Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's ine...
Saved in:
Published in | Journal of power sources Vol. 365; pp. 419 - 429 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
•Forchheimer's inertial effect is dominant in PEMFCs with 3D complex flow-fields.•Forchheimer's inertial effect enhances liquid water removal and mass transport.•PEMFCs with 3D complex flow-fields are robust and efficient at high current density. |
---|---|
AbstractList | 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
•Forchheimer's inertial effect is dominant in PEMFCs with 3D complex flow-fields.•Forchheimer's inertial effect enhances liquid water removal and mass transport.•PEMFCs with 3D complex flow-fields are robust and efficient at high current density. |
Author | Kim, Jinyong Luo, Gang Wang, Chao-Yang |
Author_xml | – sequence: 1 givenname: Jinyong surname: Kim fullname: Kim, Jinyong – sequence: 2 givenname: Gang surname: Luo fullname: Luo, Gang – sequence: 3 givenname: Chao-Yang surname: Wang fullname: Wang, Chao-Yang email: cxw31@psu.edu |
BookMark | eNqFkM1OAyEUhYmpia36CoYXmBGGMgyJC03jX6Jxo2tCmUtLw8AEpra-vaPVjRtXd3O_k3O-GZqEGAChC0pKSmh9uSk3fdzluE1lRagoiSwJYUdoShvBikpwPkFTwkRTCMHZCZrlvCGEUCrIFK2eYwvehRUedrHo1zoDtj7usAt4WCeAonUdhOxi0B6b2PUe9t8fhXXg24yjxX2KQwwY9matwwpwB90y6TAmbWGEwPt8ho6t9hnOf-4peru7fV08FE8v94-Lm6fCsLkcCi5BWC2rWnMDtdEV16RtqZSCGbOU44g5F7KZV4azprJMWiMbXgtdL61sQLNTdHXINSnmnMAq4wY9jPWHpJ1XlKgvaWqjfqWpL2mKSDVKG_H6D94n1-n08T94fQBhHPfuIKlsHAQDrUtgBtVG91_EJ_WZkJE |
CitedBy_id | crossref_primary_10_1080_01430750_2021_1914161 crossref_primary_10_1002_er_5219 crossref_primary_10_1016_j_electacta_2019_135442 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122477 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104793 crossref_primary_10_1016_j_ijhydene_2020_05_154 crossref_primary_10_1016_j_ijhydene_2023_06_239 crossref_primary_10_1007_s11581_025_06086_7 crossref_primary_10_1016_j_enconman_2020_113513 crossref_primary_10_1149_1945_7111_ad305a crossref_primary_10_1016_j_apenergy_2019_03_189 crossref_primary_10_1002_er_7113 crossref_primary_10_1016_j_jpowsour_2019_226741 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_122 crossref_primary_10_3390_app9224863 crossref_primary_10_1002_er_6261 crossref_primary_10_1002_er_6945 crossref_primary_10_1016_j_ijhydene_2020_12_076 crossref_primary_10_1016_j_jpowsour_2020_228388 crossref_primary_10_1016_j_powera_2023_100119 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120733 crossref_primary_10_1016_j_jpowsour_2018_11_071 crossref_primary_10_1016_j_apenergy_2020_116011 crossref_primary_10_3390_en14123675 crossref_primary_10_1016_j_ijhydene_2022_05_047 crossref_primary_10_1002_aic_17461 crossref_primary_10_1007_s11581_023_05151_3 crossref_primary_10_1016_j_enconman_2019_05_069 crossref_primary_10_1016_j_fuel_2024_133757 crossref_primary_10_1016_j_ces_2024_121077 crossref_primary_10_1016_j_enconman_2023_116865 crossref_primary_10_1002_er_4472 crossref_primary_10_1016_j_apenergy_2024_125126 crossref_primary_10_1016_j_jpowsour_2019_226995 crossref_primary_10_1002_ente_202100851 crossref_primary_10_1016_j_apenergy_2023_121226 crossref_primary_10_1007_s11595_021_2412_z crossref_primary_10_1016_j_applthermaleng_2019_01_010 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122766 crossref_primary_10_1016_j_jpowsour_2020_228376 crossref_primary_10_1126_sciadv_abe9083 crossref_primary_10_1007_s42154_021_00145_1 crossref_primary_10_1007_s11705_024_2445_x crossref_primary_10_1007_s11581_024_05688_x crossref_primary_10_1002_er_8706 crossref_primary_10_1016_j_ijhydene_2021_11_248 crossref_primary_10_1016_j_ces_2022_118077 crossref_primary_10_1002_er_4461 crossref_primary_10_1016_j_apenergy_2023_122442 crossref_primary_10_1016_j_applthermaleng_2024_123201 crossref_primary_10_2139_ssrn_4095260 crossref_primary_10_1016_j_enconman_2018_06_111 crossref_primary_10_1007_s11431_020_1767_5 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119471 crossref_primary_10_1109_TIA_2018_2839082 crossref_primary_10_3390_su11236682 crossref_primary_10_1016_j_renene_2020_10_105 crossref_primary_10_1016_j_icheatmasstransfer_2021_105212 crossref_primary_10_1016_j_ijhydene_2024_08_515 crossref_primary_10_1016_j_jallcom_2024_177251 crossref_primary_10_3390_en16165892 crossref_primary_10_1002_apj_3146 crossref_primary_10_1007_s12209_020_00239_7 crossref_primary_10_1016_j_enconman_2021_114818 crossref_primary_10_1016_j_cej_2024_156371 crossref_primary_10_1115_1_4063016 crossref_primary_10_1016_j_energy_2022_125687 crossref_primary_10_1016_j_scib_2023_01_034 crossref_primary_10_1016_j_applthermaleng_2024_124643 crossref_primary_10_1016_j_jclepro_2022_134187 crossref_primary_10_1002_eem2_12105 crossref_primary_10_1007_s11581_020_03760_w crossref_primary_10_3390_en14175484 crossref_primary_10_1016_j_energy_2019_06_089 crossref_primary_10_1016_j_jmapro_2020_10_041 crossref_primary_10_3390_en14196044 crossref_primary_10_1016_j_energy_2021_122714 crossref_primary_10_1016_j_etran_2023_100250 crossref_primary_10_1039_D4RA05965D crossref_primary_10_1002_er_4328 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125147 crossref_primary_10_1016_j_jpowsour_2020_228456 crossref_primary_10_29130_dubited_692558 crossref_primary_10_1016_j_ijhydene_2022_02_023 crossref_primary_10_1016_j_ijhydene_2020_11_226 crossref_primary_10_1002_er_6191 crossref_primary_10_1061__ASCE_EY_1943_7897_0000717 crossref_primary_10_3390_encyclopedia3020054 crossref_primary_10_1016_j_enconman_2020_113046 crossref_primary_10_1016_j_ces_2018_11_034 crossref_primary_10_1177_0957650919893543 crossref_primary_10_1002_fuce_202300136 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120497 crossref_primary_10_1016_j_apenergy_2024_122903 crossref_primary_10_1016_j_enconman_2018_08_062 crossref_primary_10_1149_1945_7111_ac2656 crossref_primary_10_1016_j_energy_2023_126709 crossref_primary_10_1016_j_energy_2023_127918 crossref_primary_10_1080_15435075_2022_2038612 crossref_primary_10_1016_j_ijhydene_2020_05_082 crossref_primary_10_1016_j_cej_2023_146147 crossref_primary_10_1016_j_cjche_2024_12_011 crossref_primary_10_1016_j_jpowsour_2018_04_071 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126127 crossref_primary_10_1016_j_jpowsour_2020_229412 crossref_primary_10_7316_KHNES_2021_32_4_245 crossref_primary_10_1089_3dp_2021_0303 crossref_primary_10_1016_j_enconman_2024_118348 crossref_primary_10_1016_j_electacta_2022_140163 crossref_primary_10_1016_j_renene_2021_09_107 crossref_primary_10_1016_j_ijhydene_2022_09_143 crossref_primary_10_1016_j_ijhydene_2022_09_261 crossref_primary_10_1016_j_ijhydene_2019_07_231 crossref_primary_10_1016_j_ijhydene_2019_09_189 crossref_primary_10_1016_j_ijhydene_2021_07_124 crossref_primary_10_1016_j_enconman_2020_113297 crossref_primary_10_1021_acs_chemrev_2c00539 crossref_primary_10_1016_j_ijhydene_2018_02_070 crossref_primary_10_1016_j_est_2024_114141 crossref_primary_10_1016_j_enconman_2020_113292 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126987 crossref_primary_10_1016_j_applthermaleng_2018_09_110 crossref_primary_10_1016_j_ijhydene_2021_06_175 crossref_primary_10_1016_j_ijhydene_2021_03_049 crossref_primary_10_1016_j_ijhydene_2022_03_246 crossref_primary_10_1002_er_7939 crossref_primary_10_1016_j_applthermaleng_2023_119986 crossref_primary_10_3390_en16104207 crossref_primary_10_1002_advs_202205305 crossref_primary_10_1016_j_enconman_2019_05_071 crossref_primary_10_1016_j_energy_2023_129481 crossref_primary_10_1002_aic_16957 crossref_primary_10_1016_j_energy_2022_126442 crossref_primary_10_1002_ente_202201463 crossref_primary_10_1016_j_enconman_2022_115288 crossref_primary_10_1016_j_ijhydene_2020_09_105 crossref_primary_10_20964_2022_05_53 crossref_primary_10_1016_j_ijhydene_2020_12_178 crossref_primary_10_1016_j_apenergy_2021_117443 crossref_primary_10_1016_j_jpowsour_2021_229496 crossref_primary_10_1016_j_rser_2023_114198 crossref_primary_10_1016_j_adapen_2021_100033 crossref_primary_10_1002_adma_202204902 crossref_primary_10_1016_j_renene_2019_09_026 crossref_primary_10_1016_j_enconman_2020_113588 crossref_primary_10_3390_polym14142799 crossref_primary_10_1016_j_enconman_2023_116725 crossref_primary_10_1016_j_ijhydene_2021_04_004 crossref_primary_10_1142_S0217979221500624 crossref_primary_10_3390_su162210144 crossref_primary_10_1016_j_jpowsour_2020_228034 crossref_primary_10_1016_j_jpowsour_2021_230129 crossref_primary_10_1016_j_cej_2024_153629 crossref_primary_10_1016_j_renene_2023_119500 crossref_primary_10_1016_j_ijhydene_2018_10_237 |
Cites_doi | 10.1016/j.jpowsour.2008.11.030 10.1016/j.apenergy.2014.12.059 10.1016/0017-9310(93)90094-M 10.1016/j.jpowsour.2008.06.006 10.1016/j.electacta.2010.08.070 10.1016/j.jpowsour.2008.11.039 10.4271/2017-01-1188 10.4271/2015-01-1175 10.1115/1.2137763 10.1016/S0017-9310(05)80281-9 10.1007/s10404-004-0020-9 10.1115/1.4027420 10.1016/j.ijhydene.2013.10.113 10.1016/j.enconman.2016.06.043 10.1016/j.apenergy.2010.07.006 10.2514/1.T4509 10.1016/j.ijhydene.2011.07.014 10.1016/0017-9310(96)00036-1 10.1149/2.F03152if 10.1080/10407788608913491 10.1007/BF00192152 10.1016/j.jpowsour.2013.02.039 10.1016/j.ijhydene.2016.03.028 10.1016/j.electacta.2014.08.148 10.1103/PhysRevLett.82.5249 10.1007/s002310050359 10.1007/s11242-005-2720-3 10.1016/j.cej.2003.10.012 10.1007/s11242-009-9491-1 10.1016/j.enconman.2015.12.036 10.1149/1.1851059 10.1016/j.ijhydene.2010.12.060 10.1007/BF00654407 10.1016/j.apenergy.2011.06.034 10.1016/0890-4332(94)90041-8 10.1016/j.ijhydene.2013.08.063 10.1021/ie50474a011 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2017.09.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 429 |
ExternalDocumentID | 10_1016_j_jpowsour_2017_09_003 S0378775317311606 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c349t-59e7fa926a5ce6ca25a0dd19973ccb93784579842c5382f39fc98567a6bf98ea3 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 01:40:04 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Fri Feb 23 02:28:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PEMFC Liquid water removal 3D complex flow-field High current density Forchheimer effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-59e7fa926a5ce6ca25a0dd19973ccb93784579842c5382f39fc98567a6bf98ea3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2017_09_003 crossref_primary_10_1016_j_jpowsour_2017_09_003 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-15 |
PublicationDateYYYYMMDD | 2017-10-15 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Civan, Evans (bib43) 1995; 34 Jiang, Wang (bib29) 2014; 39 Dehsara, Kermani (bib11) 2014; vol. 28 Andrade, Costa, Almeida, Makse, Stanley (bib34) 1999; 82 Tabuchi, Shiomi, Aoki, Kubo, Shinohara (bib1) 2010; 56 Heidary, Kermani, Dabir (bib8) 2016; 124 Carman (bib32) 1937; 15 Basu, Li, Wang (bib28) 2009; 187 Yoshida, Kojima (bib3) 2015; 24 Wu, Yuan, Martin, Wang, Zhang, Shen, Wu, Merida (bib56) 2008; 184 Kozeny (bib31) 1927; 136 Kotaka, Tabuchi, Pasaogullari, Wang (bib18) 2014; 146 Perng, Wu (bib14) 2015; 143 Imke (bib21) 2004; 101 Zeng, Grigg (bib38) 2006; 63 Ergun, Orning (bib33) 1949; 41 Han, Choi, Choi (bib7) 2014; 39 Lee, Catton (bib42) 1986 Stubos, Satik, Yortsos (bib22) 1993; 36 Hao, Moriyama, Gu, Wang (bib17) 2015; vol. 162 Thitakamol, Therdthianwong, Therdthianwong (bib6) 2010; 36 Hao, Moriyama, Gu, Wang (bib16) 2016; vol. 163 Ahmadi, Abbasian Arani, Lasseux (bib41) 2009; 84 Tio, Liu, Toh (bib24) 2000; 36 Wang, Wang (bib47) 2008 Wang, Beckermann (bib48) 1993; 36 Wang, Basu, Wang (bib19) 2008; vol. 179 Barree, Conway (bib37) 2009 Lipinski (bib44) 1982 Wang, Wang (bib46) 2005; 152 Patankar (bib52) 1980 Ghanbarian, Kermani (bib10) 2016; 110 Henning, Brandner, Schubert (bib20) 2005; 1 Barree, Conway (bib36) 2004 Li, Yao (bib26) 2015; 29 Wang, Groll, Rösler, Tu (bib25) 1994; 14 Wu, Ku (bib9) 2011; 88 (bib55) 2013 Heidary, Kermani, Advani, Prasad (bib5) 2016; 41 Hayashi, Ida, Magome (bib54) 2017 Heidary, Kermani, Prasad, Advani, Dabir (bib13) 2016 Konno, Mizuno, Nakaji, Ishikawa (bib2) 2015; 4 Sugumar, Tio (bib23) 2006; 128 Zoulias, Lymberopoulos (bib51) 2008 Wang, Cheng (bib49) 1996; 39 Nonobe (bib4) 2017 Ma, Ruth (bib45) 1993; 13 Hassanizadeh (bib39) 1987; 2 Liu, Zhang, Yao, Li (bib27) 2014; 136 Yang, Ye, Cheng (bib30) 2011; 36 Wang, Wang (bib50) 2008 Blick (bib35) 1988 Perng, Wu (bib12) 2011; 88 Hussaini, Wang (bib40) 2009; 187 Carnes, Spernjak, Luo, Hao, Chen, Wang, Mukundan, Borup (bib15) 2013; 236 Hutchinson, Raithby (bib53) 1986; 9 Wang (10.1016/j.jpowsour.2017.09.003_bib19) 2008; vol. 179 Hassanizadeh (10.1016/j.jpowsour.2017.09.003_bib39) 1987; 2 Nonobe (10.1016/j.jpowsour.2017.09.003_bib4) 2017 Wang (10.1016/j.jpowsour.2017.09.003_bib25) 1994; 14 Heidary (10.1016/j.jpowsour.2017.09.003_bib13) 2016 Carman (10.1016/j.jpowsour.2017.09.003_bib32) 1937; 15 Hao (10.1016/j.jpowsour.2017.09.003_bib16) 2016; vol. 163 Perng (10.1016/j.jpowsour.2017.09.003_bib14) 2015; 143 Hao (10.1016/j.jpowsour.2017.09.003_bib17) 2015; vol. 162 Wang (10.1016/j.jpowsour.2017.09.003_bib50) 2008 Patankar (10.1016/j.jpowsour.2017.09.003_bib52) 1980 Wu (10.1016/j.jpowsour.2017.09.003_bib56) 2008; 184 Wang (10.1016/j.jpowsour.2017.09.003_bib49) 1996; 39 Zoulias (10.1016/j.jpowsour.2017.09.003_bib51) 2008 Konno (10.1016/j.jpowsour.2017.09.003_bib2) 2015; 4 Liu (10.1016/j.jpowsour.2017.09.003_bib43) 1995; 34 Blick (10.1016/j.jpowsour.2017.09.003_bib35) 1988 Dehsara (10.1016/j.jpowsour.2017.09.003_bib11) 2014; vol. 28 Ghanbarian (10.1016/j.jpowsour.2017.09.003_bib10) 2016; 110 Kotaka (10.1016/j.jpowsour.2017.09.003_bib18) 2014; 146 Lipinski (10.1016/j.jpowsour.2017.09.003_bib44) 1982 Heidary (10.1016/j.jpowsour.2017.09.003_bib8) 2016; 124 Kozeny (10.1016/j.jpowsour.2017.09.003_bib31) 1927; 136 (10.1016/j.jpowsour.2017.09.003_bib55) 2013 Tabuchi (10.1016/j.jpowsour.2017.09.003_bib1) 2010; 56 Barree (10.1016/j.jpowsour.2017.09.003_bib37) 2009 Zeng (10.1016/j.jpowsour.2017.09.003_bib38) 2006; 63 Carnes (10.1016/j.jpowsour.2017.09.003_bib15) 2013; 236 Stubos (10.1016/j.jpowsour.2017.09.003_bib22) 1993; 36 Imke (10.1016/j.jpowsour.2017.09.003_bib21) 2004; 101 Wang (10.1016/j.jpowsour.2017.09.003_bib46) 2005; 152 Han (10.1016/j.jpowsour.2017.09.003_bib7) 2014; 39 Tio (10.1016/j.jpowsour.2017.09.003_bib24) 2000; 36 Yang (10.1016/j.jpowsour.2017.09.003_bib30) 2011; 36 Hussaini (10.1016/j.jpowsour.2017.09.003_bib40) 2009; 187 Wu (10.1016/j.jpowsour.2017.09.003_bib9) 2011; 88 Barree (10.1016/j.jpowsour.2017.09.003_bib36) 2004 Heidary (10.1016/j.jpowsour.2017.09.003_bib5) 2016; 41 Hayashi (10.1016/j.jpowsour.2017.09.003_bib54) 2017 Sugumar (10.1016/j.jpowsour.2017.09.003_bib23) 2006; 128 Yoshida (10.1016/j.jpowsour.2017.09.003_bib3) 2015; 24 Perng (10.1016/j.jpowsour.2017.09.003_bib12) 2011; 88 Ma (10.1016/j.jpowsour.2017.09.003_bib45) 1993; 13 Andrade (10.1016/j.jpowsour.2017.09.003_bib34) 1999; 82 Thitakamol (10.1016/j.jpowsour.2017.09.003_bib6) 2010; 36 Basu (10.1016/j.jpowsour.2017.09.003_bib28) 2009; 187 Lee (10.1016/j.jpowsour.2017.09.003_bib42) 1986 Liu (10.1016/j.jpowsour.2017.09.003_bib27) 2014; 136 Wang (10.1016/j.jpowsour.2017.09.003_bib47) 2008 Henning (10.1016/j.jpowsour.2017.09.003_bib20) 2005; 1 Hutchinson (10.1016/j.jpowsour.2017.09.003_bib53) 1986; 9 Li (10.1016/j.jpowsour.2017.09.003_bib26) 2015; 29 Ahmadi (10.1016/j.jpowsour.2017.09.003_bib41) 2009; 84 Ergun (10.1016/j.jpowsour.2017.09.003_bib33) 1949; 41 Jiang (10.1016/j.jpowsour.2017.09.003_bib29) 2014; 39 Wang (10.1016/j.jpowsour.2017.09.003_bib48) 1993; 36 |
References_xml | – volume: 9 start-page: 511 year: 1986 end-page: 537 ident: bib53 article-title: A multigrid method based on the additive correction strategy publication-title: Numer. Heat. Transf. – volume: vol. 162 start-page: 25 year: 2015 end-page: 27 ident: bib17 publication-title: Modeling and Experimental Validation of Pt Loading and Electrode Composition Effects in PEM Fuel Cells – volume: 82 start-page: 5249 year: 1999 ident: bib34 article-title: Inertial effects on fluid flow through disordered porous media publication-title: Phys. Rev. Lett. – start-page: 8 year: 2004 ident: bib36 article-title: Beyond Beta Factors: a Complete Model for Darcy, Forchheimer, and Trans- Forchheimer Flow in Porous Media – volume: 13 start-page: 139 year: 1993 end-page: 160 ident: bib45 article-title: The microscopic analysis of high forchheimer number flow in porous media publication-title: Transp. Porous Media – start-page: 257 year: 2009 end-page: 268 ident: bib37 article-title: Multiphase non-darcy flow in proppant packs publication-title: SPE Prod. Oper. – volume: 88 start-page: 52 year: 2011 end-page: 67 ident: bib12 article-title: Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel publication-title: Appl. Energy – start-page: 1 year: 2016 end-page: 13 ident: bib13 article-title: Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells publication-title: Int. J. Hydrogen Energy – year: 2008 ident: bib51 article-title: Hydrogen-based Autonomous Power Systems – volume: 184 start-page: 104 year: 2008 end-page: 119 ident: bib56 article-title: A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies publication-title: J. Power Sources – volume: 2 start-page: 521 year: 1987 end-page: 531 ident: bib39 article-title: High velocity flow in porous media publication-title: Transp. Porous Media – volume: 152 start-page: A445 year: 2005 ident: bib46 article-title: Modeling polymer electrolyte fuel cells with large density and velocity changes publication-title: J. Electrochem. Soc. – volume: 143 start-page: 81 year: 2015 end-page: 95 ident: bib14 article-title: A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC publication-title: Appl. Energy – start-page: 5 year: 2017 end-page: 9 ident: bib4 article-title: Development of the Fuel Cell Vehicle Mirai – start-page: 0 year: 2008 end-page: 7 ident: bib47 article-title: A Nonisothermal, Two-phase Model for Polymer Electrolyte Fuel Cells – volume: 36 start-page: 12524 year: 2011 end-page: 12537 ident: bib30 article-title: Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions publication-title: Int. J. Hydrogen Energy – volume: 136 start-page: 21008 year: 2014 ident: bib27 article-title: Porous media modeling of two-phase microchannel cooling of electronic chips with nonuniform power distribution publication-title: J. Electron. Packag – volume: 39 start-page: 942 year: 2014 end-page: 950 ident: bib29 article-title: Numerical modeling of liquid water motion in a polymer electrolyte fuel cell publication-title: Int. J. Hydrogen Energy – year: 2013 ident: bib55 publication-title: US DRIVE Fuel Cell Technical Team Roadmap – volume: vol. 179 start-page: 603 year: 2008 end-page: 617 ident: bib19 publication-title: Modeling Two-phase Flow in PEM Fuel Cell Channels – volume: 39 start-page: 3607 year: 1996 end-page: 3618 ident: bib49 article-title: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media - I. Model development publication-title: Int. J. Heat. Mass Transf. – volume: 36 start-page: 21 year: 2000 end-page: 28 ident: bib24 article-title: Thermal analysis of micro heat pipes using a porous-medium model publication-title: Heat. Mass Transf. – volume: vol. 163 start-page: 744 year: 2016 end-page: 751 ident: bib16 publication-title: Three Dimensional Computations and Experimental Comparisons for a Large-scale Proton Exchange Membrane Fuel Cell – volume: 14 start-page: 377 year: 1994 end-page: 389 ident: bib25 article-title: Porous medium model for two-phase flow in mini channels with applications to micro heat pipes publication-title: Heat. Recover. Syst. CHP – volume: 36 start-page: 3614 year: 2010 end-page: 3622 ident: bib6 article-title: Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells publication-title: Int. J. Hydrogen Energy – volume: 84 start-page: 177 year: 2009 end-page: 200 ident: bib41 article-title: Numerical simulation of two-phase inertial flow in heterogeneous porous media publication-title: Transp. Porous Media – volume: 101 start-page: 295 year: 2004 end-page: 302 ident: bib21 article-title: Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers publication-title: Chem. Eng. J. – volume: 110 start-page: 356 year: 2016 end-page: 366 ident: bib10 article-title: Enhancement of PEM fuel cell performance by flow channel indentation publication-title: Energy Convers. Manag. – volume: vol. 28 start-page: 365 year: 2014 end-page: 376 ident: bib11 publication-title: Proton Exchange Membrane Fuel Cells Performance Enhancement Using – start-page: 0 year: 2008 end-page: 7 ident: bib50 article-title: A Nonisothermal, Two-phase Model for Polymer Electrolyte Fuel Cells – volume: 56 start-page: 352 year: 2010 end-page: 360 ident: bib1 article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation publication-title: Electrochim. Acta – volume: 136 start-page: 271 year: 1927 end-page: 306 ident: bib31 article-title: Ueber kapillare Leitung des Wassers im Boden publication-title: Sitzungsber Akad. Wiss – volume: 15 start-page: 150 year: 1937 end-page: 166 ident: bib32 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – volume: 88 start-page: 4879 year: 2011 end-page: 4890 ident: bib9 article-title: The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method publication-title: Appl. Energy – start-page: 2 year: 1988 end-page: 6 ident: bib35 article-title: Porous-media momentum equation for highly accelerated flow publication-title: SPE Reserv. Eng. – year: 1980 ident: bib52 article-title: Numerical Heat Transfer and Fluid Flow – volume: 39 start-page: 2628 year: 2014 end-page: 2638 ident: bib7 article-title: Simulation and experimental analysis on the performance of PEM fuel cell by the wave-like surface design at the cathode channel publication-title: Int. J. Hydrogen Energy – volume: 24 start-page: 45 year: 2015 end-page: 49 ident: bib3 article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society publication-title: Electochemical Soc. Interface – volume: 36 start-page: 967 year: 1993 end-page: 976 ident: bib22 article-title: Effects of capillary heterogeneity on vapor liquid counterflow in porous-media publication-title: Int. J. Heat. Mass Transf. – volume: 146 start-page: 618 year: 2014 end-page: 629 ident: bib18 article-title: Electrochimica acta impact of interfacial water transport in PEMFCs on cell performance publication-title: Electrochim. Acta – volume: 4 start-page: 123 year: 2015 end-page: 129 ident: bib2 article-title: Development of compact and high-performance fuel cell stack publication-title: SAE Int. J. Altern. Powertrains – volume: 36 start-page: 2747 year: 1993 end-page: 2758 ident: bib48 article-title: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-I. Formulation publication-title: Int. J. Heat. Mass Transf. – year: 2017 ident: bib54 article-title: Synchrotron x-ray visualization and simulation for operating fuel cell diffusion layers publication-title: SAE Tech. Pap. – volume: 63 start-page: 57 year: 2006 end-page: 69 ident: bib38 article-title: A criterion for non-darcy flow in porous media publication-title: Transp. Porous Media – volume: 41 start-page: 1179 year: 1949 end-page: 1184 ident: bib33 article-title: Fluid flow through randomly packed columns and fluidized beds publication-title: Ind. Eng. Chem. – volume: 124 start-page: 51 year: 2016 end-page: 60 ident: bib8 article-title: Influences of bipolar plate channel blockages on PEM fuel cell performances publication-title: Energy Convers. Manag. – volume: 187 start-page: 444 year: 2009 end-page: 451 ident: bib40 article-title: Visualization and quantification of cathode channel flooding in PEM fuel cells publication-title: J. Power Sources – volume: 34 start-page: 50 year: 1995 end-page: 54 ident: bib43 article-title: Correlation of the non-Darcy flow coefficient publication-title: J. Can. Pet. Technol. – year: 1982 ident: bib44 article-title: A Model for Boiling and Dryout in Particle Beds – volume: 236 start-page: 126 year: 2013 end-page: 137 ident: bib15 article-title: Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements publication-title: J. Power Sources – volume: 128 start-page: 198 year: 2006 ident: bib23 article-title: Thermal analysis of inclined micro heat pipes publication-title: J. Heat. Transf. – year: 1986 ident: bib42 article-title: Two-phase Flow in Stratified Porous Media – volume: 1 start-page: 128 year: 2005 end-page: 136 ident: bib20 article-title: High-speed imaging of flow in microchannel array water evaporators publication-title: Microfluid. Nanofluidics – volume: 187 start-page: 431 year: 2009 end-page: 443 ident: bib28 article-title: Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel cell publication-title: J. Power Sources – volume: 29 start-page: 695 year: 2015 end-page: 704 ident: bib26 article-title: Porous media modeling of microchannel cooled electronic chips with nonuniform heating publication-title: J. Thermophys. Heat. Transf. – volume: 41 start-page: 6885 year: 2016 end-page: 6893 ident: bib5 article-title: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 150 year: 1937 ident: 10.1016/j.jpowsour.2017.09.003_bib32 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – volume: 187 start-page: 444 year: 2009 ident: 10.1016/j.jpowsour.2017.09.003_bib40 article-title: Visualization and quantification of cathode channel flooding in PEM fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.030 – volume: vol. 162 start-page: 25 year: 2015 ident: 10.1016/j.jpowsour.2017.09.003_bib17 – volume: 143 start-page: 81 year: 2015 ident: 10.1016/j.jpowsour.2017.09.003_bib14 article-title: A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.059 – volume: vol. 28 start-page: 365 year: 2014 ident: 10.1016/j.jpowsour.2017.09.003_bib11 – volume: 36 start-page: 2747 year: 1993 ident: 10.1016/j.jpowsour.2017.09.003_bib48 article-title: A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-I. Formulation publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/0017-9310(93)90094-M – volume: 184 start-page: 104 year: 2008 ident: 10.1016/j.jpowsour.2017.09.003_bib56 article-title: A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.06.006 – year: 1986 ident: 10.1016/j.jpowsour.2017.09.003_bib42 – volume: 56 start-page: 352 year: 2010 ident: 10.1016/j.jpowsour.2017.09.003_bib1 article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.070 – volume: 187 start-page: 431 year: 2009 ident: 10.1016/j.jpowsour.2017.09.003_bib28 article-title: Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.039 – year: 2017 ident: 10.1016/j.jpowsour.2017.09.003_bib54 article-title: Synchrotron x-ray visualization and simulation for operating fuel cell diffusion layers publication-title: SAE Tech. Pap. doi: 10.4271/2017-01-1188 – volume: 4 start-page: 123 year: 2015 ident: 10.1016/j.jpowsour.2017.09.003_bib2 article-title: Development of compact and high-performance fuel cell stack publication-title: SAE Int. J. Altern. Powertrains doi: 10.4271/2015-01-1175 – volume: 136 start-page: 271 year: 1927 ident: 10.1016/j.jpowsour.2017.09.003_bib31 article-title: Ueber kapillare Leitung des Wassers im Boden publication-title: Sitzungsber Akad. Wiss – volume: 128 start-page: 198 year: 2006 ident: 10.1016/j.jpowsour.2017.09.003_bib23 article-title: Thermal analysis of inclined micro heat pipes publication-title: J. Heat. Transf. doi: 10.1115/1.2137763 – volume: 36 start-page: 967 year: 1993 ident: 10.1016/j.jpowsour.2017.09.003_bib22 article-title: Effects of capillary heterogeneity on vapor liquid counterflow in porous-media publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/S0017-9310(05)80281-9 – volume: 1 start-page: 128 year: 2005 ident: 10.1016/j.jpowsour.2017.09.003_bib20 article-title: High-speed imaging of flow in microchannel array water evaporators publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-004-0020-9 – volume: 136 start-page: 21008 year: 2014 ident: 10.1016/j.jpowsour.2017.09.003_bib27 article-title: Porous media modeling of two-phase microchannel cooling of electronic chips with nonuniform power distribution publication-title: J. Electron. Packag doi: 10.1115/1.4027420 – year: 2008 ident: 10.1016/j.jpowsour.2017.09.003_bib51 – volume: 39 start-page: 942 year: 2014 ident: 10.1016/j.jpowsour.2017.09.003_bib29 article-title: Numerical modeling of liquid water motion in a polymer electrolyte fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.10.113 – start-page: 2 year: 1988 ident: 10.1016/j.jpowsour.2017.09.003_bib35 article-title: Porous-media momentum equation for highly accelerated flow publication-title: SPE Reserv. Eng. – start-page: 0 year: 2008 ident: 10.1016/j.jpowsour.2017.09.003_bib47 – volume: 124 start-page: 51 year: 2016 ident: 10.1016/j.jpowsour.2017.09.003_bib8 article-title: Influences of bipolar plate channel blockages on PEM fuel cell performances publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.06.043 – volume: 88 start-page: 52 year: 2011 ident: 10.1016/j.jpowsour.2017.09.003_bib12 article-title: Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.07.006 – start-page: 257 year: 2009 ident: 10.1016/j.jpowsour.2017.09.003_bib37 article-title: Multiphase non-darcy flow in proppant packs publication-title: SPE Prod. Oper. – volume: 29 start-page: 695 year: 2015 ident: 10.1016/j.jpowsour.2017.09.003_bib26 article-title: Porous media modeling of microchannel cooled electronic chips with nonuniform heating publication-title: J. Thermophys. Heat. Transf. doi: 10.2514/1.T4509 – year: 2013 ident: 10.1016/j.jpowsour.2017.09.003_bib55 – volume: 36 start-page: 12524 year: 2011 ident: 10.1016/j.jpowsour.2017.09.003_bib30 article-title: Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.014 – start-page: 0 year: 2008 ident: 10.1016/j.jpowsour.2017.09.003_bib50 – volume: 39 start-page: 3607 year: 1996 ident: 10.1016/j.jpowsour.2017.09.003_bib49 article-title: A multiphase mixture model for multiphase, multicomponent transport in capillary porous media - I. Model development publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/0017-9310(96)00036-1 – volume: 24 start-page: 45 year: 2015 ident: 10.1016/j.jpowsour.2017.09.003_bib3 article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society publication-title: Electochemical Soc. Interface doi: 10.1149/2.F03152if – start-page: 5 year: 2017 ident: 10.1016/j.jpowsour.2017.09.003_bib4 – volume: vol. 163 start-page: 744 year: 2016 ident: 10.1016/j.jpowsour.2017.09.003_bib16 – volume: 9 start-page: 511 year: 1986 ident: 10.1016/j.jpowsour.2017.09.003_bib53 article-title: A multigrid method based on the additive correction strategy publication-title: Numer. Heat. Transf. doi: 10.1080/10407788608913491 – volume: 2 start-page: 521 year: 1987 ident: 10.1016/j.jpowsour.2017.09.003_bib39 article-title: High velocity flow in porous media publication-title: Transp. Porous Media doi: 10.1007/BF00192152 – volume: 236 start-page: 126 year: 2013 ident: 10.1016/j.jpowsour.2017.09.003_bib15 article-title: Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.039 – volume: 34 start-page: 50 year: 1995 ident: 10.1016/j.jpowsour.2017.09.003_bib43 article-title: Correlation of the non-Darcy flow coefficient publication-title: J. Can. Pet. Technol. – volume: 41 start-page: 6885 year: 2016 ident: 10.1016/j.jpowsour.2017.09.003_bib5 article-title: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.028 – start-page: 1 year: 2016 ident: 10.1016/j.jpowsour.2017.09.003_bib13 article-title: Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells publication-title: Int. J. Hydrogen Energy – year: 1980 ident: 10.1016/j.jpowsour.2017.09.003_bib52 – volume: 146 start-page: 618 year: 2014 ident: 10.1016/j.jpowsour.2017.09.003_bib18 article-title: Electrochimica acta impact of interfacial water transport in PEMFCs on cell performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.08.148 – volume: 82 start-page: 5249 year: 1999 ident: 10.1016/j.jpowsour.2017.09.003_bib34 article-title: Inertial effects on fluid flow through disordered porous media publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.5249 – volume: 36 start-page: 21 year: 2000 ident: 10.1016/j.jpowsour.2017.09.003_bib24 article-title: Thermal analysis of micro heat pipes using a porous-medium model publication-title: Heat. Mass Transf. doi: 10.1007/s002310050359 – volume: 63 start-page: 57 year: 2006 ident: 10.1016/j.jpowsour.2017.09.003_bib38 article-title: A criterion for non-darcy flow in porous media publication-title: Transp. Porous Media doi: 10.1007/s11242-005-2720-3 – volume: vol. 179 start-page: 603 year: 2008 ident: 10.1016/j.jpowsour.2017.09.003_bib19 – volume: 101 start-page: 295 year: 2004 ident: 10.1016/j.jpowsour.2017.09.003_bib21 article-title: Porous media simplified simulation of single- and two-phase flow heat transfer in micro-channel heat exchangers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2003.10.012 – volume: 84 start-page: 177 year: 2009 ident: 10.1016/j.jpowsour.2017.09.003_bib41 article-title: Numerical simulation of two-phase inertial flow in heterogeneous porous media publication-title: Transp. Porous Media doi: 10.1007/s11242-009-9491-1 – volume: 110 start-page: 356 year: 2016 ident: 10.1016/j.jpowsour.2017.09.003_bib10 article-title: Enhancement of PEM fuel cell performance by flow channel indentation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.12.036 – start-page: 8 year: 2004 ident: 10.1016/j.jpowsour.2017.09.003_bib36 – year: 1982 ident: 10.1016/j.jpowsour.2017.09.003_bib44 – volume: 152 start-page: A445 year: 2005 ident: 10.1016/j.jpowsour.2017.09.003_bib46 article-title: Modeling polymer electrolyte fuel cells with large density and velocity changes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1851059 – volume: 36 start-page: 3614 year: 2010 ident: 10.1016/j.jpowsour.2017.09.003_bib6 article-title: Mid-baffle interdigitated flow fields for proton exchange membrane fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.12.060 – volume: 13 start-page: 139 year: 1993 ident: 10.1016/j.jpowsour.2017.09.003_bib45 article-title: The microscopic analysis of high forchheimer number flow in porous media publication-title: Transp. Porous Media doi: 10.1007/BF00654407 – volume: 88 start-page: 4879 year: 2011 ident: 10.1016/j.jpowsour.2017.09.003_bib9 article-title: The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.06.034 – volume: 14 start-page: 377 year: 1994 ident: 10.1016/j.jpowsour.2017.09.003_bib25 article-title: Porous medium model for two-phase flow in mini channels with applications to micro heat pipes publication-title: Heat. Recover. Syst. CHP doi: 10.1016/0890-4332(94)90041-8 – volume: 39 start-page: 2628 year: 2014 ident: 10.1016/j.jpowsour.2017.09.003_bib7 article-title: Simulation and experimental analysis on the performance of PEM fuel cell by the wave-like surface design at the cathode channel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.063 – volume: 41 start-page: 1179 year: 1949 ident: 10.1016/j.jpowsour.2017.09.003_bib33 article-title: Fluid flow through randomly packed columns and fluidized beds publication-title: Ind. Eng. Chem. doi: 10.1021/ie50474a011 |
SSID | ssj0001170 |
Score | 2.5911222 |
Snippet | 3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 419 |
SubjectTerms | 3D complex flow-field Forchheimer effect High current density Liquid water removal PEMFC |
Title | Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells |
URI | https://dx.doi.org/10.1016/j.jpowsour.2017.09.003 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIrykgdWt3na8YgQqIBggUrdItc5Q6s2iWiqduK348sDCksHxkS-KLo73Z3t774j5Mpue8BwDczjBhhSujEZccUCHSVBhBc1Co8Gnp55fxA8DMNhi9w0vTAIq6xjfxXTy2hdv-nV2uzl43HvxfGts9lq2xW-6_KSdjsIBHp59_MH5oGTVcqbBLtbwtVrXcKT7iTPlnhIjhAvUfKdNsOz_iaotaRzt0d262qRXlc_tE9akB6QnTUOwUPyhtPMsKecFsuM5e82K1EzzZZ0nNLCGgpYggT-FfkGLRHksCpXsBK9NqeZocjWkKUUVlUfMJ3BzO6iU_ulBVghmE7nR2Rwd_t602f19ASm_UAWLJQgjJIeV6EGrpUXKidJEFfiaz2yVYm1hJBR4Gkb8zzjS6NlFHKh-MjICJR_TNpplsIJoUYkDkjP1SoEm_RExEcugOcYEVhx3-2QsFFZrGtqcZxwMY0bDNkkblQdo6pjRyIpaYf0vuXyilxjo4RsLBL_cpPYZoANsqf_kD0j2_iEScsNz0m7-FjAha1GitFl6W6XZOv6_rH__AV93OIv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6m7QAcEE8xnjlwDesraXOcJqbx2gUm7VZlqQObtnaCou3nE_eBBhcOXNt-UWVbtpPYnwm5ttseMEID84QBhpRuTEZCsUBHSRDhRY3Co4GnoRiMgvsxHzdIr-6FwbLKyveXPr3w1tWTTiXNznI67Tw7vjU2m227oe-6Amm3W8hOxZuk1b17GAy_HTIOVykuE-yGCQEbjcKzm9kyW-E5OVZ5hQXlaT0_63eM2og7_T2yWyWMtFv-0z5pQHpAdjZoBA_JKw40w7Zymq8ytnyzgYmaebai05TmVlfAEuTwL_k3aFFEDuviC1YUsH3QzFAkbMhSCuuyFZguYGE30qld6RMsCObzjyMy6t--9AasGqDAtB_InHEJoVHSE4prEFp5XDlJgqUlvtYTm5hYZYQyCjxt3Z5nfGm0jLgIlZgYGYHyj0kzzVI4IdSEiQPSc7XiYONeGImJC-A5Jgws3HfbhNcii3XFLo5DLuZxXUY2i2tRxyjq2JHIS9omnW_csuTX-BMha43EPywltkHgD-zpP7BXZGvw8vQYP94NH87INr7BGObyc9LM3z_hwiYn-eSyMr4vPhHk4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+two-phase+flow+in+three-dimensional+complex+flow-fields+of+proton+exchange+membrane+fuel+cells&rft.jtitle=Journal+of+power+sources&rft.au=Kim%2C+Jinyong&rft.au=Luo%2C+Gang&rft.au=Wang%2C+Chao-Yang&rft.date=2017-10-15&rft.issn=0378-7753&rft.volume=365&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_09_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |