Size effect on void coalescence under intense shear

Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. A...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 90; p. 104329
Main Authors Xiao, Y., Nielsen, K.L., Niordson, C.F.
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Masson SAS 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales. •The size-effect study on void coalescence presents “smaller is stronger” effect.•The ductility increases with diminishing microstructure size.•The peak load carried by the material increases at the micron-scale.•The effect of the loading ratio is less pronounced when down-scaling the microstructures size.
AbstractList Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales.
Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have demonstrated that micron-size voids collapse to form micro-cracks while continuous elongation and rotation of the voids thin the intervoid ligaments. At a final stage, the deformation leads to plastic flow localization in the ligament, and the material loses the load-carrying capacity. The micro-mechanism of void collapse, elongation, and rotation has been studied using 2D and 3D unit cell simulations but only within a conventional strain hardening material and, thereby, not accounting for micron scale size effects. However, the severe plastic deformation near the voids implies the development of significant plastic strain gradients, which must be accommodated by geometrically necessary dislocations (GNDs) that strengthens the matrix locally and elevates the stress level. The present research accounts for such gradient strengthening within the matrix in order to investigate the material size effect in ductile shear failure. The work presented leans on the unit cell model approach by Tvergaard (2009), but enables a constitutive length parameter to enter the analysis by substituting the matrix with a Fleck–Willis gradient enhanced material. The results reflect the combined effect of applied load, strain hardening, initial void volume fraction, and microstructure size. The general conclusion is that matrix strengthening, governed by size, delays the loss of load-carrying capacity and leads to less concentrated localization around small void. The results also show that the void collapse, elongation, and rotation mechanism is more sensitive to changes to the applied load, hardening, and initial void volume fraction at small scales. •The size-effect study on void coalescence presents “smaller is stronger” effect.•The ductility increases with diminishing microstructure size.•The peak load carried by the material increases at the micron-scale.•The effect of the loading ratio is less pronounced when down-scaling the microstructures size.
ArticleNumber 104329
Author Xiao, Y.
Niordson, C.F.
Nielsen, K.L.
Author_xml – sequence: 1
  givenname: Y.
  surname: Xiao
  fullname: Xiao, Y.
  email: shawnxiao@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: K.L.
  surname: Nielsen
  fullname: Nielsen, K.L.
  organization: Department of Mechanical Engineering, Section of Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
– sequence: 3
  givenname: C.F.
  orcidid: 0000-0001-6779-8924
  surname: Niordson
  fullname: Niordson, C.F.
  organization: Department of Mechanical Engineering, Section of Solid Mechanics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
BookMark eNqNkE1LxDAQhoOs4O7qf6h47pqPpklOIotfsOBBPYdsOmVTusmatAv6622pB_G0p2GGd55hngWa-eABoWuCVwST8rZZQR_DHuwuhXZFMSXDvGBUnaE5kYLlgko-Q3OslMgFZ_ICLVJqMMZjdo7Ym_uGDOoabJcFnx2DqzIbTAvJgreQ9b6CmDnfgU-QpR2YeInOa9MmuPqtS_Tx-PC-fs43r08v6_tNblmhupyXghtcQKkw40yAUUoSUVNGKrylZju0wJQqC2qoJAw43haSFKQmkjJLFVuim4l7iOGzh9TpJvTRDyc15YJxUsqyGFJqStkYUopQ60N0exO_NMF6dKQb_ceRHv_Wk6Nh9-7frnWd6VzwXTSuPYmwnggwiDg6iDpZN4qrXByU6iq4Eyg_64WKvg
CitedBy_id crossref_primary_10_1016_j_engfracmech_2023_109045
crossref_primary_10_1016_j_jmps_2022_104887
crossref_primary_10_1016_j_engfracmech_2022_108516
Cites_doi 10.1016/j.jmps.2010.06.006
10.1115/1.4005565
10.1016/S0065-2156(08)70195-9
10.1016/j.euromechsol.2007.07.001
10.1557/JMR.1998.0185
10.1016/j.ijsolstr.2011.01.008
10.1557/mrc.2014.26
10.1016/j.euromechsol.2007.08.002
10.1016/j.ijsolstr.2007.01.010
10.1016/j.jmps.2008.09.010
10.1557/jmr.2016.516
10.1557/JMR.1995.0853
10.1016/S0013-7944(00)00055-2
10.1016/j.engfracmech.2017.12.023
10.1016/j.jmps.2009.03.007
10.1016/0022-5096(76)90027-2
10.1016/0022-3697(87)90118-1
10.1016/S0013-7944(03)00114-0
10.1007/s10704-009-9364-1
10.1115/1.3443401
10.1016/S0022-5096(03)00037-1
10.1016/S0022-5096(97)00086-0
10.1016/S1359-6454(98)00153-0
10.1016/0020-7683(88)90051-0
10.1016/j.jmps.2010.01.007
10.1016/0956-7151(94)90502-9
10.2140/jomms.2011.6.395
10.1115/1.4039172
10.1016/0020-7683(75)90033-5
10.1016/j.euromechsol.2019.02.010
10.1016/j.ijmecsci.2008.08.007
10.1016/j.crme.2007.11.008
10.1016/j.ijsolstr.2006.09.031
10.1016/j.ijsolstr.2012.06.008
10.1016/S0022-5096(00)00019-3
10.1115/1.4049022
10.1016/j.euromechsol.2019.03.001
10.1016/j.jmps.2018.09.004
10.1016/0022-5096(89)90027-6
10.1007/BF02647501
10.1080/14786437008238426
10.1007/s10704-012-9757-4
10.1016/j.jmps.2003.11.002
10.1016/j.jmps.2012.02.006
10.1007/s10704-016-0142-6
10.1016/S0022-5096(01)00103-X
10.1016/0001-6160(84)90213-X
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Nov/Dec 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Nov/Dec 2021
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.euromechsol.2021.104329
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2021_104329
S0997753821000991
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-5675a04e6903537ea99817f231d0b2ab998e399642a2813e50b48141f1823c293
IEDL.DBID .~1
ISSN 0997-7538
IngestDate Mon Jul 14 07:26:40 EDT 2025
Tue Jul 01 01:55:23 EDT 2025
Thu Apr 24 23:20:21 EDT 2025
Fri Feb 23 02:42:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Strain gradient plasticity
Void
Finite strain
Size effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-5675a04e6903537ea99817f231d0b2ab998e399642a2813e50b48141f1823c293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6779-8924
PQID 2573516864
PQPubID 2045479
ParticipantIDs proquest_journals_2573516864
crossref_primary_10_1016_j_euromechsol_2021_104329
crossref_citationtrail_10_1016_j_euromechsol_2021_104329
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104329
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November-December 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2021
Publisher Elsevier Masson SAS
Elsevier BV
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier BV
References Swadener, George, Pharr (b43) 2002; 50
Tvergaard (b50) 2012; 49
Niordson, Tvergaard (b38) 2019; 123
Pardoen, Hutchinson (b40) 2000; 48
Legarth, Tvergaard (b23) 2018; 85
Mu, Zhang, Hutchinson, Meng (b29) 2017; 32
Dahl, Nielsen, Tvergaard (b9) 2012; 79
Holte, Niordson, Nielsen, Tvergaard (b18) 2019; 75
Barsoum, Faleskog (b3) 2007; 44
Fleck, Willis (b14) 2009; 57
Ma, Clarke (b25) 1995; 10
Benzerga, Besson, Pineau (b4) 1999
Stölken, Evans (b42) 1998; 46
Cowie, Azrin, Olson (b6) 1989; 20
McMeeking, Rice (b27) 1975; 11
Nielsen, Tvergaard (b34) 2011; 48
Scheyvaerts (b41) 2009
Fleck, Hutchinson (b10) 1986; 407
Benzerga, Leblond, Needleman, Tvergaard (b5) 2016; 201
Nahshon, Hutchinson (b30) 2008; 27
Holte, Srivastava, Martínez-Pañeda, Niordson, Nielsen (b19) 2021; 88
Fleck, Willis (b13) 2009; 57
Tvergaard, Needleman (b51) 1984; 32
McElhaney, Vlassak, Nix (b26) 1997; 13
Nielsen, Tvergaard (b33) 2010; 58
Tvergaard (b49) 2009; 158
Ashby (b1) 1970; 21
Gurson (b17) 1977; 99
Kim, Gao, Srivatsan (b20) 2004; 71
Leblond, Mottet (b22) 2008; 336
Gudmundson (b16) 2004; 52
Zhang, Thaulow, Ødegård (b52) 2000; 67
Nix, Gao (b39) 1998; 46
Tvergaard (b46) 1976; 24
Mu, Chen, Meng (b28) 2014; 4
Fleck, Hutchinson, Tvergaard (b11) 1989; 37
Liu, Qiu, Huang, Hwang, Li, Liu (b24) 2003; 51
Thomason (b45) 1990
Koplik, Needleman (b21) 1988; 24
Niordson, Legarth (b37) 2010; 58
Dæhli, Morin, Bœrvik, Hopperstad (b7) 2018; 190
Nielsen, Dahl, Tvergaard (b31) 2012; 177
Tvergaard (b48) 2008; 50
Tvergaard (b47) 1989
Garrison, Moody (b15) 1987; 48
Tekoğlu, Leblond, Pardoen (b44) 2012; 60
Fleck, Muller, Ashby, Hutchinson (b12) 1994; 42
Niordson, Hutchinson (b36) 2011; 6
Niordson (b35) 2008; 27
Barsoum, Faleskog (b2) 2007; 44
Dahl, Nielsen, Tvergaard (b8) 2012; 79
Nielsen, Niordson (b32) 2019; 160
Kim (10.1016/j.euromechsol.2021.104329_b20) 2004; 71
Zhang (10.1016/j.euromechsol.2021.104329_b52) 2000; 67
Tvergaard (10.1016/j.euromechsol.2021.104329_b49) 2009; 158
Leblond (10.1016/j.euromechsol.2021.104329_b22) 2008; 336
Fleck (10.1016/j.euromechsol.2021.104329_b13) 2009; 57
Barsoum (10.1016/j.euromechsol.2021.104329_b3) 2007; 44
Nielsen (10.1016/j.euromechsol.2021.104329_b31) 2012; 177
Ashby (10.1016/j.euromechsol.2021.104329_b1) 1970; 21
Niordson (10.1016/j.euromechsol.2021.104329_b35) 2008; 27
Liu (10.1016/j.euromechsol.2021.104329_b24) 2003; 51
McMeeking (10.1016/j.euromechsol.2021.104329_b27) 1975; 11
Nielsen (10.1016/j.euromechsol.2021.104329_b34) 2011; 48
Dahl (10.1016/j.euromechsol.2021.104329_b9) 2012; 79
Mu (10.1016/j.euromechsol.2021.104329_b29) 2017; 32
Tekoğlu (10.1016/j.euromechsol.2021.104329_b44) 2012; 60
Nahshon (10.1016/j.euromechsol.2021.104329_b30) 2008; 27
Dahl (10.1016/j.euromechsol.2021.104329_b8) 2012; 79
Fleck (10.1016/j.euromechsol.2021.104329_b14) 2009; 57
Tvergaard (10.1016/j.euromechsol.2021.104329_b50) 2012; 49
Barsoum (10.1016/j.euromechsol.2021.104329_b2) 2007; 44
Pardoen (10.1016/j.euromechsol.2021.104329_b40) 2000; 48
Fleck (10.1016/j.euromechsol.2021.104329_b10) 1986; 407
Ma (10.1016/j.euromechsol.2021.104329_b25) 1995; 10
Fleck (10.1016/j.euromechsol.2021.104329_b11) 1989; 37
Tvergaard (10.1016/j.euromechsol.2021.104329_b46) 1976; 24
McElhaney (10.1016/j.euromechsol.2021.104329_b26) 1997; 13
Thomason (10.1016/j.euromechsol.2021.104329_b45) 1990
Nix (10.1016/j.euromechsol.2021.104329_b39) 1998; 46
Niordson (10.1016/j.euromechsol.2021.104329_b38) 2019; 123
Tvergaard (10.1016/j.euromechsol.2021.104329_b47) 1989
Scheyvaerts (10.1016/j.euromechsol.2021.104329_b41) 2009
Nielsen (10.1016/j.euromechsol.2021.104329_b33) 2010; 58
Fleck (10.1016/j.euromechsol.2021.104329_b12) 1994; 42
Tvergaard (10.1016/j.euromechsol.2021.104329_b48) 2008; 50
Garrison (10.1016/j.euromechsol.2021.104329_b15) 1987; 48
Benzerga (10.1016/j.euromechsol.2021.104329_b5) 2016; 201
Tvergaard (10.1016/j.euromechsol.2021.104329_b51) 1984; 32
Holte (10.1016/j.euromechsol.2021.104329_b18) 2019; 75
Mu (10.1016/j.euromechsol.2021.104329_b28) 2014; 4
Cowie (10.1016/j.euromechsol.2021.104329_b6) 1989; 20
Swadener (10.1016/j.euromechsol.2021.104329_b43) 2002; 50
Niordson (10.1016/j.euromechsol.2021.104329_b37) 2010; 58
Nielsen (10.1016/j.euromechsol.2021.104329_b32) 2019; 160
Dæhli (10.1016/j.euromechsol.2021.104329_b7) 2018; 190
Gurson (10.1016/j.euromechsol.2021.104329_b17) 1977; 99
Gudmundson (10.1016/j.euromechsol.2021.104329_b16) 2004; 52
Niordson (10.1016/j.euromechsol.2021.104329_b36) 2011; 6
Stölken (10.1016/j.euromechsol.2021.104329_b42) 1998; 46
Benzerga (10.1016/j.euromechsol.2021.104329_b4) 1999
Holte (10.1016/j.euromechsol.2021.104329_b19) 2021; 88
Legarth (10.1016/j.euromechsol.2021.104329_b23) 2018; 85
Koplik (10.1016/j.euromechsol.2021.104329_b21) 1988; 24
References_xml – volume: 58
  start-page: 1243
  year: 2010
  end-page: 1252
  ident: b33
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J. Mech. Phys. Solids
– volume: 190
  start-page: 299
  year: 2018
  end-page: 318
  ident: b7
  article-title: A lode-dependent gurson model motivated by unit cell analyses
  publication-title: Eng. Frac. Mech.
– volume: 6
  start-page: 395
  year: 2011
  end-page: 416
  ident: b36
  article-title: Basic strain gradient plasticity theories with application to constrained film deformation
  publication-title: J. Mech. Mater. Struct.
– volume: 4
  start-page: 129
  year: 2014
  end-page: 133
  ident: b28
  article-title: Thickness dependence of flow stress of cu thin films in confined shear plastic flow
  publication-title: MRS Commun.
– volume: 24
  start-page: 291
  year: 1976
  end-page: 304
  ident: b46
  article-title: Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells
  publication-title: J. Mech. Phys. Solids
– volume: 11
  start-page: 601
  year: 1975
  end-page: 616
  ident: b27
  article-title: Finite-element formulations for problems of large elastic-plastic deformation
  publication-title: Int. J. Solids Struct.
– volume: 75
  start-page: 472
  year: 2019
  end-page: 484
  ident: b18
  article-title: Investigation of a gradient enriched Gurson–Tvergaard model for porous strain hardening materials
  publication-title: Eur. J. Mech. A Solids
– volume: 57
  start-page: 161
  year: 2009
  end-page: 177
  ident: b14
  article-title: A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier
  publication-title: J. Mech. Phys. Solids
– year: 1990
  ident: b45
  article-title: Ductile Fracture of Metals
– volume: 48
  start-page: 2467
  year: 2000
  end-page: 2512
  ident: b40
  article-title: An extended model for void growth and coalescence
  publication-title: J. Mech. Phys. Solids
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: b17
  article-title: Continuum theory of ductile rupture by void nucleation and growth - part I: yield criteria and flow rules for porous ductile madia
  publication-title: ASME J. Eng. Mater. Technol.
– volume: 58
  start-page: 542
  year: 2010
  end-page: 557
  ident: b37
  article-title: Strain gradient effects on cyclic plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 71
  start-page: 379
  year: 2004
  end-page: 400
  ident: b20
  article-title: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity
  publication-title: Eng. Fract. Mech.
– volume: 50
  start-page: 681
  year: 2002
  end-page: 694
  ident: b43
  article-title: The correlation of the indentation size effect measured with indentes of various shapes
  publication-title: J. Mech. Phys. Solids
– volume: 48
  start-page: 1255
  year: 2011
  end-page: 1267
  ident: b34
  article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing
  publication-title: Int. J. Solids Struct.
– volume: 123
  start-page: 222
  year: 2019
  end-page: 233
  ident: b38
  article-title: A homogenized model for size-effects in porous metals
  publication-title: J. Mech. Phys. Solids
– volume: 27
  start-page: 222
  year: 2008
  end-page: 233
  ident: b35
  article-title: Void growth to coalescence in a non-local material
  publication-title: Eur. J. Mech. A Solids
– volume: 49
  start-page: 3047
  year: 2012
  end-page: 3054
  ident: b50
  article-title: Effect of stress-state and spacing on voids in a shear-field
  publication-title: Int. J. Solids Struct.
– volume: 32
  start-page: 157
  year: 1984
  end-page: 169
  ident: b51
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
– volume: 79
  year: 2012
  ident: b9
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J. Appl. Mech.
– year: 2009
  ident: b41
  article-title: Multiscale modelling of ductile fracture in heterogeneous metallic alloys
– volume: 44
  start-page: 1768
  year: 2007
  end-page: 1786
  ident: b3
  article-title: Rupture mechanisms in combined tension and shear—Experiments
  publication-title: Int. J. Solids Struct.
– volume: 27
  start-page: 1
  year: 2008
  end-page: 17
  ident: b30
  article-title: Modification of the Gurson model for shear
  publication-title: Euro. J. Mech. A Solids
– volume: 67
  start-page: 155
  year: 2000
  end-page: 168
  ident: b52
  article-title: A complete Gurson model approach for ductile fracture
  publication-title: Eng. Fract. Mech.
– volume: 51
  start-page: 1171
  year: 2003
  end-page: 1187
  ident: b24
  article-title: The size effect on void growth in ductile materials
  publication-title: J. Mech. Phys. Solids
– volume: 158
  start-page: 41
  year: 2009
  end-page: 49
  ident: b49
  article-title: Behaviour of voids in a shear field
  publication-title: Int. J. Fract.
– volume: 50
  start-page: 1459
  year: 2008
  end-page: 1465
  ident: b48
  article-title: Shear deformation of voids with contact modelled by internal pressure
  publication-title: Int. J. Mech. Sci.
– volume: 85
  year: 2018
  ident: b23
  article-title: Effects of plastic anisotropy and void shape on full three-dimensional void growth
  publication-title: J. Appl. Mech.
– volume: 20
  start-page: 143
  year: 1989
  end-page: 153
  ident: b6
  article-title: Microvoid formation during shear deformation of ultrahigh strength steels
  publication-title: Metall. Trans. A
– volume: 32
  start-page: 1421
  year: 2017
  end-page: 1431
  ident: b29
  article-title: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol
  publication-title: J. Mater. Res.
– volume: 88
  start-page: 021010
  year: 2021
  ident: b19
  article-title: Interaction of void spacing and material size effect on inter-void flow localisation
  publication-title: J. Appl. Mech.
– volume: 201
  start-page: 29
  year: 2016
  end-page: 80
  ident: b5
  article-title: Ductile failure modeling
  publication-title: Int. J. Fract.
– volume: 60
  start-page: 1363
  year: 2012
  end-page: 1381
  ident: b44
  article-title: A criterion for the onset of void coalescence under combined tension and shear
  publication-title: J. Mech. Phys. Solids
– volume: 52
  start-page: 1379
  year: 2004
  end-page: 1406
  ident: b16
  article-title: A unified treatment of strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 44
  start-page: 5481
  year: 2007
  end-page: 5498
  ident: b2
  article-title: Rupture mechanisms in combined tension and shear-Micromechanics
  publication-title: Int. J. Solids Struct.
– volume: 21
  start-page: 399
  year: 1970
  end-page: 424
  ident: b1
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Phil. Mag.: J. Theoret. Exp. Appl. Phys.
– volume: 13
  start-page: 1300
  year: 1997
  end-page: 1306
  ident: b26
  article-title: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments
  publication-title: Int. J. Mater. Res.
– volume: 336
  start-page: 176
  year: 2008
  end-page: 189
  ident: b22
  article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials
  publication-title: C. R. Mec.
– volume: 10
  start-page: 853
  year: 1995
  end-page: 863
  ident: b25
  article-title: Size dependent hardness of silver single crystals
  publication-title: J. Mater. Res.
– volume: 407
  start-page: 435
  year: 1986
  end-page: 458
  ident: b10
  article-title: Void growth in shear
  publication-title: Proc. R. Soc. A
– volume: 160
  start-page: 389
  year: 2019
  end-page: 398
  ident: b32
  article-title: A finite strain FE-implementation of the fleck-willis gradient theory: Visco-plastic versus rate-independent
  publication-title: Eur. J. Mech. A Solids
– volume: 177
  start-page: 97
  year: 2012
  end-page: 108
  ident: b31
  article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D
  publication-title: Int. J. Fract.
– volume: 46
  start-page: 411
  year: 1998
  end-page: 425
  ident: b39
  article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 24
  start-page: 835
  year: 1988
  end-page: 853
  ident: b21
  article-title: Void growth and coalescence in porous plastic solids
  publication-title: Int. J. Solids Struct.
– volume: 37
  start-page: 515
  year: 1989
  end-page: 540
  ident: b11
  article-title: Softening by void nucleation and growth in tension and shear
  publication-title: J. Mech. Phys. Solids
– volume: 79
  year: 2012
  ident: b8
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J. Appl. Mech.
– volume: 42
  start-page: 475
  year: 1994
  end-page: 487
  ident: b12
  article-title: Strain gradient plasticity: theory and experiment
  publication-title: Acta Metall. Mater.
– volume: 48
  start-page: 1035
  year: 1987
  end-page: 1074
  ident: b15
  article-title: Ductile fracture
  publication-title: J. Phys. Chem. Solids
– year: 1999
  ident: b4
  article-title: Coalescence-controlled anisotropic ductile fracture
– volume: 46
  start-page: 5109
  year: 1998
  end-page: 5115
  ident: b42
  article-title: A microbend test method for measuring the plasticity length scale
  publication-title: Acta Mater.
– start-page: 83
  year: 1989
  end-page: 151
  ident: b47
  article-title: Material failure by void growth to coalescence
  publication-title: Advances in Applied Mechanics, Vol. 27
– volume: 57
  start-page: 1045
  year: 2009
  end-page: 1057
  ident: b13
  article-title: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier
  publication-title: J. Mech. Phys. Solids
– volume: 58
  start-page: 1243
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104329_b33
  article-title: Relations between a micro-mechanical model and a damage model for ductile failure in shear
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.06.006
– volume: 79
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104329_b8
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4005565
– start-page: 83
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104329_b47
  article-title: Material failure by void growth to coalescence
  doi: 10.1016/S0065-2156(08)70195-9
– volume: 27
  start-page: 222
  issue: 2
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104329_b35
  article-title: Void growth to coalescence in a non-local material
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2007.07.001
– volume: 13
  start-page: 1300
  issue: 5
  year: 1997
  ident: 10.1016/j.euromechsol.2021.104329_b26
  article-title: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments
  publication-title: Int. J. Mater. Res.
  doi: 10.1557/JMR.1998.0185
– volume: 48
  start-page: 1255
  issue: 9
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104329_b34
  article-title: Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2011.01.008
– volume: 4
  start-page: 129
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104329_b28
  article-title: Thickness dependence of flow stress of cu thin films in confined shear plastic flow
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2014.26
– volume: 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104329_b30
  article-title: Modification of the Gurson model for shear
  publication-title: Euro. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2007.08.002
– volume: 407
  start-page: 435
  issue: 1833
  year: 1986
  ident: 10.1016/j.euromechsol.2021.104329_b10
  article-title: Void growth in shear
  publication-title: Proc. R. Soc. A
– volume: 44
  start-page: 5481
  issue: 17
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104329_b2
  article-title: Rupture mechanisms in combined tension and shear-Micromechanics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2007.01.010
– volume: 57
  start-page: 161
  issue: 1
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104329_b14
  article-title: A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2008.09.010
– volume: 32
  start-page: 1421
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104329_b29
  article-title: Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.516
– volume: 10
  start-page: 853
  issue: 4
  year: 1995
  ident: 10.1016/j.euromechsol.2021.104329_b25
  article-title: Size dependent hardness of silver single crystals
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1995.0853
– volume: 67
  start-page: 155
  issue: 2
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104329_b52
  article-title: A complete Gurson model approach for ductile fracture
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(00)00055-2
– volume: 190
  start-page: 299
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104329_b7
  article-title: A lode-dependent gurson model motivated by unit cell analyses
  publication-title: Eng. Frac. Mech.
  doi: 10.1016/j.engfracmech.2017.12.023
– volume: 57
  start-page: 1045
  issue: 7
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104329_b13
  article-title: A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.03.007
– volume: 79
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104329_b9
  article-title: Effect of contact conditions on void coalescence at low stress triaxiality shearing
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4005565
– volume: 24
  start-page: 291
  issue: 5
  year: 1976
  ident: 10.1016/j.euromechsol.2021.104329_b46
  article-title: Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(76)90027-2
– volume: 48
  start-page: 1035
  issue: 11
  year: 1987
  ident: 10.1016/j.euromechsol.2021.104329_b15
  article-title: Ductile fracture
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(87)90118-1
– volume: 71
  start-page: 379
  issue: 3
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104329_b20
  article-title: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(03)00114-0
– volume: 158
  start-page: 41
  issue: 1
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104329_b49
  article-title: Behaviour of voids in a shear field
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-009-9364-1
– volume: 99
  start-page: 2
  year: 1977
  ident: 10.1016/j.euromechsol.2021.104329_b17
  article-title: Continuum theory of ductile rupture by void nucleation and growth - part I: yield criteria and flow rules for porous ductile madia
  publication-title: ASME J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– volume: 51
  start-page: 1171
  issue: 7
  year: 2003
  ident: 10.1016/j.euromechsol.2021.104329_b24
  article-title: The size effect on void growth in ductile materials
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(03)00037-1
– volume: 46
  start-page: 411
  year: 1998
  ident: 10.1016/j.euromechsol.2021.104329_b39
  article-title: Indentation size effects in crystalline materials: a law for strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(97)00086-0
– volume: 46
  start-page: 5109
  issue: 14
  year: 1998
  ident: 10.1016/j.euromechsol.2021.104329_b42
  article-title: A microbend test method for measuring the plasticity length scale
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00153-0
– volume: 24
  start-page: 835
  issue: 8
  year: 1988
  ident: 10.1016/j.euromechsol.2021.104329_b21
  article-title: Void growth and coalescence in porous plastic solids
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(88)90051-0
– volume: 58
  start-page: 542
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104329_b37
  article-title: Strain gradient effects on cyclic plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.01.007
– volume: 42
  start-page: 475
  issue: 2
  year: 1994
  ident: 10.1016/j.euromechsol.2021.104329_b12
  article-title: Strain gradient plasticity: theory and experiment
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90502-9
– volume: 6
  start-page: 395
  issue: 1
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104329_b36
  article-title: Basic strain gradient plasticity theories with application to constrained film deformation
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2011.6.395
– volume: 85
  issue: 5
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104329_b23
  article-title: Effects of plastic anisotropy and void shape on full three-dimensional void growth
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4039172
– year: 2009
  ident: 10.1016/j.euromechsol.2021.104329_b41
– volume: 11
  start-page: 601
  year: 1975
  ident: 10.1016/j.euromechsol.2021.104329_b27
  article-title: Finite-element formulations for problems of large elastic-plastic deformation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(75)90033-5
– volume: 160
  start-page: 389
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104329_b32
  article-title: A finite strain FE-implementation of the fleck-willis gradient theory: Visco-plastic versus rate-independent
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2019.02.010
– volume: 50
  start-page: 1459
  issue: 10–11
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104329_b48
  article-title: Shear deformation of voids with contact modelled by internal pressure
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2008.08.007
– volume: 336
  start-page: 176
  issue: 1–2
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104329_b22
  article-title: A theoretical approach of strain localization within thin planar bands in porous ductile materials
  publication-title: C. R. Mec.
  doi: 10.1016/j.crme.2007.11.008
– volume: 44
  start-page: 1768
  issue: 6
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104329_b3
  article-title: Rupture mechanisms in combined tension and shear—Experiments
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2006.09.031
– volume: 49
  start-page: 3047
  issue: 22
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104329_b50
  article-title: Effect of stress-state and spacing on voids in a shear-field
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.06.008
– volume: 48
  start-page: 2467
  issue: 12
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104329_b40
  article-title: An extended model for void growth and coalescence
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(00)00019-3
– volume: 88
  start-page: 021010
  issue: 2
  year: 2021
  ident: 10.1016/j.euromechsol.2021.104329_b19
  article-title: Interaction of void spacing and material size effect on inter-void flow localisation
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4049022
– year: 1990
  ident: 10.1016/j.euromechsol.2021.104329_b45
– volume: 75
  start-page: 472
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104329_b18
  article-title: Investigation of a gradient enriched Gurson–Tvergaard model for porous strain hardening materials
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2019.03.001
– volume: 123
  start-page: 222
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104329_b38
  article-title: A homogenized model for size-effects in porous metals
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.09.004
– volume: 37
  start-page: 515
  issue: 4
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104329_b11
  article-title: Softening by void nucleation and growth in tension and shear
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(89)90027-6
– volume: 20
  start-page: 143
  issue: 1
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104329_b6
  article-title: Microvoid formation during shear deformation of ultrahigh strength steels
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02647501
– year: 1999
  ident: 10.1016/j.euromechsol.2021.104329_b4
– volume: 21
  start-page: 399
  issue: 170
  year: 1970
  ident: 10.1016/j.euromechsol.2021.104329_b1
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Phil. Mag.: J. Theoret. Exp. Appl. Phys.
  doi: 10.1080/14786437008238426
– volume: 177
  start-page: 97
  issue: 2
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104329_b31
  article-title: Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-012-9757-4
– volume: 52
  start-page: 1379
  issue: 6
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104329_b16
  article-title: A unified treatment of strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2003.11.002
– volume: 60
  start-page: 1363
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104329_b44
  article-title: A criterion for the onset of void coalescence under combined tension and shear
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.02.006
– volume: 201
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104329_b5
  article-title: Ductile failure modeling
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-016-0142-6
– volume: 50
  start-page: 681
  year: 2002
  ident: 10.1016/j.euromechsol.2021.104329_b43
  article-title: The correlation of the indentation size effect measured with indentes of various shapes
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00103-X
– volume: 32
  start-page: 157
  issue: 1
  year: 1984
  ident: 10.1016/j.euromechsol.2021.104329_b51
  article-title: Analysis of the cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(84)90213-X
SSID ssj0002021
Score 2.3346758
Snippet Void interaction, leading to coalescence, is the mechanism leading to ductile failure under intense shearing. Published unit cell model studies have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104329
SubjectTerms Bearing strength
Coalescing
Collapse
Deformation effects
Elongation
Finite strain
Ligaments
Load carrying capacity
Localization
Microcracks
Plastic deformation
Plastic flow
Rotation
Shearing
Size effect
Size effects
Strain gradient plasticity
Strain hardening
Strengthening
Unit cell
Void
Voids
Title Size effect on void coalescence under intense shear
URI https://dx.doi.org/10.1016/j.euromechsol.2021.104329
https://www.proquest.com/docview/2573516864
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnjxW5zOEcFrt7ZJlg68jOGYirvMwW4hbROsaDu26cGDf7svaepUPAgeU_JK-eXlvd-j7wOhC6DAMqVEe1Jp6dFeEHuxDJiXslSFWjPCeqbe-W7cHU3pzYzNamhQ1cKYtEpn-0ubbq21e9JxaHbmWdaZmJpPINtRGFieYyvYKTda3n5fp3lAcG-n5pmuo2b3Jjpf53iZ_hfPKnmAY26bjeaPJ7Fs81cf9cNaWxc03EXbjjvifvl5e6im8n2043gkdrd0eYDIJHtTuMzUwEWOX4ssxUkhy9ZNicKmcGyBM5u9rvDSDLU-RNPh1f1g5LnhCF5CaG_lMWD60qcKolvCCFcS4qaAa6BrqR-HMoalAvIB4YUMo4Ao5sc0CmigIaAgCTj5I1TPi1wdI6wZj3UqaQqhIVVcRjql0ucy1CGTkvMGiio4ROI6h5sBFk-iShF7FF-QFAZJUSLZQOGn6Lxsn_EXocsKc_FNFwSY-b-IN6tzEu5CLgVYJsKCbtSlJ_97-ynaMquyHLGJ6qvFizoDXrKKW1bxWmijf307Gn8Awb7ilw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9jgnrxW5xOjeC1W9skawdeZDimbrtsg91C2iRY0XZs04MH_3Zf2tSpeBA8ps0r5eXl5fcj7wOhS4DAQlKiHaG0cGjbi5xIeMyRTCpfa0ZY2-Q7D4at3oTeTdm0gjplLowJq7S-v_Dpube2T5pWm81ZkjRHJucTwHboeznOAQq0Rs0QjLrxvorzAHaft80zZUfN9HV0sQryMgUwnlX8AOvcMBPNlSfJ4eavh9QPd52fQd0dtGXBI74u_m8XVVS6h7YtkMR2my72ERklbwoXoRo4S_FrlkgcZ6Ko3RQrbDLH5jjJw9cVXpiu1gdo0r0Zd3qO7Y7gxIS2lw4DqC9cqoDeEkYCJYA4eYEGvCbdyBcRDBWgD-AXwg89opgb0dCjngZGQWI45Q9RNc1SdYSwZkGkpaASuCFVgQi1pMINhK99JkQQ1FBYqoPHtnS46WDxxMsYsUf-RZPcaJIXmqwh_1N0VtTP-IvQValz_s0YOPj5v4jXy3XidkcuOLgmwrxW2KLH__v6OdrojQd93r8d3p-gTfOmyE2so-py_qJOAaQso7PcCD8ABkjkJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+effect+on+void+coalescence+under+intense+shear&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Xiao%2C+Y&rft.au=Nielsen%2C+KL&rft.au=Niordson%2C+CF&rft.date=2021-11-01&rft.pub=Elsevier+BV&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=90&rft.spage=1&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104329&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon