Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's ine...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 365; pp. 419 - 429
Main Authors Kim, Jinyong, Luo, Gang, Wang, Chao-Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss. •Forchheimer's inertial effect is dominant in PEMFCs with 3D complex flow-fields.•Forchheimer's inertial effect enhances liquid water removal and mass transport.•PEMFCs with 3D complex flow-fields are robust and efficient at high current density.
AbstractList 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss. •Forchheimer's inertial effect is dominant in PEMFCs with 3D complex flow-fields.•Forchheimer's inertial effect enhances liquid water removal and mass transport.•PEMFCs with 3D complex flow-fields are robust and efficient at high current density.
Author Kim, Jinyong
Luo, Gang
Wang, Chao-Yang
Author_xml – sequence: 1
  givenname: Jinyong
  surname: Kim
  fullname: Kim, Jinyong
– sequence: 2
  givenname: Gang
  surname: Luo
  fullname: Luo, Gang
– sequence: 3
  givenname: Chao-Yang
  surname: Wang
  fullname: Wang, Chao-Yang
  email: cxw31@psu.edu
BookMark eNqFkM1OAyEUhYmpia36CoYXmBGGMgyJC03jX6Jxo2tCmUtLw8AEpra-vaPVjRtXd3O_k3O-GZqEGAChC0pKSmh9uSk3fdzluE1lRagoiSwJYUdoShvBikpwPkFTwkRTCMHZCZrlvCGEUCrIFK2eYwvehRUedrHo1zoDtj7usAt4WCeAonUdhOxi0B6b2PUe9t8fhXXg24yjxX2KQwwY9matwwpwB90y6TAmbWGEwPt8ho6t9hnOf-4peru7fV08FE8v94-Lm6fCsLkcCi5BWC2rWnMDtdEV16RtqZSCGbOU44g5F7KZV4azprJMWiMbXgtdL61sQLNTdHXINSnmnMAq4wY9jPWHpJ1XlKgvaWqjfqWpL2mKSDVKG_H6D94n1-n08T94fQBhHPfuIKlsHAQDrUtgBtVG91_EJ_WZkJE
CitedBy_id crossref_primary_10_1080_01430750_2021_1914161
crossref_primary_10_1002_er_5219
crossref_primary_10_1016_j_electacta_2019_135442
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122477
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104793
crossref_primary_10_1016_j_ijhydene_2020_05_154
crossref_primary_10_1016_j_ijhydene_2023_06_239
crossref_primary_10_1007_s11581_025_06086_7
crossref_primary_10_1016_j_enconman_2020_113513
crossref_primary_10_1149_1945_7111_ad305a
crossref_primary_10_1016_j_apenergy_2019_03_189
crossref_primary_10_1002_er_7113
crossref_primary_10_1016_j_jpowsour_2019_226741
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_122
crossref_primary_10_3390_app9224863
crossref_primary_10_1002_er_6261
crossref_primary_10_1002_er_6945
crossref_primary_10_1016_j_ijhydene_2020_12_076
crossref_primary_10_1016_j_jpowsour_2020_228388
crossref_primary_10_1016_j_powera_2023_100119
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120733
crossref_primary_10_1016_j_jpowsour_2018_11_071
crossref_primary_10_1016_j_apenergy_2020_116011
crossref_primary_10_3390_en14123675
crossref_primary_10_1016_j_ijhydene_2022_05_047
crossref_primary_10_1002_aic_17461
crossref_primary_10_1007_s11581_023_05151_3
crossref_primary_10_1016_j_enconman_2019_05_069
crossref_primary_10_1016_j_fuel_2024_133757
crossref_primary_10_1016_j_ces_2024_121077
crossref_primary_10_1016_j_enconman_2023_116865
crossref_primary_10_1002_er_4472
crossref_primary_10_1016_j_apenergy_2024_125126
crossref_primary_10_1016_j_jpowsour_2019_226995
crossref_primary_10_1002_ente_202100851
crossref_primary_10_1016_j_apenergy_2023_121226
crossref_primary_10_1007_s11595_021_2412_z
crossref_primary_10_1016_j_applthermaleng_2019_01_010
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122766
crossref_primary_10_1016_j_jpowsour_2020_228376
crossref_primary_10_1126_sciadv_abe9083
crossref_primary_10_1007_s42154_021_00145_1
crossref_primary_10_1007_s11705_024_2445_x
crossref_primary_10_1007_s11581_024_05688_x
crossref_primary_10_1002_er_8706
crossref_primary_10_1016_j_ijhydene_2021_11_248
crossref_primary_10_1016_j_ces_2022_118077
crossref_primary_10_1002_er_4461
crossref_primary_10_1016_j_apenergy_2023_122442
crossref_primary_10_1016_j_applthermaleng_2024_123201
crossref_primary_10_2139_ssrn_4095260
crossref_primary_10_1016_j_enconman_2018_06_111
crossref_primary_10_1007_s11431_020_1767_5
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119471
crossref_primary_10_1109_TIA_2018_2839082
crossref_primary_10_3390_su11236682
crossref_primary_10_1016_j_renene_2020_10_105
crossref_primary_10_1016_j_icheatmasstransfer_2021_105212
crossref_primary_10_1016_j_ijhydene_2024_08_515
crossref_primary_10_1016_j_jallcom_2024_177251
crossref_primary_10_3390_en16165892
crossref_primary_10_1002_apj_3146
crossref_primary_10_1007_s12209_020_00239_7
crossref_primary_10_1016_j_enconman_2021_114818
crossref_primary_10_1016_j_cej_2024_156371
crossref_primary_10_1115_1_4063016
crossref_primary_10_1016_j_energy_2022_125687
crossref_primary_10_1016_j_scib_2023_01_034
crossref_primary_10_1016_j_applthermaleng_2024_124643
crossref_primary_10_1016_j_jclepro_2022_134187
crossref_primary_10_1002_eem2_12105
crossref_primary_10_1007_s11581_020_03760_w
crossref_primary_10_3390_en14175484
crossref_primary_10_1016_j_energy_2019_06_089
crossref_primary_10_1016_j_jmapro_2020_10_041
crossref_primary_10_3390_en14196044
crossref_primary_10_1016_j_energy_2021_122714
crossref_primary_10_1016_j_etran_2023_100250
crossref_primary_10_1039_D4RA05965D
crossref_primary_10_1002_er_4328
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125147
crossref_primary_10_1016_j_jpowsour_2020_228456
crossref_primary_10_29130_dubited_692558
crossref_primary_10_1016_j_ijhydene_2022_02_023
crossref_primary_10_1016_j_ijhydene_2020_11_226
crossref_primary_10_1002_er_6191
crossref_primary_10_1061__ASCE_EY_1943_7897_0000717
crossref_primary_10_3390_encyclopedia3020054
crossref_primary_10_1016_j_enconman_2020_113046
crossref_primary_10_1016_j_ces_2018_11_034
crossref_primary_10_1177_0957650919893543
crossref_primary_10_1002_fuce_202300136
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120497
crossref_primary_10_1016_j_apenergy_2024_122903
crossref_primary_10_1016_j_enconman_2018_08_062
crossref_primary_10_1149_1945_7111_ac2656
crossref_primary_10_1016_j_energy_2023_126709
crossref_primary_10_1016_j_energy_2023_127918
crossref_primary_10_1080_15435075_2022_2038612
crossref_primary_10_1016_j_ijhydene_2020_05_082
crossref_primary_10_1016_j_cej_2023_146147
crossref_primary_10_1016_j_cjche_2024_12_011
crossref_primary_10_1016_j_jpowsour_2018_04_071
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126127
crossref_primary_10_1016_j_jpowsour_2020_229412
crossref_primary_10_7316_KHNES_2021_32_4_245
crossref_primary_10_1089_3dp_2021_0303
crossref_primary_10_1016_j_enconman_2024_118348
crossref_primary_10_1016_j_electacta_2022_140163
crossref_primary_10_1016_j_renene_2021_09_107
crossref_primary_10_1016_j_ijhydene_2022_09_143
crossref_primary_10_1016_j_ijhydene_2022_09_261
crossref_primary_10_1016_j_ijhydene_2019_07_231
crossref_primary_10_1016_j_ijhydene_2019_09_189
crossref_primary_10_1016_j_ijhydene_2021_07_124
crossref_primary_10_1016_j_enconman_2020_113297
crossref_primary_10_1021_acs_chemrev_2c00539
crossref_primary_10_1016_j_ijhydene_2018_02_070
crossref_primary_10_1016_j_est_2024_114141
crossref_primary_10_1016_j_enconman_2020_113292
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126987
crossref_primary_10_1016_j_applthermaleng_2018_09_110
crossref_primary_10_1016_j_ijhydene_2021_06_175
crossref_primary_10_1016_j_ijhydene_2021_03_049
crossref_primary_10_1016_j_ijhydene_2022_03_246
crossref_primary_10_1002_er_7939
crossref_primary_10_1016_j_applthermaleng_2023_119986
crossref_primary_10_3390_en16104207
crossref_primary_10_1002_advs_202205305
crossref_primary_10_1016_j_enconman_2019_05_071
crossref_primary_10_1016_j_energy_2023_129481
crossref_primary_10_1002_aic_16957
crossref_primary_10_1016_j_energy_2022_126442
crossref_primary_10_1002_ente_202201463
crossref_primary_10_1016_j_enconman_2022_115288
crossref_primary_10_1016_j_ijhydene_2020_09_105
crossref_primary_10_20964_2022_05_53
crossref_primary_10_1016_j_ijhydene_2020_12_178
crossref_primary_10_1016_j_apenergy_2021_117443
crossref_primary_10_1016_j_jpowsour_2021_229496
crossref_primary_10_1016_j_rser_2023_114198
crossref_primary_10_1016_j_adapen_2021_100033
crossref_primary_10_1002_adma_202204902
crossref_primary_10_1016_j_renene_2019_09_026
crossref_primary_10_1016_j_enconman_2020_113588
crossref_primary_10_3390_polym14142799
crossref_primary_10_1016_j_enconman_2023_116725
crossref_primary_10_1016_j_ijhydene_2021_04_004
crossref_primary_10_1142_S0217979221500624
crossref_primary_10_3390_su162210144
crossref_primary_10_1016_j_jpowsour_2020_228034
crossref_primary_10_1016_j_jpowsour_2021_230129
crossref_primary_10_1016_j_cej_2024_153629
crossref_primary_10_1016_j_renene_2023_119500
crossref_primary_10_1016_j_ijhydene_2018_10_237
Cites_doi 10.1016/j.jpowsour.2008.11.030
10.1016/j.apenergy.2014.12.059
10.1016/0017-9310(93)90094-M
10.1016/j.jpowsour.2008.06.006
10.1016/j.electacta.2010.08.070
10.1016/j.jpowsour.2008.11.039
10.4271/2017-01-1188
10.4271/2015-01-1175
10.1115/1.2137763
10.1016/S0017-9310(05)80281-9
10.1007/s10404-004-0020-9
10.1115/1.4027420
10.1016/j.ijhydene.2013.10.113
10.1016/j.enconman.2016.06.043
10.1016/j.apenergy.2010.07.006
10.2514/1.T4509
10.1016/j.ijhydene.2011.07.014
10.1016/0017-9310(96)00036-1
10.1149/2.F03152if
10.1080/10407788608913491
10.1007/BF00192152
10.1016/j.jpowsour.2013.02.039
10.1016/j.ijhydene.2016.03.028
10.1016/j.electacta.2014.08.148
10.1103/PhysRevLett.82.5249
10.1007/s002310050359
10.1007/s11242-005-2720-3
10.1016/j.cej.2003.10.012
10.1007/s11242-009-9491-1
10.1016/j.enconman.2015.12.036
10.1149/1.1851059
10.1016/j.ijhydene.2010.12.060
10.1007/BF00654407
10.1016/j.apenergy.2011.06.034
10.1016/0890-4332(94)90041-8
10.1016/j.ijhydene.2013.08.063
10.1021/ie50474a011
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2017.09.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 429
ExternalDocumentID 10_1016_j_jpowsour_2017_09_003
S0378775317311606
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c349t-59e7fa926a5ce6ca25a0dd19973ccb93784579842c5382f39fc98567a6bf98ea3
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 01:40:04 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PEMFC
Liquid water removal
3D complex flow-field
High current density
Forchheimer effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-59e7fa926a5ce6ca25a0dd19973ccb93784579842c5382f39fc98567a6bf98ea3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2017_09_003
crossref_primary_10_1016_j_jpowsour_2017_09_003
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_09_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-15
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Civan, Evans (bib43) 1995; 34
Jiang, Wang (bib29) 2014; 39
Dehsara, Kermani (bib11) 2014; vol. 28
Andrade, Costa, Almeida, Makse, Stanley (bib34) 1999; 82
Tabuchi, Shiomi, Aoki, Kubo, Shinohara (bib1) 2010; 56
Heidary, Kermani, Dabir (bib8) 2016; 124
Carman (bib32) 1937; 15
Basu, Li, Wang (bib28) 2009; 187
Yoshida, Kojima (bib3) 2015; 24
Wu, Yuan, Martin, Wang, Zhang, Shen, Wu, Merida (bib56) 2008; 184
Kozeny (bib31) 1927; 136
Kotaka, Tabuchi, Pasaogullari, Wang (bib18) 2014; 146
Perng, Wu (bib14) 2015; 143
Imke (bib21) 2004; 101
Zeng, Grigg (bib38) 2006; 63
Ergun, Orning (bib33) 1949; 41
Han, Choi, Choi (bib7) 2014; 39
Lee, Catton (bib42) 1986
Stubos, Satik, Yortsos (bib22) 1993; 36
Hao, Moriyama, Gu, Wang (bib17) 2015; vol. 162
Thitakamol, Therdthianwong, Therdthianwong (bib6) 2010; 36
Hao, Moriyama, Gu, Wang (bib16) 2016; vol. 163
Ahmadi, Abbasian Arani, Lasseux (bib41) 2009; 84
Tio, Liu, Toh (bib24) 2000; 36
Wang, Wang (bib47) 2008
Wang, Beckermann (bib48) 1993; 36
Wang, Basu, Wang (bib19) 2008; vol. 179
Barree, Conway (bib37) 2009
Lipinski (bib44) 1982
Wang, Wang (bib46) 2005; 152
Patankar (bib52) 1980
Ghanbarian, Kermani (bib10) 2016; 110
Henning, Brandner, Schubert (bib20) 2005; 1
Barree, Conway (bib36) 2004
Li, Yao (bib26) 2015; 29
Wang, Groll, Rösler, Tu (bib25) 1994; 14
Wu, Ku (bib9) 2011; 88
(bib55) 2013
Heidary, Kermani, Advani, Prasad (bib5) 2016; 41
Hayashi, Ida, Magome (bib54) 2017
Heidary, Kermani, Prasad, Advani, Dabir (bib13) 2016
Konno, Mizuno, Nakaji, Ishikawa (bib2) 2015; 4
Sugumar, Tio (bib23) 2006; 128
Zoulias, Lymberopoulos (bib51) 2008
Wang, Cheng (bib49) 1996; 39
Nonobe (bib4) 2017
Ma, Ruth (bib45) 1993; 13
Hassanizadeh (bib39) 1987; 2
Liu, Zhang, Yao, Li (bib27) 2014; 136
Yang, Ye, Cheng (bib30) 2011; 36
Wang, Wang (bib50) 2008
Blick (bib35) 1988
Perng, Wu (bib12) 2011; 88
Hussaini, Wang (bib40) 2009; 187
Carnes, Spernjak, Luo, Hao, Chen, Wang, Mukundan, Borup (bib15) 2013; 236
Hutchinson, Raithby (bib53) 1986; 9
Wang (10.1016/j.jpowsour.2017.09.003_bib19) 2008; vol. 179
Hassanizadeh (10.1016/j.jpowsour.2017.09.003_bib39) 1987; 2
Nonobe (10.1016/j.jpowsour.2017.09.003_bib4) 2017
Wang (10.1016/j.jpowsour.2017.09.003_bib25) 1994; 14
Heidary (10.1016/j.jpowsour.2017.09.003_bib13) 2016
Carman (10.1016/j.jpowsour.2017.09.003_bib32) 1937; 15
Hao (10.1016/j.jpowsour.2017.09.003_bib16) 2016; vol. 163
Perng (10.1016/j.jpowsour.2017.09.003_bib14) 2015; 143
Hao (10.1016/j.jpowsour.2017.09.003_bib17) 2015; vol. 162
Wang (10.1016/j.jpowsour.2017.09.003_bib50) 2008
Patankar (10.1016/j.jpowsour.2017.09.003_bib52) 1980
Wu (10.1016/j.jpowsour.2017.09.003_bib56) 2008; 184
Wang (10.1016/j.jpowsour.2017.09.003_bib49) 1996; 39
Zoulias (10.1016/j.jpowsour.2017.09.003_bib51) 2008
Konno (10.1016/j.jpowsour.2017.09.003_bib2) 2015; 4
Liu (10.1016/j.jpowsour.2017.09.003_bib43) 1995; 34
Blick (10.1016/j.jpowsour.2017.09.003_bib35) 1988
Dehsara (10.1016/j.jpowsour.2017.09.003_bib11) 2014; vol. 28
Ghanbarian (10.1016/j.jpowsour.2017.09.003_bib10) 2016; 110
Kotaka (10.1016/j.jpowsour.2017.09.003_bib18) 2014; 146
Lipinski (10.1016/j.jpowsour.2017.09.003_bib44) 1982
Heidary (10.1016/j.jpowsour.2017.09.003_bib8) 2016; 124
Kozeny (10.1016/j.jpowsour.2017.09.003_bib31) 1927; 136
(10.1016/j.jpowsour.2017.09.003_bib55) 2013
Tabuchi (10.1016/j.jpowsour.2017.09.003_bib1) 2010; 56
Barree (10.1016/j.jpowsour.2017.09.003_bib37) 2009
Zeng (10.1016/j.jpowsour.2017.09.003_bib38) 2006; 63
Carnes (10.1016/j.jpowsour.2017.09.003_bib15) 2013; 236
Stubos (10.1016/j.jpowsour.2017.09.003_bib22) 1993; 36
Imke (10.1016/j.jpowsour.2017.09.003_bib21) 2004; 101
Wang (10.1016/j.jpowsour.2017.09.003_bib46) 2005; 152
Han (10.1016/j.jpowsour.2017.09.003_bib7) 2014; 39
Tio (10.1016/j.jpowsour.2017.09.003_bib24) 2000; 36
Yang (10.1016/j.jpowsour.2017.09.003_bib30) 2011; 36
Hussaini (10.1016/j.jpowsour.2017.09.003_bib40) 2009; 187
Wu (10.1016/j.jpowsour.2017.09.003_bib9) 2011; 88
Barree (10.1016/j.jpowsour.2017.09.003_bib36) 2004
Heidary (10.1016/j.jpowsour.2017.09.003_bib5) 2016; 41
Hayashi (10.1016/j.jpowsour.2017.09.003_bib54) 2017
Sugumar (10.1016/j.jpowsour.2017.09.003_bib23) 2006; 128
Yoshida (10.1016/j.jpowsour.2017.09.003_bib3) 2015; 24
Perng (10.1016/j.jpowsour.2017.09.003_bib12) 2011; 88
Ma (10.1016/j.jpowsour.2017.09.003_bib45) 1993; 13
Andrade (10.1016/j.jpowsour.2017.09.003_bib34) 1999; 82
Thitakamol (10.1016/j.jpowsour.2017.09.003_bib6) 2010; 36
Basu (10.1016/j.jpowsour.2017.09.003_bib28) 2009; 187
Lee (10.1016/j.jpowsour.2017.09.003_bib42) 1986
Liu (10.1016/j.jpowsour.2017.09.003_bib27) 2014; 136
Wang (10.1016/j.jpowsour.2017.09.003_bib47) 2008
Henning (10.1016/j.jpowsour.2017.09.003_bib20) 2005; 1
Hutchinson (10.1016/j.jpowsour.2017.09.003_bib53) 1986; 9
Li (10.1016/j.jpowsour.2017.09.003_bib26) 2015; 29
Ahmadi (10.1016/j.jpowsour.2017.09.003_bib41) 2009; 84
Ergun (10.1016/j.jpowsour.2017.09.003_bib33) 1949; 41
Jiang (10.1016/j.jpowsour.2017.09.003_bib29) 2014; 39
Wang (10.1016/j.jpowsour.2017.09.003_bib48) 1993; 36
References_xml – volume: 9
  start-page: 511
  year: 1986
  end-page: 537
  ident: bib53
  article-title: A multigrid method based on the additive correction strategy
  publication-title: Numer. Heat. Transf.
– volume: vol. 162
  start-page: 25
  year: 2015
  end-page: 27
  ident: bib17
  publication-title: Modeling and Experimental Validation of Pt Loading and Electrode Composition Effects in PEM Fuel Cells
– volume: 82
  start-page: 5249
  year: 1999
  ident: bib34
  article-title: Inertial effects on fluid flow through disordered porous media
  publication-title: Phys. Rev. Lett.
– start-page: 8
  year: 2004
  ident: bib36
  article-title: Beyond Beta Factors: a Complete Model for Darcy, Forchheimer, and Trans- Forchheimer Flow in Porous Media
– volume: 13
  start-page: 139
  year: 1993
  end-page: 160
  ident: bib45
  article-title: The microscopic analysis of high forchheimer number flow in porous media
  publication-title: Transp. Porous Media
– start-page: 257
  year: 2009
  end-page: 268
  ident: bib37
  article-title: Multiphase non-darcy flow in proppant packs
  publication-title: SPE Prod. Oper.
– volume: 88
  start-page: 52
  year: 2011
  end-page: 67
  ident: bib12
  article-title: Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel
  publication-title: Appl. Energy
– start-page: 1
  year: 2016
  end-page: 13
  ident: bib13
  article-title: Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells
  publication-title: Int. J. Hydrogen Energy
– year: 2008
  ident: bib51
  article-title: Hydrogen-based Autonomous Power Systems
– volume: 184
  start-page: 104
  year: 2008
  end-page: 119
  ident: bib56
  article-title: A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies
  publication-title: J. Power Sources
– volume: 2
  start-page: 521
  year: 1987
  end-page: 531
  ident: bib39
  article-title: High velocity flow in porous media
  publication-title: Transp. Porous Media
– volume: 152
  start-page: A445
  year: 2005
  ident: bib46
  article-title: Modeling polymer electrolyte fuel cells with large density and velocity changes
  publication-title: J. Electrochem. Soc.
– volume: 143
  start-page: 81
  year: 2015
  end-page: 95
  ident: bib14
  article-title: A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC
  publication-title: Appl. Energy
– start-page: 5
  year: 2017
  end-page: 9
  ident: bib4
  article-title: Development of the Fuel Cell Vehicle Mirai
– start-page: 0
  year: 2008
  end-page: 7
  ident: bib47
  article-title: A Nonisothermal, Two-phase Model for Polymer Electrolyte Fuel Cells
– volume: 36
  start-page: 12524
  year: 2011
  end-page: 12537
  ident: bib30
  article-title: Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 21008
  year: 2014
  ident: bib27
  article-title: Porous media modeling of two-phase microchannel cooling of electronic chips with nonuniform power distribution
  publication-title: J. Electron. Packag
– volume: 39
  start-page: 942
  year: 2014
  end-page: 950
  ident: bib29
  article-title: Numerical modeling of liquid water motion in a polymer electrolyte fuel cell
  publication-title: Int. J. Hydrogen Energy
– year: 2013
  ident: bib55
  publication-title: US DRIVE Fuel Cell Technical Team Roadmap
– volume: vol. 179
  start-page: 603
  year: 2008
  end-page: 617
  ident: bib19
  publication-title: Modeling Two-phase Flow in PEM Fuel Cell Channels
– volume: 39
  start-page: 3607
  year: 1996
  end-page: 3618
  ident: bib49
  article-title: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media - I. Model development
  publication-title: Int. J. Heat. Mass Transf.
– volume: 36
  start-page: 21
  year: 2000
  end-page: 28
  ident: bib24
  article-title: Thermal analysis of micro heat pipes using a porous-medium model
  publication-title: Heat. Mass Transf.
– volume: vol. 163
  start-page: 744
  year: 2016
  end-page: 751
  ident: bib16
  publication-title: Three Dimensional Computations and Experimental Comparisons for a Large-scale Proton Exchange Membrane Fuel Cell
– volume: 14
  start-page: 377
  year: 1994
  end-page: 389
  ident: bib25
  article-title: Porous medium model for two-phase flow in mini channels with applications to micro heat pipes
  publication-title: Heat. Recover. Syst. CHP
– volume: 36
  start-page: 3614
  year: 2010
  end-page: 3622
  ident: bib6
  article-title: Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 84
  start-page: 177
  year: 2009
  end-page: 200
  ident: bib41
  article-title: Numerical simulation of two-phase inertial flow in heterogeneous porous media
  publication-title: Transp. Porous Media
– volume: 101
  start-page: 295
  year: 2004
  end-page: 302
  ident: bib21
  article-title: Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers
  publication-title: Chem. Eng. J.
– volume: 110
  start-page: 356
  year: 2016
  end-page: 366
  ident: bib10
  article-title: Enhancement of PEM fuel cell performance by flow channel indentation
  publication-title: Energy Convers. Manag.
– volume: vol. 28
  start-page: 365
  year: 2014
  end-page: 376
  ident: bib11
  publication-title: Proton Exchange Membrane Fuel Cells Performance Enhancement Using
– start-page: 0
  year: 2008
  end-page: 7
  ident: bib50
  article-title: A Nonisothermal, Two-phase Model for Polymer Electrolyte Fuel Cells
– volume: 56
  start-page: 352
  year: 2010
  end-page: 360
  ident: bib1
  article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 271
  year: 1927
  end-page: 306
  ident: bib31
  article-title: Ueber kapillare Leitung des Wassers im Boden
  publication-title: Sitzungsber Akad. Wiss
– volume: 15
  start-page: 150
  year: 1937
  end-page: 166
  ident: bib32
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– volume: 88
  start-page: 4879
  year: 2011
  end-page: 4890
  ident: bib9
  article-title: The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method
  publication-title: Appl. Energy
– start-page: 2
  year: 1988
  end-page: 6
  ident: bib35
  article-title: Porous-media momentum equation for highly accelerated flow
  publication-title: SPE Reserv. Eng.
– year: 1980
  ident: bib52
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 39
  start-page: 2628
  year: 2014
  end-page: 2638
  ident: bib7
  article-title: Simulation and experimental analysis on the performance of PEM fuel cell by the wave-like surface design at the cathode channel
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  start-page: 45
  year: 2015
  end-page: 49
  ident: bib3
  article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society
  publication-title: Electochemical Soc. Interface
– volume: 36
  start-page: 967
  year: 1993
  end-page: 976
  ident: bib22
  article-title: Effects of capillary heterogeneity on vapor liquid counterflow in porous-media
  publication-title: Int. J. Heat. Mass Transf.
– volume: 146
  start-page: 618
  year: 2014
  end-page: 629
  ident: bib18
  article-title: Electrochimica acta impact of interfacial water transport in PEMFCs on cell performance
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 123
  year: 2015
  end-page: 129
  ident: bib2
  article-title: Development of compact and high-performance fuel cell stack
  publication-title: SAE Int. J. Altern. Powertrains
– volume: 36
  start-page: 2747
  year: 1993
  end-page: 2758
  ident: bib48
  article-title: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-I. Formulation
  publication-title: Int. J. Heat. Mass Transf.
– year: 2017
  ident: bib54
  article-title: Synchrotron x-ray visualization and simulation for operating fuel cell diffusion layers
  publication-title: SAE Tech. Pap.
– volume: 63
  start-page: 57
  year: 2006
  end-page: 69
  ident: bib38
  article-title: A criterion for non-darcy flow in porous media
  publication-title: Transp. Porous Media
– volume: 41
  start-page: 1179
  year: 1949
  end-page: 1184
  ident: bib33
  article-title: Fluid flow through randomly packed columns and fluidized beds
  publication-title: Ind. Eng. Chem.
– volume: 124
  start-page: 51
  year: 2016
  end-page: 60
  ident: bib8
  article-title: Influences of bipolar plate channel blockages on PEM fuel cell performances
  publication-title: Energy Convers. Manag.
– volume: 187
  start-page: 444
  year: 2009
  end-page: 451
  ident: bib40
  article-title: Visualization and quantification of cathode channel flooding in PEM fuel cells
  publication-title: J. Power Sources
– volume: 34
  start-page: 50
  year: 1995
  end-page: 54
  ident: bib43
  article-title: Correlation of the non-Darcy flow coefficient
  publication-title: J. Can. Pet. Technol.
– year: 1982
  ident: bib44
  article-title: A Model for Boiling and Dryout in Particle Beds
– volume: 236
  start-page: 126
  year: 2013
  end-page: 137
  ident: bib15
  article-title: Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements
  publication-title: J. Power Sources
– volume: 128
  start-page: 198
  year: 2006
  ident: bib23
  article-title: Thermal analysis of inclined micro heat pipes
  publication-title: J. Heat. Transf.
– year: 1986
  ident: bib42
  article-title: Two-phase Flow in Stratified Porous Media
– volume: 1
  start-page: 128
  year: 2005
  end-page: 136
  ident: bib20
  article-title: High-speed imaging of flow in microchannel array water evaporators
  publication-title: Microfluid. Nanofluidics
– volume: 187
  start-page: 431
  year: 2009
  end-page: 443
  ident: bib28
  article-title: Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel cell
  publication-title: J. Power Sources
– volume: 29
  start-page: 695
  year: 2015
  end-page: 704
  ident: bib26
  article-title: Porous media modeling of microchannel cooled electronic chips with nonuniform heating
  publication-title: J. Thermophys. Heat. Transf.
– volume: 41
  start-page: 6885
  year: 2016
  end-page: 6893
  ident: bib5
  article-title: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 150
  year: 1937
  ident: 10.1016/j.jpowsour.2017.09.003_bib32
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– volume: 187
  start-page: 444
  year: 2009
  ident: 10.1016/j.jpowsour.2017.09.003_bib40
  article-title: Visualization and quantification of cathode channel flooding in PEM fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.030
– volume: vol. 162
  start-page: 25
  year: 2015
  ident: 10.1016/j.jpowsour.2017.09.003_bib17
– volume: 143
  start-page: 81
  year: 2015
  ident: 10.1016/j.jpowsour.2017.09.003_bib14
  article-title: A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.059
– volume: vol. 28
  start-page: 365
  year: 2014
  ident: 10.1016/j.jpowsour.2017.09.003_bib11
– volume: 36
  start-page: 2747
  year: 1993
  ident: 10.1016/j.jpowsour.2017.09.003_bib48
  article-title: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-I. Formulation
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/0017-9310(93)90094-M
– volume: 184
  start-page: 104
  year: 2008
  ident: 10.1016/j.jpowsour.2017.09.003_bib56
  article-title: A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.06.006
– year: 1986
  ident: 10.1016/j.jpowsour.2017.09.003_bib42
– volume: 56
  start-page: 352
  year: 2010
  ident: 10.1016/j.jpowsour.2017.09.003_bib1
  article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.08.070
– volume: 187
  start-page: 431
  year: 2009
  ident: 10.1016/j.jpowsour.2017.09.003_bib28
  article-title: Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.039
– year: 2017
  ident: 10.1016/j.jpowsour.2017.09.003_bib54
  article-title: Synchrotron x-ray visualization and simulation for operating fuel cell diffusion layers
  publication-title: SAE Tech. Pap.
  doi: 10.4271/2017-01-1188
– volume: 4
  start-page: 123
  year: 2015
  ident: 10.1016/j.jpowsour.2017.09.003_bib2
  article-title: Development of compact and high-performance fuel cell stack
  publication-title: SAE Int. J. Altern. Powertrains
  doi: 10.4271/2015-01-1175
– volume: 136
  start-page: 271
  year: 1927
  ident: 10.1016/j.jpowsour.2017.09.003_bib31
  article-title: Ueber kapillare Leitung des Wassers im Boden
  publication-title: Sitzungsber Akad. Wiss
– volume: 128
  start-page: 198
  year: 2006
  ident: 10.1016/j.jpowsour.2017.09.003_bib23
  article-title: Thermal analysis of inclined micro heat pipes
  publication-title: J. Heat. Transf.
  doi: 10.1115/1.2137763
– volume: 36
  start-page: 967
  year: 1993
  ident: 10.1016/j.jpowsour.2017.09.003_bib22
  article-title: Effects of capillary heterogeneity on vapor liquid counterflow in porous-media
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/S0017-9310(05)80281-9
– volume: 1
  start-page: 128
  year: 2005
  ident: 10.1016/j.jpowsour.2017.09.003_bib20
  article-title: High-speed imaging of flow in microchannel array water evaporators
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-004-0020-9
– volume: 136
  start-page: 21008
  year: 2014
  ident: 10.1016/j.jpowsour.2017.09.003_bib27
  article-title: Porous media modeling of two-phase microchannel cooling of electronic chips with nonuniform power distribution
  publication-title: J. Electron. Packag
  doi: 10.1115/1.4027420
– year: 2008
  ident: 10.1016/j.jpowsour.2017.09.003_bib51
– volume: 39
  start-page: 942
  year: 2014
  ident: 10.1016/j.jpowsour.2017.09.003_bib29
  article-title: Numerical modeling of liquid water motion in a polymer electrolyte fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.113
– start-page: 2
  year: 1988
  ident: 10.1016/j.jpowsour.2017.09.003_bib35
  article-title: Porous-media momentum equation for highly accelerated flow
  publication-title: SPE Reserv. Eng.
– start-page: 0
  year: 2008
  ident: 10.1016/j.jpowsour.2017.09.003_bib47
– volume: 124
  start-page: 51
  year: 2016
  ident: 10.1016/j.jpowsour.2017.09.003_bib8
  article-title: Influences of bipolar plate channel blockages on PEM fuel cell performances
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.06.043
– volume: 88
  start-page: 52
  year: 2011
  ident: 10.1016/j.jpowsour.2017.09.003_bib12
  article-title: Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.07.006
– start-page: 257
  year: 2009
  ident: 10.1016/j.jpowsour.2017.09.003_bib37
  article-title: Multiphase non-darcy flow in proppant packs
  publication-title: SPE Prod. Oper.
– volume: 29
  start-page: 695
  year: 2015
  ident: 10.1016/j.jpowsour.2017.09.003_bib26
  article-title: Porous media modeling of microchannel cooled electronic chips with nonuniform heating
  publication-title: J. Thermophys. Heat. Transf.
  doi: 10.2514/1.T4509
– year: 2013
  ident: 10.1016/j.jpowsour.2017.09.003_bib55
– volume: 36
  start-page: 12524
  year: 2011
  ident: 10.1016/j.jpowsour.2017.09.003_bib30
  article-title: Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.014
– start-page: 0
  year: 2008
  ident: 10.1016/j.jpowsour.2017.09.003_bib50
– volume: 39
  start-page: 3607
  year: 1996
  ident: 10.1016/j.jpowsour.2017.09.003_bib49
  article-title: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media - I. Model development
  publication-title: Int. J. Heat. Mass Transf.
  doi: 10.1016/0017-9310(96)00036-1
– volume: 24
  start-page: 45
  year: 2015
  ident: 10.1016/j.jpowsour.2017.09.003_bib3
  article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society
  publication-title: Electochemical Soc. Interface
  doi: 10.1149/2.F03152if
– start-page: 5
  year: 2017
  ident: 10.1016/j.jpowsour.2017.09.003_bib4
– volume: vol. 163
  start-page: 744
  year: 2016
  ident: 10.1016/j.jpowsour.2017.09.003_bib16
– volume: 9
  start-page: 511
  year: 1986
  ident: 10.1016/j.jpowsour.2017.09.003_bib53
  article-title: A multigrid method based on the additive correction strategy
  publication-title: Numer. Heat. Transf.
  doi: 10.1080/10407788608913491
– volume: 2
  start-page: 521
  year: 1987
  ident: 10.1016/j.jpowsour.2017.09.003_bib39
  article-title: High velocity flow in porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00192152
– volume: 236
  start-page: 126
  year: 2013
  ident: 10.1016/j.jpowsour.2017.09.003_bib15
  article-title: Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.039
– volume: 34
  start-page: 50
  year: 1995
  ident: 10.1016/j.jpowsour.2017.09.003_bib43
  article-title: Correlation of the non-Darcy flow coefficient
  publication-title: J. Can. Pet. Technol.
– volume: 41
  start-page: 6885
  year: 2016
  ident: 10.1016/j.jpowsour.2017.09.003_bib5
  article-title: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.028
– start-page: 1
  year: 2016
  ident: 10.1016/j.jpowsour.2017.09.003_bib13
  article-title: Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells
  publication-title: Int. J. Hydrogen Energy
– year: 1980
  ident: 10.1016/j.jpowsour.2017.09.003_bib52
– volume: 146
  start-page: 618
  year: 2014
  ident: 10.1016/j.jpowsour.2017.09.003_bib18
  article-title: Electrochimica acta impact of interfacial water transport in PEMFCs on cell performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.148
– volume: 82
  start-page: 5249
  year: 1999
  ident: 10.1016/j.jpowsour.2017.09.003_bib34
  article-title: Inertial effects on fluid flow through disordered porous media
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.5249
– volume: 36
  start-page: 21
  year: 2000
  ident: 10.1016/j.jpowsour.2017.09.003_bib24
  article-title: Thermal analysis of micro heat pipes using a porous-medium model
  publication-title: Heat. Mass Transf.
  doi: 10.1007/s002310050359
– volume: 63
  start-page: 57
  year: 2006
  ident: 10.1016/j.jpowsour.2017.09.003_bib38
  article-title: A criterion for non-darcy flow in porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-005-2720-3
– volume: vol. 179
  start-page: 603
  year: 2008
  ident: 10.1016/j.jpowsour.2017.09.003_bib19
– volume: 101
  start-page: 295
  year: 2004
  ident: 10.1016/j.jpowsour.2017.09.003_bib21
  article-title: Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2003.10.012
– volume: 84
  start-page: 177
  year: 2009
  ident: 10.1016/j.jpowsour.2017.09.003_bib41
  article-title: Numerical simulation of two-phase inertial flow in heterogeneous porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-009-9491-1
– volume: 110
  start-page: 356
  year: 2016
  ident: 10.1016/j.jpowsour.2017.09.003_bib10
  article-title: Enhancement of PEM fuel cell performance by flow channel indentation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.12.036
– start-page: 8
  year: 2004
  ident: 10.1016/j.jpowsour.2017.09.003_bib36
– year: 1982
  ident: 10.1016/j.jpowsour.2017.09.003_bib44
– volume: 152
  start-page: A445
  year: 2005
  ident: 10.1016/j.jpowsour.2017.09.003_bib46
  article-title: Modeling polymer electrolyte fuel cells with large density and velocity changes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1851059
– volume: 36
  start-page: 3614
  year: 2010
  ident: 10.1016/j.jpowsour.2017.09.003_bib6
  article-title: Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.12.060
– volume: 13
  start-page: 139
  year: 1993
  ident: 10.1016/j.jpowsour.2017.09.003_bib45
  article-title: The microscopic analysis of high forchheimer number flow in porous media
  publication-title: Transp. Porous Media
  doi: 10.1007/BF00654407
– volume: 88
  start-page: 4879
  year: 2011
  ident: 10.1016/j.jpowsour.2017.09.003_bib9
  article-title: The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.06.034
– volume: 14
  start-page: 377
  year: 1994
  ident: 10.1016/j.jpowsour.2017.09.003_bib25
  article-title: Porous medium model for two-phase flow in mini channels with applications to micro heat pipes
  publication-title: Heat. Recover. Syst. CHP
  doi: 10.1016/0890-4332(94)90041-8
– volume: 39
  start-page: 2628
  year: 2014
  ident: 10.1016/j.jpowsour.2017.09.003_bib7
  article-title: Simulation and experimental analysis on the performance of PEM fuel cell by the wave-like surface design at the cathode channel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.08.063
– volume: 41
  start-page: 1179
  year: 1949
  ident: 10.1016/j.jpowsour.2017.09.003_bib33
  article-title: Fluid flow through randomly packed columns and fluidized beds
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50474a011
SSID ssj0001170
Score 2.5911222
Snippet 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 419
SubjectTerms 3D complex flow-field
Forchheimer effect
High current density
Liquid water removal
PEMFC
Title Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells
URI https://dx.doi.org/10.1016/j.jpowsour.2017.09.003
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIrykgdWt3na8YgQqIBggUrdItc5Q6s2iWiqduK348sDCksHxkS-KLo73Z3t774j5Mpue8BwDczjBhhSujEZccUCHSVBhBc1Co8Gnp55fxA8DMNhi9w0vTAIq6xjfxXTy2hdv-nV2uzl43HvxfGts9lq2xW-6_KSdjsIBHp59_MH5oGTVcqbBLtbwtVrXcKT7iTPlnhIjhAvUfKdNsOz_iaotaRzt0d262qRXlc_tE9akB6QnTUOwUPyhtPMsKecFsuM5e82K1EzzZZ0nNLCGgpYggT-FfkGLRHksCpXsBK9NqeZocjWkKUUVlUfMJ3BzO6iU_ulBVghmE7nR2Rwd_t602f19ASm_UAWLJQgjJIeV6EGrpUXKidJEFfiaz2yVYm1hJBR4Gkb8zzjS6NlFHKh-MjICJR_TNpplsIJoUYkDkjP1SoEm_RExEcugOcYEVhx3-2QsFFZrGtqcZxwMY0bDNkkblQdo6pjRyIpaYf0vuXyilxjo4RsLBL_cpPYZoANsqf_kD0j2_iEScsNz0m7-FjAha1GitFl6W6XZOv6_rH__AV93OIv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6m7QAcEE8xnjlwDesraXOcJqbx2gUm7VZlqQObtnaCou3nE_eBBhcOXNt-UWVbtpPYnwm5ttseMEID84QBhpRuTEZCsUBHSRDhRY3Co4GnoRiMgvsxHzdIr-6FwbLKyveXPr3w1tWTTiXNznI67Tw7vjU2m227oe-6Amm3W8hOxZuk1b17GAy_HTIOVykuE-yGCQEbjcKzm9kyW-E5OVZ5hQXlaT0_63eM2og7_T2yWyWMtFv-0z5pQHpAdjZoBA_JKw40w7Zymq8ytnyzgYmaebai05TmVlfAEuTwL_k3aFFEDuviC1YUsH3QzFAkbMhSCuuyFZguYGE30qld6RMsCObzjyMy6t--9AasGqDAtB_InHEJoVHSE4prEFp5XDlJgqUlvtYTm5hYZYQyCjxt3Z5nfGm0jLgIlZgYGYHyj0kzzVI4IdSEiQPSc7XiYONeGImJC-A5Jgws3HfbhNcii3XFLo5DLuZxXUY2i2tRxyjq2JHIS9omnW_csuTX-BMha43EPywltkHgD-zpP7BXZGvw8vQYP94NH87INr7BGObyc9LM3z_hwiYn-eSyMr4vPhHk4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+two-phase+flow+in+three-dimensional+complex+flow-fields+of+proton+exchange+membrane+fuel+cells&rft.jtitle=Journal+of+power+sources&rft.au=Kim%2C+Jinyong&rft.au=Luo%2C+Gang&rft.au=Wang%2C+Chao-Yang&rft.date=2017-10-15&rft.issn=0378-7753&rft.volume=365&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_09_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon