Size effect on void coalescence under intense shear
Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. A...
Saved in:
Published in | European journal of mechanics, A, Solids Vol. 90; p. 104329 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Masson SAS
01.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales.
•The size-effect study on void coalescence presents “smaller is stronger” effect.•The ductility increases with diminishing microstructure size.•The peak load carried by the material increases at the micron-scale.•The effect of the loading ratio is less pronounced when down-scaling the microstructures size. |
---|---|
AbstractList | Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales. Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales. •The size-effect study on void coalescence presents “smaller is stronger” effect.•The ductility increases with diminishing microstructure size.•The peak load carried by the material increases at the micron-scale.•The effect of the loading ratio is less pronounced when down-scaling the microstructures size. |
ArticleNumber | 104329 |
Author | Xiao, Y. Niordson, C.F. Nielsen, K.L. |
Author_xml | – sequence: 1 givenname: Y. surname: Xiao fullname: Xiao, Y. email: shawnxiao@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: K.L. surname: Nielsen fullname: Nielsen, K.L. organization: Department of Mechanical Engineering, Section of Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark – sequence: 3 givenname: C.F. orcidid: 0000-0001-6779-8924 surname: Niordson fullname: Niordson, C.F. organization: Department of Mechanical Engineering, Section of Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark |
BookMark | eNqNkE1LxDAQhoOs4O7qf6h47pqPpklOIotfsOBBPYdsOmVTusmatAv6622pB_G0p2GGd55hngWa-eABoWuCVwST8rZZQR_DHuwuhXZFMSXDvGBUnaE5kYLlgko-Q3OslMgFZ_ICLVJqMMZjdo7Ym_uGDOoabJcFnx2DqzIbTAvJgreQ9b6CmDnfgU-QpR2YeInOa9MmuPqtS_Tx-PC-fs43r08v6_tNblmhupyXghtcQKkw40yAUUoSUVNGKrylZju0wJQqC2qoJAw43haSFKQmkjJLFVuim4l7iOGzh9TpJvTRDyc15YJxUsqyGFJqStkYUopQ60N0exO_NMF6dKQb_ceRHv_Wk6Nh9-7frnWd6VzwXTSuPYmwnggwiDg6iDpZN4qrXByU6iq4Eyg_64WKvg |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2023_109045 crossref_primary_10_1016_j_jmps_2022_104887 crossref_primary_10_1016_j_engfracmech_2022_108516 |
Cites_doi | 10.1016/j.jmps.2010.06.006 10.1115/1.4005565 10.1016/S0065-2156(08)70195-9 10.1016/j.euromechsol.2007.07.001 10.1557/JMR.1998.0185 10.1016/j.ijsolstr.2011.01.008 10.1557/mrc.2014.26 10.1016/j.euromechsol.2007.08.002 10.1016/j.ijsolstr.2007.01.010 10.1016/j.jmps.2008.09.010 10.1557/jmr.2016.516 10.1557/JMR.1995.0853 10.1016/S0013-7944(00)00055-2 10.1016/j.engfracmech.2017.12.023 10.1016/j.jmps.2009.03.007 10.1016/0022-5096(76)90027-2 10.1016/0022-3697(87)90118-1 10.1016/S0013-7944(03)00114-0 10.1007/s10704-009-9364-1 10.1115/1.3443401 10.1016/S0022-5096(03)00037-1 10.1016/S0022-5096(97)00086-0 10.1016/S1359-6454(98)00153-0 10.1016/0020-7683(88)90051-0 10.1016/j.jmps.2010.01.007 10.1016/0956-7151(94)90502-9 10.2140/jomms.2011.6.395 10.1115/1.4039172 10.1016/0020-7683(75)90033-5 10.1016/j.euromechsol.2019.02.010 10.1016/j.ijmecsci.2008.08.007 10.1016/j.crme.2007.11.008 10.1016/j.ijsolstr.2006.09.031 10.1016/j.ijsolstr.2012.06.008 10.1016/S0022-5096(00)00019-3 10.1115/1.4049022 10.1016/j.euromechsol.2019.03.001 10.1016/j.jmps.2018.09.004 10.1016/0022-5096(89)90027-6 10.1007/BF02647501 10.1080/14786437008238426 10.1007/s10704-012-9757-4 10.1016/j.jmps.2003.11.002 10.1016/j.jmps.2012.02.006 10.1007/s10704-016-0142-6 10.1016/S0022-5096(01)00103-X 10.1016/0001-6160(84)90213-X |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Nov/Dec 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Nov/Dec 2021 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.euromechsol.2021.104329 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-7285 |
ExternalDocumentID | 10_1016_j_euromechsol_2021_104329 S0997753821000991 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c349t-5675a04e6903537ea99817f231d0b2ab998e399642a2813e50b48141f1823c293 |
IEDL.DBID | .~1 |
ISSN | 0997-7538 |
IngestDate | Mon Jul 14 07:26:40 EDT 2025 Tue Jul 01 01:55:23 EDT 2025 Thu Apr 24 23:20:21 EDT 2025 Fri Feb 23 02:42:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Strain gradient plasticity Void Finite strain Size effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-5675a04e6903537ea99817f231d0b2ab998e399642a2813e50b48141f1823c293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6779-8924 |
PQID | 2573516864 |
PQPubID | 2045479 |
ParticipantIDs | proquest_journals_2573516864 crossref_primary_10_1016_j_euromechsol_2021_104329 crossref_citationtrail_10_1016_j_euromechsol_2021_104329 elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104329 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November-December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | European journal of mechanics, A, Solids |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS Elsevier BV |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier BV |
References | Swadener, George, Pharr (b43) 2002; 50 Tvergaard (b50) 2012; 49 Niordson, Tvergaard (b38) 2019; 123 Pardoen, Hutchinson (b40) 2000; 48 Legarth, Tvergaard (b23) 2018; 85 Mu, Zhang, Hutchinson, Meng (b29) 2017; 32 Dahl, Nielsen, Tvergaard (b9) 2012; 79 Holte, Niordson, Nielsen, Tvergaard (b18) 2019; 75 Barsoum, Faleskog (b3) 2007; 44 Fleck, Willis (b14) 2009; 57 Ma, Clarke (b25) 1995; 10 Benzerga, Besson, Pineau (b4) 1999 Stölken, Evans (b42) 1998; 46 Cowie, Azrin, Olson (b6) 1989; 20 McMeeking, Rice (b27) 1975; 11 Nielsen, Tvergaard (b34) 2011; 48 Scheyvaerts (b41) 2009 Fleck, Hutchinson (b10) 1986; 407 Benzerga, Leblond, Needleman, Tvergaard (b5) 2016; 201 Nahshon, Hutchinson (b30) 2008; 27 Holte, Srivastava, Martínez-Pañeda, Niordson, Nielsen (b19) 2021; 88 Fleck, Willis (b13) 2009; 57 Tvergaard, Needleman (b51) 1984; 32 McElhaney, Vlassak, Nix (b26) 1997; 13 Nielsen, Tvergaard (b33) 2010; 58 Tvergaard (b49) 2009; 158 Ashby (b1) 1970; 21 Gurson (b17) 1977; 99 Kim, Gao, Srivatsan (b20) 2004; 71 Leblond, Mottet (b22) 2008; 336 Gudmundson (b16) 2004; 52 Zhang, Thaulow, Ødegård (b52) 2000; 67 Nix, Gao (b39) 1998; 46 Tvergaard (b46) 1976; 24 Mu, Chen, Meng (b28) 2014; 4 Fleck, Hutchinson, Tvergaard (b11) 1989; 37 Liu, Qiu, Huang, Hwang, Li, Liu (b24) 2003; 51 Thomason (b45) 1990 Koplik, Needleman (b21) 1988; 24 Niordson, Legarth (b37) 2010; 58 Dæhli, Morin, Bœrvik, Hopperstad (b7) 2018; 190 Nielsen, Dahl, Tvergaard (b31) 2012; 177 Tvergaard (b48) 2008; 50 Tvergaard (b47) 1989 Garrison, Moody (b15) 1987; 48 Tekoğlu, Leblond, Pardoen (b44) 2012; 60 Fleck, Muller, Ashby, Hutchinson (b12) 1994; 42 Niordson, Hutchinson (b36) 2011; 6 Niordson (b35) 2008; 27 Barsoum, Faleskog (b2) 2007; 44 Dahl, Nielsen, Tvergaard (b8) 2012; 79 Nielsen, Niordson (b32) 2019; 160 Kim (10.1016/j.euromechsol.2021.104329_b20) 2004; 71 Zhang (10.1016/j.euromechsol.2021.104329_b52) 2000; 67 Tvergaard (10.1016/j.euromechsol.2021.104329_b49) 2009; 158 Leblond (10.1016/j.euromechsol.2021.104329_b22) 2008; 336 Fleck (10.1016/j.euromechsol.2021.104329_b13) 2009; 57 Barsoum (10.1016/j.euromechsol.2021.104329_b3) 2007; 44 Nielsen (10.1016/j.euromechsol.2021.104329_b31) 2012; 177 Ashby (10.1016/j.euromechsol.2021.104329_b1) 1970; 21 Niordson (10.1016/j.euromechsol.2021.104329_b35) 2008; 27 Liu (10.1016/j.euromechsol.2021.104329_b24) 2003; 51 McMeeking (10.1016/j.euromechsol.2021.104329_b27) 1975; 11 Nielsen (10.1016/j.euromechsol.2021.104329_b34) 2011; 48 Dahl (10.1016/j.euromechsol.2021.104329_b9) 2012; 79 Mu (10.1016/j.euromechsol.2021.104329_b29) 2017; 32 Tekoğlu (10.1016/j.euromechsol.2021.104329_b44) 2012; 60 Nahshon (10.1016/j.euromechsol.2021.104329_b30) 2008; 27 Dahl (10.1016/j.euromechsol.2021.104329_b8) 2012; 79 Fleck (10.1016/j.euromechsol.2021.104329_b14) 2009; 57 Tvergaard (10.1016/j.euromechsol.2021.104329_b50) 2012; 49 Barsoum (10.1016/j.euromechsol.2021.104329_b2) 2007; 44 Pardoen (10.1016/j.euromechsol.2021.104329_b40) 2000; 48 Fleck (10.1016/j.euromechsol.2021.104329_b10) 1986; 407 Ma (10.1016/j.euromechsol.2021.104329_b25) 1995; 10 Fleck (10.1016/j.euromechsol.2021.104329_b11) 1989; 37 Tvergaard (10.1016/j.euromechsol.2021.104329_b46) 1976; 24 McElhaney (10.1016/j.euromechsol.2021.104329_b26) 1997; 13 Thomason (10.1016/j.euromechsol.2021.104329_b45) 1990 Nix (10.1016/j.euromechsol.2021.104329_b39) 1998; 46 Niordson (10.1016/j.euromechsol.2021.104329_b38) 2019; 123 Tvergaard (10.1016/j.euromechsol.2021.104329_b47) 1989 Scheyvaerts (10.1016/j.euromechsol.2021.104329_b41) 2009 Nielsen (10.1016/j.euromechsol.2021.104329_b33) 2010; 58 Fleck (10.1016/j.euromechsol.2021.104329_b12) 1994; 42 Tvergaard (10.1016/j.euromechsol.2021.104329_b48) 2008; 50 Garrison (10.1016/j.euromechsol.2021.104329_b15) 1987; 48 Benzerga (10.1016/j.euromechsol.2021.104329_b5) 2016; 201 Tvergaard (10.1016/j.euromechsol.2021.104329_b51) 1984; 32 Holte (10.1016/j.euromechsol.2021.104329_b18) 2019; 75 Mu (10.1016/j.euromechsol.2021.104329_b28) 2014; 4 Cowie (10.1016/j.euromechsol.2021.104329_b6) 1989; 20 Swadener (10.1016/j.euromechsol.2021.104329_b43) 2002; 50 Niordson (10.1016/j.euromechsol.2021.104329_b37) 2010; 58 Nielsen (10.1016/j.euromechsol.2021.104329_b32) 2019; 160 Dæhli (10.1016/j.euromechsol.2021.104329_b7) 2018; 190 Gurson (10.1016/j.euromechsol.2021.104329_b17) 1977; 99 Gudmundson (10.1016/j.euromechsol.2021.104329_b16) 2004; 52 Niordson (10.1016/j.euromechsol.2021.104329_b36) 2011; 6 Stölken (10.1016/j.euromechsol.2021.104329_b42) 1998; 46 Benzerga (10.1016/j.euromechsol.2021.104329_b4) 1999 Holte (10.1016/j.euromechsol.2021.104329_b19) 2021; 88 Legarth (10.1016/j.euromechsol.2021.104329_b23) 2018; 85 Koplik (10.1016/j.euromechsol.2021.104329_b21) 1988; 24 |
References_xml | – volume: 58 start-page: 1243 year: 2010 end-page: 1252 ident: b33 article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear publication-title: J. Mech. Phys. Solids – volume: 190 start-page: 299 year: 2018 end-page: 318 ident: b7 article-title: A lode-dependent gurson model motivated by unit cell analyses publication-title: Eng. Frac. Mech. – volume: 6 start-page: 395 year: 2011 end-page: 416 ident: b36 article-title: Basic strain gradient plasticity theories with application to constrained film deformation publication-title: J. Mech. Mater. Struct. – volume: 4 start-page: 129 year: 2014 end-page: 133 ident: b28 article-title: Thickness dependence of flow stress of cu thin films in confined shear plastic flow publication-title: MRS Commun. – volume: 24 start-page: 291 year: 1976 end-page: 304 ident: b46 article-title: Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells publication-title: J. Mech. Phys. Solids – volume: 11 start-page: 601 year: 1975 end-page: 616 ident: b27 article-title: Finite-element formulations for problems of large elastic-plastic deformation publication-title: Int. J. Solids Struct. – volume: 75 start-page: 472 year: 2019 end-page: 484 ident: b18 article-title: Investigation of a gradient enriched Gurson–Tvergaard model for porous strain hardening materials publication-title: Eur. J. Mech. A Solids – volume: 57 start-page: 161 year: 2009 end-page: 177 ident: b14 article-title: A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier publication-title: J. Mech. Phys. Solids – year: 1990 ident: b45 article-title: Ductile Fracture of Metals – volume: 48 start-page: 2467 year: 2000 end-page: 2512 ident: b40 article-title: An extended model for void growth and coalescence publication-title: J. Mech. Phys. Solids – volume: 99 start-page: 2 year: 1977 end-page: 15 ident: b17 article-title: Continuum theory of ductile rupture by void nucleation and growth - part I: yield criteria and flow rules for porous ductile madia publication-title: ASME J. Eng. Mater. Technol. – volume: 58 start-page: 542 year: 2010 end-page: 557 ident: b37 article-title: Strain gradient effects on cyclic plasticity publication-title: J. Mech. Phys. Solids – volume: 71 start-page: 379 year: 2004 end-page: 400 ident: b20 article-title: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity publication-title: Eng. Fract. Mech. – volume: 50 start-page: 681 year: 2002 end-page: 694 ident: b43 article-title: The correlation of the indentation size effect measured with indentes of various shapes publication-title: J. Mech. Phys. Solids – volume: 48 start-page: 1255 year: 2011 end-page: 1267 ident: b34 article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing publication-title: Int. J. Solids Struct. – volume: 123 start-page: 222 year: 2019 end-page: 233 ident: b38 article-title: A homogenized model for size-effects in porous metals publication-title: J. Mech. Phys. Solids – volume: 27 start-page: 222 year: 2008 end-page: 233 ident: b35 article-title: Void growth to coalescence in a non-local material publication-title: Eur. J. Mech. A Solids – volume: 49 start-page: 3047 year: 2012 end-page: 3054 ident: b50 article-title: Effect of stress-state and spacing on voids in a shear-field publication-title: Int. J. Solids Struct. – volume: 32 start-page: 157 year: 1984 end-page: 169 ident: b51 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall. – volume: 79 year: 2012 ident: b9 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J. Appl. Mech. – year: 2009 ident: b41 article-title: Multiscale modelling of ductile fracture in heterogeneous metallic alloys – volume: 44 start-page: 1768 year: 2007 end-page: 1786 ident: b3 article-title: Rupture mechanisms in combined tension and shear—Experiments publication-title: Int. J. Solids Struct. – volume: 27 start-page: 1 year: 2008 end-page: 17 ident: b30 article-title: Modification of the Gurson model for shear publication-title: Euro. J. Mech. A Solids – volume: 67 start-page: 155 year: 2000 end-page: 168 ident: b52 article-title: A complete Gurson model approach for ductile fracture publication-title: Eng. Fract. Mech. – volume: 51 start-page: 1171 year: 2003 end-page: 1187 ident: b24 article-title: The size effect on void growth in ductile materials publication-title: J. Mech. Phys. Solids – volume: 158 start-page: 41 year: 2009 end-page: 49 ident: b49 article-title: Behaviour of voids in a shear field publication-title: Int. J. Fract. – volume: 50 start-page: 1459 year: 2008 end-page: 1465 ident: b48 article-title: Shear deformation of voids with contact modelled by internal pressure publication-title: Int. J. Mech. Sci. – volume: 85 year: 2018 ident: b23 article-title: Effects of plastic anisotropy and void shape on full three-dimensional void growth publication-title: J. Appl. Mech. – volume: 20 start-page: 143 year: 1989 end-page: 153 ident: b6 article-title: Microvoid formation during shear deformation of ultrahigh strength steels publication-title: Metall. Trans. A – volume: 32 start-page: 1421 year: 2017 end-page: 1431 ident: b29 article-title: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol publication-title: J. Mater. Res. – volume: 88 start-page: 021010 year: 2021 ident: b19 article-title: Interaction of void spacing and material size effect on inter-void flow localisation publication-title: J. Appl. Mech. – volume: 201 start-page: 29 year: 2016 end-page: 80 ident: b5 article-title: Ductile failure modeling publication-title: Int. J. Fract. – volume: 60 start-page: 1363 year: 2012 end-page: 1381 ident: b44 article-title: A criterion for the onset of void coalescence under combined tension and shear publication-title: J. Mech. Phys. Solids – volume: 52 start-page: 1379 year: 2004 end-page: 1406 ident: b16 article-title: A unified treatment of strain gradient plasticity publication-title: J. Mech. Phys. Solids – volume: 44 start-page: 5481 year: 2007 end-page: 5498 ident: b2 article-title: Rupture mechanisms in combined tension and shear-Micromechanics publication-title: Int. J. Solids Struct. – volume: 21 start-page: 399 year: 1970 end-page: 424 ident: b1 article-title: The deformation of plastically non-homogeneous materials publication-title: Phil. Mag.: J. Theoret. Exp. Appl. Phys. – volume: 13 start-page: 1300 year: 1997 end-page: 1306 ident: b26 article-title: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments publication-title: Int. J. Mater. Res. – volume: 336 start-page: 176 year: 2008 end-page: 189 ident: b22 article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials publication-title: C. R. Mec. – volume: 10 start-page: 853 year: 1995 end-page: 863 ident: b25 article-title: Size dependent hardness of silver single crystals publication-title: J. Mater. Res. – volume: 407 start-page: 435 year: 1986 end-page: 458 ident: b10 article-title: Void growth in shear publication-title: Proc. R. Soc. A – volume: 160 start-page: 389 year: 2019 end-page: 398 ident: b32 article-title: A finite strain FE-implementation of the fleck-willis gradient theory: Visco-plastic versus rate-independent publication-title: Eur. J. Mech. A Solids – volume: 177 start-page: 97 year: 2012 end-page: 108 ident: b31 article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D publication-title: Int. J. Fract. – volume: 46 start-page: 411 year: 1998 end-page: 425 ident: b39 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids – volume: 24 start-page: 835 year: 1988 end-page: 853 ident: b21 article-title: Void growth and coalescence in porous plastic solids publication-title: Int. J. Solids Struct. – volume: 37 start-page: 515 year: 1989 end-page: 540 ident: b11 article-title: Softening by void nucleation and growth in tension and shear publication-title: J. Mech. Phys. Solids – volume: 79 year: 2012 ident: b8 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J. Appl. Mech. – volume: 42 start-page: 475 year: 1994 end-page: 487 ident: b12 article-title: Strain gradient plasticity: theory and experiment publication-title: Acta Metall. Mater. – volume: 48 start-page: 1035 year: 1987 end-page: 1074 ident: b15 article-title: Ductile fracture publication-title: J. Phys. Chem. Solids – year: 1999 ident: b4 article-title: Coalescence-controlled anisotropic ductile fracture – volume: 46 start-page: 5109 year: 1998 end-page: 5115 ident: b42 article-title: A microbend test method for measuring the plasticity length scale publication-title: Acta Mater. – start-page: 83 year: 1989 end-page: 151 ident: b47 article-title: Material failure by void growth to coalescence publication-title: Advances in Applied Mechanics, Vol. 27 – volume: 57 start-page: 1045 year: 2009 end-page: 1057 ident: b13 article-title: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier publication-title: J. Mech. Phys. Solids – volume: 58 start-page: 1243 year: 2010 ident: 10.1016/j.euromechsol.2021.104329_b33 article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2010.06.006 – volume: 79 year: 2012 ident: 10.1016/j.euromechsol.2021.104329_b8 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J. Appl. Mech. doi: 10.1115/1.4005565 – start-page: 83 year: 1989 ident: 10.1016/j.euromechsol.2021.104329_b47 article-title: Material failure by void growth to coalescence doi: 10.1016/S0065-2156(08)70195-9 – volume: 27 start-page: 222 issue: 2 year: 2008 ident: 10.1016/j.euromechsol.2021.104329_b35 article-title: Void growth to coalescence in a non-local material publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2007.07.001 – volume: 13 start-page: 1300 issue: 5 year: 1997 ident: 10.1016/j.euromechsol.2021.104329_b26 article-title: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments publication-title: Int. J. Mater. Res. doi: 10.1557/JMR.1998.0185 – volume: 48 start-page: 1255 issue: 9 year: 2011 ident: 10.1016/j.euromechsol.2021.104329_b34 article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2011.01.008 – volume: 4 start-page: 129 year: 2014 ident: 10.1016/j.euromechsol.2021.104329_b28 article-title: Thickness dependence of flow stress of cu thin films in confined shear plastic flow publication-title: MRS Commun. doi: 10.1557/mrc.2014.26 – volume: 27 start-page: 1 year: 2008 ident: 10.1016/j.euromechsol.2021.104329_b30 article-title: Modification of the Gurson model for shear publication-title: Euro. J. Mech. A Solids doi: 10.1016/j.euromechsol.2007.08.002 – volume: 407 start-page: 435 issue: 1833 year: 1986 ident: 10.1016/j.euromechsol.2021.104329_b10 article-title: Void growth in shear publication-title: Proc. R. Soc. A – volume: 44 start-page: 5481 issue: 17 year: 2007 ident: 10.1016/j.euromechsol.2021.104329_b2 article-title: Rupture mechanisms in combined tension and shear-Micromechanics publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2007.01.010 – volume: 57 start-page: 161 issue: 1 year: 2009 ident: 10.1016/j.euromechsol.2021.104329_b14 article-title: A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2008.09.010 – volume: 32 start-page: 1421 year: 2017 ident: 10.1016/j.euromechsol.2021.104329_b29 article-title: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.516 – volume: 10 start-page: 853 issue: 4 year: 1995 ident: 10.1016/j.euromechsol.2021.104329_b25 article-title: Size dependent hardness of silver single crystals publication-title: J. Mater. Res. doi: 10.1557/JMR.1995.0853 – volume: 67 start-page: 155 issue: 2 year: 2000 ident: 10.1016/j.euromechsol.2021.104329_b52 article-title: A complete Gurson model approach for ductile fracture publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(00)00055-2 – volume: 190 start-page: 299 year: 2018 ident: 10.1016/j.euromechsol.2021.104329_b7 article-title: A lode-dependent gurson model motivated by unit cell analyses publication-title: Eng. Frac. Mech. doi: 10.1016/j.engfracmech.2017.12.023 – volume: 57 start-page: 1045 issue: 7 year: 2009 ident: 10.1016/j.euromechsol.2021.104329_b13 article-title: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.03.007 – volume: 79 year: 2012 ident: 10.1016/j.euromechsol.2021.104329_b9 article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing publication-title: J. Appl. Mech. doi: 10.1115/1.4005565 – volume: 24 start-page: 291 issue: 5 year: 1976 ident: 10.1016/j.euromechsol.2021.104329_b46 article-title: Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(76)90027-2 – volume: 48 start-page: 1035 issue: 11 year: 1987 ident: 10.1016/j.euromechsol.2021.104329_b15 article-title: Ductile fracture publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(87)90118-1 – volume: 71 start-page: 379 issue: 3 year: 2004 ident: 10.1016/j.euromechsol.2021.104329_b20 article-title: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(03)00114-0 – volume: 158 start-page: 41 issue: 1 year: 2009 ident: 10.1016/j.euromechsol.2021.104329_b49 article-title: Behaviour of voids in a shear field publication-title: Int. J. Fract. doi: 10.1007/s10704-009-9364-1 – volume: 99 start-page: 2 year: 1977 ident: 10.1016/j.euromechsol.2021.104329_b17 article-title: Continuum theory of ductile rupture by void nucleation and growth - part I: yield criteria and flow rules for porous ductile madia publication-title: ASME J. Eng. Mater. Technol. doi: 10.1115/1.3443401 – volume: 51 start-page: 1171 issue: 7 year: 2003 ident: 10.1016/j.euromechsol.2021.104329_b24 article-title: The size effect on void growth in ductile materials publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(03)00037-1 – volume: 46 start-page: 411 year: 1998 ident: 10.1016/j.euromechsol.2021.104329_b39 article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(97)00086-0 – volume: 46 start-page: 5109 issue: 14 year: 1998 ident: 10.1016/j.euromechsol.2021.104329_b42 article-title: A microbend test method for measuring the plasticity length scale publication-title: Acta Mater. doi: 10.1016/S1359-6454(98)00153-0 – volume: 24 start-page: 835 issue: 8 year: 1988 ident: 10.1016/j.euromechsol.2021.104329_b21 article-title: Void growth and coalescence in porous plastic solids publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(88)90051-0 – volume: 58 start-page: 542 year: 2010 ident: 10.1016/j.euromechsol.2021.104329_b37 article-title: Strain gradient effects on cyclic plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2010.01.007 – volume: 42 start-page: 475 issue: 2 year: 1994 ident: 10.1016/j.euromechsol.2021.104329_b12 article-title: Strain gradient plasticity: theory and experiment publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90502-9 – volume: 6 start-page: 395 issue: 1 year: 2011 ident: 10.1016/j.euromechsol.2021.104329_b36 article-title: Basic strain gradient plasticity theories with application to constrained film deformation publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2011.6.395 – volume: 85 issue: 5 year: 2018 ident: 10.1016/j.euromechsol.2021.104329_b23 article-title: Effects of plastic anisotropy and void shape on full three-dimensional void growth publication-title: J. Appl. Mech. doi: 10.1115/1.4039172 – year: 2009 ident: 10.1016/j.euromechsol.2021.104329_b41 – volume: 11 start-page: 601 year: 1975 ident: 10.1016/j.euromechsol.2021.104329_b27 article-title: Finite-element formulations for problems of large elastic-plastic deformation publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(75)90033-5 – volume: 160 start-page: 389 year: 2019 ident: 10.1016/j.euromechsol.2021.104329_b32 article-title: A finite strain FE-implementation of the fleck-willis gradient theory: Visco-plastic versus rate-independent publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2019.02.010 – volume: 50 start-page: 1459 issue: 10–11 year: 2008 ident: 10.1016/j.euromechsol.2021.104329_b48 article-title: Shear deformation of voids with contact modelled by internal pressure publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2008.08.007 – volume: 336 start-page: 176 issue: 1–2 year: 2008 ident: 10.1016/j.euromechsol.2021.104329_b22 article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials publication-title: C. R. Mec. doi: 10.1016/j.crme.2007.11.008 – volume: 44 start-page: 1768 issue: 6 year: 2007 ident: 10.1016/j.euromechsol.2021.104329_b3 article-title: Rupture mechanisms in combined tension and shear—Experiments publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.09.031 – volume: 49 start-page: 3047 issue: 22 year: 2012 ident: 10.1016/j.euromechsol.2021.104329_b50 article-title: Effect of stress-state and spacing on voids in a shear-field publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.06.008 – volume: 48 start-page: 2467 issue: 12 year: 2000 ident: 10.1016/j.euromechsol.2021.104329_b40 article-title: An extended model for void growth and coalescence publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(00)00019-3 – volume: 88 start-page: 021010 issue: 2 year: 2021 ident: 10.1016/j.euromechsol.2021.104329_b19 article-title: Interaction of void spacing and material size effect on inter-void flow localisation publication-title: J. Appl. Mech. doi: 10.1115/1.4049022 – year: 1990 ident: 10.1016/j.euromechsol.2021.104329_b45 – volume: 75 start-page: 472 year: 2019 ident: 10.1016/j.euromechsol.2021.104329_b18 article-title: Investigation of a gradient enriched Gurson–Tvergaard model for porous strain hardening materials publication-title: Eur. J. Mech. A Solids doi: 10.1016/j.euromechsol.2019.03.001 – volume: 123 start-page: 222 year: 2019 ident: 10.1016/j.euromechsol.2021.104329_b38 article-title: A homogenized model for size-effects in porous metals publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.09.004 – volume: 37 start-page: 515 issue: 4 year: 1989 ident: 10.1016/j.euromechsol.2021.104329_b11 article-title: Softening by void nucleation and growth in tension and shear publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(89)90027-6 – volume: 20 start-page: 143 issue: 1 year: 1989 ident: 10.1016/j.euromechsol.2021.104329_b6 article-title: Microvoid formation during shear deformation of ultrahigh strength steels publication-title: Metall. Trans. A doi: 10.1007/BF02647501 – year: 1999 ident: 10.1016/j.euromechsol.2021.104329_b4 – volume: 21 start-page: 399 issue: 170 year: 1970 ident: 10.1016/j.euromechsol.2021.104329_b1 article-title: The deformation of plastically non-homogeneous materials publication-title: Phil. Mag.: J. Theoret. Exp. Appl. Phys. doi: 10.1080/14786437008238426 – volume: 177 start-page: 97 issue: 2 year: 2012 ident: 10.1016/j.euromechsol.2021.104329_b31 article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D publication-title: Int. J. Fract. doi: 10.1007/s10704-012-9757-4 – volume: 52 start-page: 1379 issue: 6 year: 2004 ident: 10.1016/j.euromechsol.2021.104329_b16 article-title: A unified treatment of strain gradient plasticity publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2003.11.002 – volume: 60 start-page: 1363 year: 2012 ident: 10.1016/j.euromechsol.2021.104329_b44 article-title: A criterion for the onset of void coalescence under combined tension and shear publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.02.006 – volume: 201 start-page: 29 issue: 1 year: 2016 ident: 10.1016/j.euromechsol.2021.104329_b5 article-title: Ductile failure modeling publication-title: Int. J. Fract. doi: 10.1007/s10704-016-0142-6 – volume: 50 start-page: 681 year: 2002 ident: 10.1016/j.euromechsol.2021.104329_b43 article-title: The correlation of the indentation size effect measured with indentes of various shapes publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00103-X – volume: 32 start-page: 157 issue: 1 year: 1984 ident: 10.1016/j.euromechsol.2021.104329_b51 article-title: Analysis of the cup-cone fracture in a round tensile bar publication-title: Acta Metall. doi: 10.1016/0001-6160(84)90213-X |
SSID | ssj0002021 |
Score | 2.3346758 |
Snippet | Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104329 |
SubjectTerms | Bearing strength Coalescing Collapse Deformation effects Elongation Finite strain Ligaments Load carrying capacity Localization Microcracks Plastic deformation Plastic flow Rotation Shearing Size effect Size effects Strain gradient plasticity Strain hardening Strengthening Unit cell Void Voids |
Title | Size effect on void coalescence under intense shear |
URI | https://dx.doi.org/10.1016/j.euromechsol.2021.104329 https://www.proquest.com/docview/2573516864 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnjxW5zOEcFrt7ZJlg68jOGYirvMwW4hbROsaDu26cGDf7svaepUPAgeU_JK-eXlvd-j7wOhC6DAMqVEe1Jp6dFeEHuxDJiXslSFWjPCeqbe-W7cHU3pzYzNamhQ1cKYtEpn-0ubbq21e9JxaHbmWdaZmJpPINtRGFieYyvYKTda3n5fp3lAcG-n5pmuo2b3Jjpf53iZ_hfPKnmAY26bjeaPJ7Fs81cf9cNaWxc03EXbjjvifvl5e6im8n2043gkdrd0eYDIJHtTuMzUwEWOX4ssxUkhy9ZNicKmcGyBM5u9rvDSDLU-RNPh1f1g5LnhCF5CaG_lMWD60qcKolvCCFcS4qaAa6BrqR-HMoalAvIB4YUMo4Ao5sc0CmigIaAgCTj5I1TPi1wdI6wZj3UqaQqhIVVcRjql0ucy1CGTkvMGiio4ROI6h5sBFk-iShF7FF-QFAZJUSLZQOGn6Lxsn_EXocsKc_FNFwSY-b-IN6tzEu5CLgVYJsKCbtSlJ_97-ynaMquyHLGJ6qvFizoDXrKKW1bxWmijf307Gn8Awb7ilw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnrxW5xOjeC1W9skawdeZDimbrtsg91C2iRY0XZs04MH_3Zf2tSpeBA8ps0r5eXl5fcj7wOhS4DAQlKiHaG0cGjbi5xIeMyRTCpfa0ZY2-Q7D4at3oTeTdm0gjplLowJq7S-v_Dpube2T5pWm81ZkjRHJucTwHboeznOAQq0Rs0QjLrxvorzAHaft80zZUfN9HV0sQryMgUwnlX8AOvcMBPNlSfJ4eavh9QPd52fQd0dtGXBI74u_m8XVVS6h7YtkMR2my72ERklbwoXoRo4S_FrlkgcZ6Ko3RQrbDLH5jjJw9cVXpiu1gdo0r0Zd3qO7Y7gxIS2lw4DqC9cqoDeEkYCJYA4eYEGvCbdyBcRDBWgD-AXwg89opgb0dCjngZGQWI45Q9RNc1SdYSwZkGkpaASuCFVgQi1pMINhK99JkQQ1FBYqoPHtnS46WDxxMsYsUf-RZPcaJIXmqwh_1N0VtTP-IvQValz_s0YOPj5v4jXy3XidkcuOLgmwrxW2KLH__v6OdrojQd93r8d3p-gTfOmyE2so-py_qJOAaQso7PcCD8ABkjkJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+effect+on+void+coalescence+under+intense+shear&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Xiao%2C+Y&rft.au=Nielsen%2C+KL&rft.au=Niordson%2C+CF&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=90&rft.spage=1&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104329&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon |