Online Decoding of Hidden Markov Models for Gait Event Detection Using Foot-Mounted Gyroscopes

In this paper, we present an approach to the online implementation of a gait event detector based on machine learning algorithms. Gait events were detected using a uniaxial gyro that measured the foot instep angular velocity in the sagittal plane to feed a four-state left-right hidden Markov model (...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 18; no. 4; pp. 1122 - 1130
Main Authors Mannini, Andrea, Genovese, Vincenzo, Sabatin, Angelo Maria
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present an approach to the online implementation of a gait event detector based on machine learning algorithms. Gait events were detected using a uniaxial gyro that measured the foot instep angular velocity in the sagittal plane to feed a four-state left-right hidden Markov model (HMM). The short-time Viterbi algorithm was used to overcome the limitation of the standard Viterbi algorithm, which does not allow the online decoding of hidden state sequences. Supervised learning of the HMM structure and validation with the leave-one-subject-out validation method were performed using treadmill gait reference data from an optical motion capture system. The four gait events were foot strike, flat foot (FF), heel off (HO), and toe off. The accuracy ranged, on average, from 45 ms (early detection, FF) to 35 ms (late detection, HO); the latency of detection was less than 100 ms for all gait events but the HO, where the probability that it was greater than 100 ms was 25%. Overground walking tests of the HMM-based gait event detector were also successfully performed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2013.2293887