0060) 2015; 106
Kiran, Khandelwal (b0075) 2015; 70
Leblond, Perrin, Devaux (b0100) 1995; 14
Abaqus. Abaqus Documentation, Version 2016, SIMULIA Corp; 2016.
Amstrong P, Frederick C. A mathematical representation of the multiaxial bauschinger effect. CEGB Report RD/B/N73, Berkeley Nuclear Laboratories; 1966.
Tateishi, Takeshi, Minami (b0150) 2007; 29
Nielsen, Tvergaard (b0125) 2011; 48
Liu, Zhang, Zhang, Zhang (b0110) 2015; 83
Tvergaard, Nielsen (b0170) 2010; 58
Tvergaard (b0160) 2008; 50
Leblond J, Lacroix R, Morin L, Remmal A. New modes of ductile rupture under cyclic loading conditions. In: 14th international conference on fracture (ICF14), Rhodos, Greece; 2017.
Gilles, Jullien, Mottet (b0030) 1992; 137
Kuroda (b0085) 2001; 24
Kobayashi H, Kusumoto T, Nakazawa H. Cyclic J-R-curve upper limit characteristic of fatigue crack growth in 2-1/2 Cr-Mo steel. In: 11th International conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G27/1; 1991.
Hopperstad, Langseth, Remseth (b0050) 1995; 11
Tvergaard (b0155) 1990; 27
Dahl, Nielsen, Tvergaard (b0020) 2012; 79
Lemaitre, Chaboche (b0105) 1990
Devaux J, Gologanu M, Leblond J-B, Perrin G. On continued void growth in ductile metals subjected to cyclic loadins. In: Proceedings of the IUTAM symposium on nonlinear analysis of fracture, Kluwer, Cambridge, GB; 1997. p. 299–310.
Kanvinde A, Deierlein G. Micromechanical simulation of earthquake-induced fracture in steel structures. Technical report 145, John A. Blume Earthquake Engineering Center, Stanford University, Calif; 2004.
Lacroix, Leblond, Perrin (b0090) 2016; 55
Brocks, Steglich (b0015) 2005
Mbiakop, Constantinescu, Danas (b0115) 2015; 49
Steglich, Pirondi, Bonora, Brocks (b0145) 2005; 42
Kanvinde, Asce, Deierlein, Asce (b0065) 2007
Pedersen, Tvergaard (b0135) 2000; 9
Tvergaard (b0165) 2009; 158
Kuroda (10.1016/j.engfracmech.2017.10.035_b0085) 2001; 24
Mbiakop (10.1016/j.engfracmech.2017.10.035_b0115) 2015; 49
Tvergaard (10.1016/j.engfracmech.2017.10.035_b0160) 2008; 50
Tvergaard (10.1016/j.engfracmech.2017.10.035_b0170) 2010; 58
Dahl (10.1016/j.engfracmech.2017.10.035_b0020) 2012; 79
10.1016/j.engfracmech.2017.10.035_b0055
10.1016/j.engfracmech.2017.10.035_b0010
Leblond (10.1016/j.engfracmech.2017.10.035_b0100) 1995; 14
10.1016/j.engfracmech.2017.10.035_b0070
Pedersen (10.1016/j.engfracmech.2017.10.035_b0135) 2000; 9
10.1016/j.engfracmech.2017.10.035_b0095
Nielsen (10.1016/j.engfracmech.2017.10.035_b0120) 2012; 177
Kiran (10.1016/j.engfracmech.2017.10.035_b0075) 2015; 70
Lemaitre (10.1016/j.engfracmech.2017.10.035_b0105) 1990
Hopperstad (10.1016/j.engfracmech.2017.10.035_b0045) 1995; 11
Nip (10.1016/j.engfracmech.2017.10.035_b0130) 2010; 66
Kanvinde (10.1016/j.engfracmech.2017.10.035_b0065) 2007
Liu (10.1016/j.engfracmech.2017.10.035_b0110) 2015; 83
10.1016/j.engfracmech.2017.10.035_b0025
Nielsen (10.1016/j.engfracmech.2017.10.035_b0125) 2011; 48
10.1016/j.engfracmech.2017.10.035_b0140
Brocks (10.1016/j.engfracmech.2017.10.035_b0015) 2005
Tvergaard (10.1016/j.engfracmech.2017.10.035_b0155) 1990; 27
Tateishi (10.1016/j.engfracmech.2017.10.035_b0150) 2007; 29
Lacroix (10.1016/j.engfracmech.2017.10.035_b0090) 2016; 55
Gilles (10.1016/j.engfracmech.2017.10.035_b0030) 1992; 137
Tvergaard (10.1016/j.engfracmech.2017.10.035_b0165) 2009; 158
10.1016/j.engfracmech.2017.10.035_b0080
Steglich (10.1016/j.engfracmech.2017.10.035_b0145) 2005; 42
Hofmann (10.1016/j.engfracmech.2017.10.035_b0040) 2015; 38
Hopperstad (10.1016/j.engfracmech.2017.10.035_b0050) 1995; 11
Jia (10.1016/j.engfracmech.2017.10.035_b0060) 2015; 106
Gurson (10.1016/j.engfracmech.2017.10.035_b0035) 1977; 99
10.1016/j.engfracmech.2017.10.035_b0005
References_xml – reference: Schmidt R, Wilkowski G, Mayfield M. The international Piping Research Group (IPIRG) program - an overview. In: 11th international conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G23/1; 1991.
– volume: 27
  start-page: 83
  year: 1990
  end-page: 151
  ident: b0155
  article-title: Material failure by void growth to coalescence
  publication-title: Adv Appl Mech
– start-page: 389
  year: 2005
  end-page: 398
  ident: b0015
  article-title: Damage models for plasticity
  publication-title: Key Eng Mater
– volume: 66
  start-page: 96
  year: 2010
  end-page: 110
  ident: b0130
  article-title: Extremely low cycle fatigue tests on structural carbon steel and stainless steel
  publication-title: J Construct Steel Res
– volume: 50
  start-page: 1439
  year: 2008
  end-page: 1465
  ident: b0160
  article-title: Shear deformation of voids with contact modeled by internal pressure
  publication-title: Int J Mech Sci
– volume: 79
  start-page: 021003
  year: 2012
  ident: b0020
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J Appl Mech
– volume: 42
  start-page: 337
  year: 2005
  end-page: 351
  ident: b0145
  article-title: Micromechanical modelling of cyclic plasticty incorporating damage
  publication-title: Int J Solids Struct
– volume: 14
  start-page: 499
  year: 1995
  end-page: 527
  ident: b0100
  article-title: An improved Gurson-type model for hardenable ductile metals
  publication-title: Europ J Mech A/Solids
– reference: Devaux J, Gologanu M, Leblond J-B, Perrin G. On continued void growth in ductile metals subjected to cyclic loadins. In: Proceedings of the IUTAM symposium on nonlinear analysis of fracture, Kluwer, Cambridge, GB; 1997. p. 299–310.
– volume: 29
  start-page: 887
  year: 2007
  end-page: 896
  ident: b0150
  article-title: A prediction model for extremely low cycle fatigue strength of structural steel
  publication-title: Int J Fatigue
– volume: 24
  start-page: 699
  year: 2001
  end-page: 703
  ident: b0085
  article-title: Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model
  publication-title: Int J Fatigue
– reference: Leblond J, Lacroix R, Morin L, Remmal A. New modes of ductile rupture under cyclic loading conditions. In: 14th international conference on fracture (ICF14), Rhodos, Greece; 2017.
– volume: 158
  start-page: 41
  year: 2009
  end-page: 49
  ident: b0165
  article-title: Behaviour of voids in a shear field
  publication-title: Int J Fract
– volume: 58
  start-page: 1243
  year: 2010
  end-page: 1252
  ident: b0170
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J Mech Phys Solids
– volume: 70
  start-page: 24
  year: 2015
  end-page: 37
  ident: b0075
  article-title: A micromechanical cyclic void growth model for ultra-low cycle fatigue
  publication-title: Int J Fatigue
– volume: 9
  start-page: 154
  year: 2000
  end-page: 173
  ident: b0135
  article-title: On low cycle fatigue in metal matrix composites
  publication-title: Int J Damage Mech
– reference: Amstrong P, Frederick C. A mathematical representation of the multiaxial bauschinger effect. CEGB Report RD/B/N73, Berkeley Nuclear Laboratories; 1966.
– volume: 48
  start-page: 1255
  year: 2011
  end-page: 1267
  ident: b0125
  article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing
  publication-title: Int J Solids Struct
– volume: 49
  start-page: 481
  year: 2015
  end-page: 499
  ident: b0115
  article-title: On void shape effects of periodic elasto-plastic materials subjected to cyclic loading
  publication-title: Europ J Mech A/Solids
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: b0035
  article-title: Continuum theory of ductile rupture by void nucleation and growth - Part I: Yield criteria and flow rules for porous ductile madia
  publication-title: ASME J Eng Mater Technol
– start-page: 701
  year: 2007
  end-page: 712
  ident: b0065
  article-title: Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue
  publication-title: J Eng Nech
– volume: 177
  start-page: 97
  year: 2012
  end-page: 108
  ident: b0120
  article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D
  publication-title: Int J Fract
– volume: 55
  start-page: 100
  year: 2016
  end-page: 109
  ident: b0090
  article-title: Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loading
  publication-title: Europ J Mech A/Solids
– year: 1990
  ident: b0105
  article-title: Mechanics of materials
– volume: 106
  start-page: 110
  year: 2015
  end-page: 121
  ident: b0060
  article-title: Ductile fracture model for structural steel under cyclic large strain loading
  publication-title: J Construct Steel Res
– volume: 11
  start-page: 725
  year: 1995
  end-page: 739
  ident: b0045
  article-title: Cyclic stress-strain behaviour of alloy AA6060, Part 1: Uniaxial experiments and modelling
  publication-title: Int J Plast
– volume: 11
  start-page: 741
  year: 1995
  end-page: 762
  ident: b0050
  article-title: Cyclic stress-strain behaviour of alloy AA6060 T4, Part 1I: Biaxial experiments and modelling
  publication-title: Int J Plast
– volume: 83
  start-page: 341
  year: 2015
  end-page: 356
  ident: b0110
  article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: damage mechanisms and life prediction
  publication-title: Acta Mater
– reference: Iwai P, Park Y-S, Nonaka T, Kameda H. Very low cycle fatigue tests of steel angle members under earthquake loading. In: Proc 10th world conf in earthquake engineering, Balkena, Rotterdam, The Netherlands, vol. 5; 1992. p. 2879–84.
– volume: 38
  start-page: 1432
  year: 2015
  end-page: 1442
  ident: b0040
  article-title: Ultra-low cycle torsion fatigue of annealed copper
  publication-title: Fatigue Fract Eng Mater Struct
– reference: Kobayashi H, Kusumoto T, Nakazawa H. Cyclic J-R-curve upper limit characteristic of fatigue crack growth in 2-1/2 Cr-Mo steel. In: 11th International conference on structural mechanics in reactor technology (SMIRT 11), Tokyo, Japan, paper G27/1; 1991.
– reference: Kanvinde A, Deierlein G. Micromechanical simulation of earthquake-induced fracture in steel structures. Technical report 145, John A. Blume Earthquake Engineering Center, Stanford University, Calif; 2004.
– reference: Abaqus. Abaqus Documentation, Version 2016, SIMULIA Corp; 2016.
– volume: 137
  start-page: 269
  year: 1992
  end-page: 284
  ident: b0030
  article-title: Analysis of cyclic effects on ductile tearing strength by a local approach of fracture
  publication-title: Adv Fract/Damage Models Anal Eng Probl
– volume: 49
  start-page: 481
  year: 2015
  ident: 10.1016/j.engfracmech.2017.10.035_b0115
  article-title: On void shape effects of periodic elasto-plastic materials subjected to cyclic loading
  publication-title: Europ J Mech A/Solids
  doi: 10.1016/j.euromechsol.2014.09.001
– ident: 10.1016/j.engfracmech.2017.10.035_b0140
– volume: 58
  start-page: 1243
  year: 2010
  ident: 10.1016/j.engfracmech.2017.10.035_b0170
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2010.06.006
– volume: 83
  start-page: 341
  year: 2015
  ident: 10.1016/j.engfracmech.2017.10.035_b0110
  article-title: Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: damage mechanisms and life prediction
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.10.002
– ident: 10.1016/j.engfracmech.2017.10.035_b0070
– volume: 55
  start-page: 100
  year: 2016
  ident: 10.1016/j.engfracmech.2017.10.035_b0090
  article-title: Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loading
  publication-title: Europ J Mech A/Solids
  doi: 10.1016/j.euromechsol.2015.08.010
– ident: 10.1016/j.engfracmech.2017.10.035_b0010
– start-page: 389
  year: 2005
  ident: 10.1016/j.engfracmech.2017.10.035_b0015
  article-title: Damage models for plasticity
  publication-title: Key Eng Mater
– volume: 42
  start-page: 337
  year: 2005
  ident: 10.1016/j.engfracmech.2017.10.035_b0145
  article-title: Micromechanical modelling of cyclic plasticty incorporating damage
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2004.06.041
– volume: 27
  start-page: 83
  year: 1990
  ident: 10.1016/j.engfracmech.2017.10.035_b0155
  article-title: Material failure by void growth to coalescence
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70195-9
– volume: 9
  start-page: 154
  year: 2000
  ident: 10.1016/j.engfracmech.2017.10.035_b0135
  article-title: On low cycle fatigue in metal matrix composites
  publication-title: Int J Damage Mech
  doi: 10.1177/105678950000900203
– ident: 10.1016/j.engfracmech.2017.10.035_b0095
– volume: 177
  start-page: 97
  year: 2012
  ident: 10.1016/j.engfracmech.2017.10.035_b0120
  article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D
  publication-title: Int J Fract
  doi: 10.1007/s10704-012-9757-4
– volume: 11
  start-page: 741
  year: 1995
  ident: 10.1016/j.engfracmech.2017.10.035_b0050
  article-title: Cyclic stress-strain behaviour of alloy AA6060 T4, Part 1I: Biaxial experiments and modelling
  publication-title: Int J Plast
  doi: 10.1016/S0749-6419(95)00033-X
– volume: 99
  start-page: 2
  year: 1977
  ident: 10.1016/j.engfracmech.2017.10.035_b0035
  article-title: Continuum theory of ductile rupture by void nucleation and growth - Part I: Yield criteria and flow rules for porous ductile madia
  publication-title: ASME J Eng Mater Technol
  doi: 10.1115/1.3443401
– volume: 70
  start-page: 24
  year: 2015
  ident: 10.1016/j.engfracmech.2017.10.035_b0075
  article-title: A micromechanical cyclic void growth model for ultra-low cycle fatigue
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2014.08.010
– volume: 48
  start-page: 1255
  year: 2011
  ident: 10.1016/j.engfracmech.2017.10.035_b0125
  article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2011.01.008
– ident: 10.1016/j.engfracmech.2017.10.035_b0005
– volume: 158
  start-page: 41
  year: 2009
  ident: 10.1016/j.engfracmech.2017.10.035_b0165
  article-title: Behaviour of voids in a shear field
  publication-title: Int J Fract
  doi: 10.1007/s10704-009-9364-1
– volume: 14
  start-page: 499
  year: 1995
  ident: 10.1016/j.engfracmech.2017.10.035_b0100
  article-title: An improved Gurson-type model for hardenable ductile metals
  publication-title: Europ J Mech A/Solids
– volume: 11
  start-page: 725
  year: 1995
  ident: 10.1016/j.engfracmech.2017.10.035_b0045
  article-title: Cyclic stress-strain behaviour of alloy AA6060, Part 1: Uniaxial experiments and modelling
  publication-title: Int J Plast
  doi: 10.1016/S0749-6419(95)00032-1
– volume: 79
  start-page: 021003
  year: 2012
  ident: 10.1016/j.engfracmech.2017.10.035_b0020
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J Appl Mech
  doi: 10.1115/1.4005565
– volume: 50
  start-page: 1439
  year: 2008
  ident: 10.1016/j.engfracmech.2017.10.035_b0160
  article-title: Shear deformation of voids with contact modeled by internal pressure
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2008.08.007
– start-page: 701
  year: 2007
  ident: 10.1016/j.engfracmech.2017.10.035_b0065
  article-title: Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue
  publication-title: J Eng Nech
– year: 1990
  ident: 10.1016/j.engfracmech.2017.10.035_b0105
– ident: 10.1016/j.engfracmech.2017.10.035_b0055
– volume: 29
  start-page: 887
  year: 2007
  ident: 10.1016/j.engfracmech.2017.10.035_b0150
  article-title: A prediction model for extremely low cycle fatigue strength of structural steel
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2006.08.001
– volume: 106
  start-page: 110
  year: 2015
  ident: 10.1016/j.engfracmech.2017.10.035_b0060
  article-title: Ductile fracture model for structural steel under cyclic large strain loading
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2014.12.002
– volume: 66
  start-page: 96
  year: 2010
  ident: 10.1016/j.engfracmech.2017.10.035_b0130
  article-title: Extremely low cycle fatigue tests on structural carbon steel and stainless steel
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2009.08.004
– ident: 10.1016/j.engfracmech.2017.10.035_b0025
  doi: 10.1007/978-94-011-5642-4_28
– volume: 38
  start-page: 1432
  year: 2015
  ident: 10.1016/j.engfracmech.2017.10.035_b0040
  article-title: Ultra-low cycle torsion fatigue of annealed copper
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12311
– volume: 24
  start-page: 699
  year: 2001
  ident: 10.1016/j.engfracmech.2017.10.035_b0085
  article-title: Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(01)00170-0
– volume: 137
  start-page: 269
  year: 1992
  ident: 10.1016/j.engfracmech.2017.10.035_b0030
  article-title: Analysis of cyclic effects on ductile tearing strength by a local approach of fracture
  publication-title: Adv Fract/Damage Models Anal Eng Probl
– ident: 10.1016/j.engfracmech.2017.10.035_b0080
SSID ssj0007680
Score 2.2643318
Snippet •Void coalescence for combined tension and large amplitude cyclic shearing is shown.•Voids develop protrusions in the shearing place and these evolve for each...
Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 164
SubjectTerms Amplitudes
Bearing strength
Coalescing
Constant mean stress
Cracks
Cyclic loads
Damage
Deformation
Deformation mechanisms
Ductile failure
Elongation
Fatigue failure
Load
Load carrying capacity
Low cycle fatigue
Shear deformation
Shearing
Strain hardening
Tensile stress
Voids
Title Void coalescence mechanism for combined tension and large amplitude cyclic shearing
URI https://dx.doi.org/10.1016/j.engfracmech.2017.10.035
https://www.proquest.com/docview/2065253754
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIHoQn7i-iOC1btMkbQJeZFFWRS8-2FtJk6lUdrvL7nrw4m930m1dFQ-Chx7aadIymc6DfpmPkBPNrLSZVEGcOxsIloWBNugMgWsLDKSNK27A27u4-yiue7K3QDrNXhgPq6x9_8ynV966vtKutdkeFYXf48s4WpNgaKRKSL-jXIjEW_np-xzmgel02LAY-LuXyfEc4wXlcz42dgDVfwmWnHqgV8X89muM-uGtqxB0uU7W6tyRns9eb4MsQLlJVr90FNwi90_DwlE7NLM2TRaof6opi8mAYnqKkgGWwuBoBVwfltSUjvY9Gpwajy33nS6pfbP9wtKJJ7vGWbfJ4-XFQ6cb1LwJgeVCTwOsSEC5kBsweGBCkUUZj_MoFzpxWuVYTPNMcnCWScfCTGvIo9hwiJ0UUWL5DlkshyXsEooRFBKUKIBMgFZG5SoCh0lRGNvIyBZRjaZSWzcV99wW_bRBj72kX5SceiV7ESq5RaLPoaNZZ42_DDprliP9ZiYpRoC_DD9oljCtv9UJymMZSU8FvPe_2ffJCp4pj-lm8oAsTsevcIgpyzQ7qmzyiCydX9107z4A9WzuxQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BK_E4IF6rhe2CkbgG4jhObGkvCC0qr154iFvk2BMU1KaIlgP_nnGa8NIekPaQS0bjROPJPJTP8wHsa26lzaUKksLZIOZ5GGhDwRCFtshR2qTmBrwcJP2b-OxO3s3BcXsWxsMqm9g_i-l1tG7uHDbWPHwsS3_GlwvyppiTk6pYpvPQ9dOpZAe6R6fn_cFbQKaKOmyJDLzCAuy9w7ywui-ejB1h_WuCpwce61WTv_0zTX0J2HUWOlmFlaZ8ZEezN1yDOazWYfnDUMENuLodl47ZsZlNarLI_FNNVU5GjCpUkoyoG0bHauz6uGKmcmzoAeHMeHi5H3bJ7IsdlpZNPN81rboJNyd_r4_7QUOdEFgR62lATQkqFwqDhi6qKfIoF0kRFbFOnVYF9dMilwKd5dLxMNcaiygxAhMn4yi14gd0qnGFP4FREsWUJAoxj1ErowoVoaO6KExsZOQWqNZSmW3mint6i2HWAsgesg9GzryRvYiMvAXRm-rjbLjGd5T-tNuRffKUjJLAd9R77RZmzec6IXkiI-nZgLf_b_VdWOxfX15kF6eD81-wRBLlId5c9qAzfXrG31TBTPOdxkNfAR708XY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Void+coalescence+mechanism+for+combined+tension+and+large+amplitude+cyclic+shearing&rft.jtitle=Engineering+fracture+mechanics&rft.au=Nielsen%2C+K.L.&rft.au=Andersen%2C+R.G.&rft.au=Tvergaard%2C+V.&rft.date=2018-02-15&rft.issn=0013-7944&rft.volume=189&rft.spage=164&rft.epage=174&rft_id=info:doi/10.1016%2Fj.engfracmech.2017.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfracmech_2017_10_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon