A novel method for error analysis in radiation thermometry with application to industrial furnaces

Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry tech...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 190; p. 110646
Main Authors Martinez, Iñigo, Otamendi, Urtzi, Olaizola, Igor G., Solsona, Roger, Maiza, Mikel, Viles, Elisabeth, Fernandez, Arturo, Arzua, Ignacio
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 28.02.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace’s operation in real-time. To validate the proposed system’s functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems. [Display omitted] •A methodology for budgeting major sources of error during radiation thermometry measurements.•Deep learning-based surrogate models are proposed for fast parameter inference.•An end-to-end computing architecture for thermal imagery acquisition & analysis.•Applied to a real-world application case in a petrochemical plant.
AbstractList Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace’s operation in real-time. To validate the proposed system’s functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems. [Display omitted] •A methodology for budgeting major sources of error during radiation thermometry measurements.•Deep learning-based surrogate models are proposed for fast parameter inference.•An end-to-end computing architecture for thermal imagery acquisition & analysis.•Applied to a real-world application case in a petrochemical plant.
Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace's operation in real-time. To validate the proposed system's functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems.
ArticleNumber 110646
Author Viles, Elisabeth
Maiza, Mikel
Arzua, Ignacio
Solsona, Roger
Martinez, Iñigo
Olaizola, Igor G.
Otamendi, Urtzi
Fernandez, Arturo
Author_xml – sequence: 1
  givenname: Iñigo
  orcidid: 0000-0001-8174-9272
  surname: Martinez
  fullname: Martinez, Iñigo
  email: imartinez@vicomtech.org
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 2
  givenname: Urtzi
  orcidid: 0000-0002-4233-4258
  surname: Otamendi
  fullname: Otamendi, Urtzi
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 3
  givenname: Igor G.
  orcidid: 0000-0002-9965-2038
  surname: Olaizola
  fullname: Olaizola, Igor G.
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 4
  givenname: Roger
  surname: Solsona
  fullname: Solsona, Roger
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 5
  givenname: Mikel
  orcidid: 0000-0002-6321-8053
  surname: Maiza
  fullname: Maiza, Mikel
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 6
  givenname: Elisabeth
  orcidid: 0000-0002-5080-482X
  surname: Viles
  fullname: Viles, Elisabeth
  organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain
– sequence: 7
  givenname: Arturo
  surname: Fernandez
  fullname: Fernandez, Arturo
  organization: Petronor Innovation, Muskiz 48550, Spain
– sequence: 8
  givenname: Ignacio
  surname: Arzua
  fullname: Arzua, Ignacio
  organization: Petróleos del Norte, Muskiz 48550, Spain
BookMark eNqNkMFq3DAQhkVJoZu076CSs7caSZbtUwhLmwQCuaTQm5CtMavFlrYjbcq-fb3dHEpOucwc5vt_hu-SXcQUkbGvINYgwHzbrWd0-UA4YyxrKSSsAYTR5gNbQduoSoP8dcFWQhpVSanhE7vMeSeEMKozK9bf8phecOIzlm3yfEzEkWiZLrrpmEPmIXJyPrgSUuRlizSnBaYj_xPKlrv9fgrD6zEtsD_kQsFNfDxQdAPmz-zj6KaMX173Ffv54_vz5r56fLp72Nw-VoPSXal06-pm9NJ0BrwQbTu6sUXlsXFCjaBk22vooXO1Rok91rLxoJpaIPTGSK2u2PW5d0_p9wFzsbt0emHKVhoNnapVLRfq5kwNlHImHO0Qyr_3C7kwWRD2JNbu7H9i7UmsPYtdGro3DXsKs6Pju7KbcxYXES8ByeYhYBzQB8KhWJ_CO1r-AoEmnpU
CitedBy_id crossref_primary_10_3390_pr10122528
crossref_primary_10_1016_j_infrared_2025_105747
crossref_primary_10_1364_OE_472493
crossref_primary_10_1016_j_measurement_2022_111762
crossref_primary_10_3390_s22166143
crossref_primary_10_1016_j_measurement_2023_112804
crossref_primary_10_1016_j_measurement_2023_114041
Cites_doi 10.1016/S0308-0161(99)00090-3
10.1016/0017-9310(73)90248-2
10.1088/0957-0233/27/9/094002
10.1007/s10765-008-0385-1
10.1007/BF01438976
10.1080/13682199.2000.11784341
10.1111/0272-4332.00040
10.1016/j.infrared.2013.07.005
10.1063/1.2898138
10.1016/j.crhy.2010.05.001
10.1080/10739149.2016.1262396
10.1364/AO.33.001950
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 28, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 28, 2022
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.110646
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_110646
S0263224121015141
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
WUQ
XPP
EFKBS
ID FETCH-LOGICAL-c349t-48a57fd26961d0088faf8e3de7a03f1328b41b19a54e2ebe527d13750e1b66243
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Aug 13 09:15:29 EDT 2025
Tue Jul 01 04:38:04 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Fri Feb 23 02:40:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Monitoring system
Deep learning
Petrochemical industry
Radiation thermometry
Error analysis
Surrogate model
Infrared imagery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-48a57fd26961d0088faf8e3de7a03f1328b41b19a54e2ebe527d13750e1b66243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9965-2038
0000-0002-6321-8053
0000-0001-8174-9272
0000-0002-5080-482X
0000-0002-4233-4258
PQID 2641935352
PQPubID 2047460
ParticipantIDs proquest_journals_2641935352
crossref_citationtrail_10_1016_j_measurement_2021_110646
crossref_primary_10_1016_j_measurement_2021_110646
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_110646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-28
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Sabine Brueske, Kramer (b1) 2015
Maldague (b14) 1999; 57
M. Niffenegger (b10) 2002
Lopez, Huot (b4) 2019
Irani (b18) 2004
Moss, Barrien, Walczynski (b2) 2000; 77
de Arrieta, Echániz, Fuente, Campillo-Robles, Igartua, López (b33) 2020; 57
Saunders (b5) 2007
DeWitt, Nutter (b7) 1988
(b6) 2021
Weigle (b13) 2005
Neuer (b16) 1995; 16
Kirkup, Frenkel (b21) 2006
Pollock (b8) 1991
Dem’yanenko, Esaev, Knyazev, Kulipanov, Vinokurov (b29) 2008; 92
Edwards, Balakrishnan (b17) 1973; 16
Oda, Yoneyama, Sasaki, Sano, Kurashina, Hosako, Sekine, Sudoh, Irie (b28) 2008
Struß (b15) 2003
(b20) 2020
Svantner, Vacíková, Honner (b12) 2013; 61
Saunders, Fischer, Sadli, Battuello, Park, Yuan, Yoon, Li, Van Der Ham, Sakuma (b22) 2008; 29
Kingma, Ba (b31) 2014
Corwin, Rodenburgh (b23) 1994; 33
Patel, Pandey (b11) 2016; 45
Oda (b19) 2010; 11
Willmott, Lowe, Broughton, White, Machin (b26) 2016; 27
(b30) 2021
Agarap (b32) 2018
Pregowski, Goleniewski, Komosa, Korytkowski, Zwolenik (b3) 2009
F.E. Liebmann, M.A.C. Carrasco, Infrared uncertainty budget determination in an industrial application, in: Proc. of, 2008.
Machin, Chu (b27) 2000; 48
Shaddix (b9) 1999
Saltelli (b25) 2002; 22
Struß (10.1016/j.measurement.2021.110646_b15) 2003
Neuer (10.1016/j.measurement.2021.110646_b16) 1995; 16
Kingma (10.1016/j.measurement.2021.110646_b31) 2014
(10.1016/j.measurement.2021.110646_b6) 2021
Shaddix (10.1016/j.measurement.2021.110646_b9) 1999
Oda (10.1016/j.measurement.2021.110646_b28) 2008
Lopez (10.1016/j.measurement.2021.110646_b4) 2019
(10.1016/j.measurement.2021.110646_b30) 2021
(10.1016/j.measurement.2021.110646_b20) 2020
Moss (10.1016/j.measurement.2021.110646_b2) 2000; 77
Willmott (10.1016/j.measurement.2021.110646_b26) 2016; 27
Dem’yanenko (10.1016/j.measurement.2021.110646_b29) 2008; 92
Pollock (10.1016/j.measurement.2021.110646_b8) 1991
Oda (10.1016/j.measurement.2021.110646_b19) 2010; 11
Weigle (10.1016/j.measurement.2021.110646_b13) 2005
Saunders (10.1016/j.measurement.2021.110646_b22) 2008; 29
Kirkup (10.1016/j.measurement.2021.110646_b21) 2006
Saunders (10.1016/j.measurement.2021.110646_b5) 2007
Corwin (10.1016/j.measurement.2021.110646_b23) 1994; 33
de Arrieta (10.1016/j.measurement.2021.110646_b33) 2020; 57
10.1016/j.measurement.2021.110646_b24
Svantner (10.1016/j.measurement.2021.110646_b12) 2013; 61
Saltelli (10.1016/j.measurement.2021.110646_b25) 2002; 22
Patel (10.1016/j.measurement.2021.110646_b11) 2016; 45
Pregowski (10.1016/j.measurement.2021.110646_b3) 2009
M. Niffenegger (10.1016/j.measurement.2021.110646_b10) 2002
Sabine Brueske (10.1016/j.measurement.2021.110646_b1) 2015
DeWitt (10.1016/j.measurement.2021.110646_b7) 1988
Irani (10.1016/j.measurement.2021.110646_b18) 2004
Maldague (10.1016/j.measurement.2021.110646_b14) 1999; 57
Agarap (10.1016/j.measurement.2021.110646_b32) 2018
Edwards (10.1016/j.measurement.2021.110646_b17) 1973; 16
Machin (10.1016/j.measurement.2021.110646_b27) 2000; 48
References_xml – volume: 33
  start-page: 1950
  year: 1994
  end-page: 1957
  ident: b23
  article-title: Temperature error in radiation thermometry caused by emissivity and reflectance measurement error
  publication-title: Appl. Opt.
– start-page: 26
  year: 2019
  end-page: 32
  ident: b4
  article-title: Advanced signal processing applied to thermographic inspection of petrochemical furnaces
  publication-title: Thermosense: Thermal Infrared Applications XLI, Vol. 11004
– volume: 16
  start-page: 257
  year: 1995
  end-page: 265
  ident: b16
  article-title: Spectral and total emissivity measurements of highly emitting materials
  publication-title: Int. J. Thermophys.
– volume: 57
  start-page: 6 pp
  year: 1999
  ident: b14
  article-title: Pipe inspection by infrared thermography
  publication-title: Mater. Eval.
– year: 2018
  ident: b32
  article-title: Deep learning using rectified linear units (ReLU)
– year: 1991
  ident: b8
  article-title: Thermocouples: Theory and Properties
– year: 2020
  ident: b20
  article-title: ASTM E344-20, Terminology Relating to Thermometry and Hydrometry
– volume: 92
  year: 2008
  ident: b29
  article-title: Imaging with a 90 frames/ s microbolometer focal plane array and high-power terahertz free electron laser
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 496
  year: 2010
  end-page: 509
  ident: b19
  article-title: Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging
  publication-title: C. R. Phys.
– year: 2007
  ident: b5
  article-title: Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry, Vol. 78
– year: 2015
  ident: b1
  article-title: Bandwidth study on energy use and potential energy savings opportunities in U.S. petroleum refining
– volume: 45
  start-page: 366
  year: 2016
  end-page: 381
  ident: b11
  article-title: Automated instrumentation for high-temperature seebeck coefficient measurements
  publication-title: Instrum. Sci. Technol.
– start-page: 69402Y
  year: 2008
  ident: b28
  article-title: Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays
  publication-title: Infrared Technology and Applications XXXIV, Vol. 6940
– volume: 27
  year: 2016
  ident: b26
  article-title: Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory
  publication-title: Meas. Sci. Technol.
– year: 2021
  ident: b30
  article-title: Fti-eb borescope
– volume: 57
  year: 2020
  ident: b33
  article-title: Updated measurement method and uncertainty budget for direct emissivity measurements at the university of the basque country
  publication-title: Metrologia
– year: 2002
  ident: b10
  article-title: The Change of the Seebeck Coefficient Due to Neutron Irradiation and Thermal Fatigue of Nuclear Reactor Pressure Vessel Steel and its Application to the Monitoring of Material Degradation
– volume: 22
  start-page: 579
  year: 2002
  end-page: 590
  ident: b25
  article-title: Sensitivity analysis for importance assessment
  publication-title: Risk Anal.
– volume: 16
  start-page: 25
  year: 1973
  end-page: 40
  ident: b17
  article-title: Thermal radiation by combustion gases
  publication-title: Int. J. Heat Mass Transfer
– reference: F.E. Liebmann, M.A.C. Carrasco, Infrared uncertainty budget determination in an industrial application, in: Proc. of, 2008.
– start-page: 131
  year: 2009
  end-page: 141
  ident: b3
  article-title: Heating medium absorption and emission as factors in thermographic investigations of petrochemical furnaces
  publication-title: Thermosense XXXI, Vol. 7299
– start-page: 221
  year: 2004
  end-page: 226
  ident: b18
  article-title: Furnace wall-tube monitoring with a dual-band portable imaging radiometer
  publication-title: Thermosense XXVI, Vol. 5405
– volume: 77
  start-page: 105
  year: 2000
  end-page: 112
  ident: b2
  article-title: Life management of refinery furnace tubing
  publication-title: Int. J. Press. Vessels Pip.
– year: 2003
  ident: b15
  article-title: Transfer radiation thermometer covering the temperature range from -50
– year: 1988
  ident: b7
  article-title: Theory and Practice of Radiation Thermometry
– start-page: 100
  year: 2005
  end-page: 108
  ident: b13
  article-title: Applications of infrared thermography for petrochemical process heaters
  publication-title: Thermosense XXVII, Vol. 5782
– year: 2021
  ident: b6
  article-title: Long-term overheat
– year: 2014
  ident: b31
  article-title: Adam: A method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 29
  start-page: 1066
  year: 2008
  end-page: 1083
  ident: b22
  article-title: Uncertainty budgets for calibration of radiation thermometers below the silver point
  publication-title: Int. J. Thermophys.
– year: 2006
  ident: b21
  article-title: An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement)
– year: 1999
  ident: b9
  article-title: Correcting thermocouple measurements for radiation loss: A critical review
– volume: 61
  start-page: 20
  year: 2013
  end-page: 26
  ident: b12
  article-title: Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis
  publication-title: Infrared Phys. Technol.
– volume: 48
  start-page: 15
  year: 2000
  end-page: 22
  ident: b27
  article-title: High-quality blackbody sources for infrared thermometry and thermography between- 40 and 1000
  publication-title: J. Imaging Sci.
– volume: 77
  start-page: 105
  issue: 2
  year: 2000
  ident: 10.1016/j.measurement.2021.110646_b2
  article-title: Life management of refinery furnace tubing
  publication-title: Int. J. Press. Vessels Pip.
  doi: 10.1016/S0308-0161(99)00090-3
– year: 1991
  ident: 10.1016/j.measurement.2021.110646_b8
– start-page: 26
  year: 2019
  ident: 10.1016/j.measurement.2021.110646_b4
  article-title: Advanced signal processing applied to thermographic inspection of petrochemical furnaces
– year: 2014
  ident: 10.1016/j.measurement.2021.110646_b31
  article-title: Adam: A method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 16
  start-page: 25
  issue: 1
  year: 1973
  ident: 10.1016/j.measurement.2021.110646_b17
  article-title: Thermal radiation by combustion gases
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(73)90248-2
– volume: 27
  issue: 9
  year: 2016
  ident: 10.1016/j.measurement.2021.110646_b26
  article-title: Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/9/094002
– volume: 29
  start-page: 1066
  issue: 3
  year: 2008
  ident: 10.1016/j.measurement.2021.110646_b22
  article-title: Uncertainty budgets for calibration of radiation thermometers below the silver point
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-008-0385-1
– year: 2002
  ident: 10.1016/j.measurement.2021.110646_b10
– start-page: 131
  year: 2009
  ident: 10.1016/j.measurement.2021.110646_b3
  article-title: Heating medium absorption and emission as factors in thermographic investigations of petrochemical furnaces
– volume: 16
  start-page: 257
  issue: 1
  year: 1995
  ident: 10.1016/j.measurement.2021.110646_b16
  article-title: Spectral and total emissivity measurements of highly emitting materials
  publication-title: Int. J. Thermophys.
  doi: 10.1007/BF01438976
– year: 2018
  ident: 10.1016/j.measurement.2021.110646_b32
– year: 2003
  ident: 10.1016/j.measurement.2021.110646_b15
– year: 2007
  ident: 10.1016/j.measurement.2021.110646_b5
– volume: 57
  issue: 4
  year: 2020
  ident: 10.1016/j.measurement.2021.110646_b33
  article-title: Updated measurement method and uncertainty budget for direct emissivity measurements at the university of the basque country
  publication-title: Metrologia
– year: 2021
  ident: 10.1016/j.measurement.2021.110646_b6
– start-page: 100
  year: 2005
  ident: 10.1016/j.measurement.2021.110646_b13
  article-title: Applications of infrared thermography for petrochemical process heaters
– year: 2006
  ident: 10.1016/j.measurement.2021.110646_b21
– volume: 48
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.measurement.2021.110646_b27
  article-title: High-quality blackbody sources for infrared thermometry and thermography between- 40 and 1000° C
  publication-title: J. Imaging Sci.
  doi: 10.1080/13682199.2000.11784341
– start-page: 69402Y
  year: 2008
  ident: 10.1016/j.measurement.2021.110646_b28
  article-title: Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays
– year: 2020
  ident: 10.1016/j.measurement.2021.110646_b20
– start-page: 221
  year: 2004
  ident: 10.1016/j.measurement.2021.110646_b18
  article-title: Furnace wall-tube monitoring with a dual-band portable imaging radiometer
– volume: 22
  start-page: 579
  issue: 3
  year: 2002
  ident: 10.1016/j.measurement.2021.110646_b25
  article-title: Sensitivity analysis for importance assessment
  publication-title: Risk Anal.
  doi: 10.1111/0272-4332.00040
– volume: 61
  start-page: 20
  year: 2013
  ident: 10.1016/j.measurement.2021.110646_b12
  article-title: Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2013.07.005
– volume: 57
  start-page: 6 pp
  issue: 9
  year: 1999
  ident: 10.1016/j.measurement.2021.110646_b14
  article-title: Pipe inspection by infrared thermography
  publication-title: Mater. Eval.
– year: 2021
  ident: 10.1016/j.measurement.2021.110646_b30
– volume: 92
  issue: 13
  year: 2008
  ident: 10.1016/j.measurement.2021.110646_b29
  article-title: Imaging with a 90 frames/ s microbolometer focal plane array and high-power terahertz free electron laser
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2898138
– volume: 11
  start-page: 496
  issue: 7–8
  year: 2010
  ident: 10.1016/j.measurement.2021.110646_b19
  article-title: Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2010.05.001
– year: 1999
  ident: 10.1016/j.measurement.2021.110646_b9
– ident: 10.1016/j.measurement.2021.110646_b24
– year: 1988
  ident: 10.1016/j.measurement.2021.110646_b7
– year: 2015
  ident: 10.1016/j.measurement.2021.110646_b1
– volume: 45
  start-page: 366
  issue: 4
  year: 2016
  ident: 10.1016/j.measurement.2021.110646_b11
  article-title: Automated instrumentation for high-temperature seebeck coefficient measurements
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2016.1262396
– volume: 33
  start-page: 1950
  issue: 10
  year: 1994
  ident: 10.1016/j.measurement.2021.110646_b23
  article-title: Temperature error in radiation thermometry caused by emissivity and reflectance measurement error
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.001950
SSID ssj0006396
Score 2.346934
Snippet Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110646
SubjectTerms Atmospheric models
Chemical industry
Continuous furnaces
Deep learning
Emissions
Error analysis
Error correction
Furnaces
Infrared imagery
Measurement
Monitoring
Monitoring system
Petrochemical industry
Petrochemicals
Radiation
Radiation thermometry
Real time operation
Surrogate model
Thermometers
Thermometry
Uncertainty
Title A novel method for error analysis in radiation thermometry with application to industrial furnaces
URI https://dx.doi.org/10.1016/j.measurement.2021.110646
https://www.proquest.com/docview/2641935352
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1EUfQgWhU_ywpeY5vNZrMBL6VYqqIXFbwtm2YDlTaRGAUv_nZn8mGreCh4ySHshjCzmfd2M_MG4Mz34kjKRDo-gqEjQiEcxB3hmDCIQ-W5pmuowPn2Tg4fxfWT_7QE_aYWhtIq69hfxfQyWtd3OrU1Oy_jcee-S1LjCEC4aUHYKovXhQholZ9_ztI8EIFldc7iOTR6DU5nOV7T2TkcbhW5S0nxkrjw3xj1K1qXEDTYgs2aO7Je9XrbsGTTFmzMKQq2YLXM6By97kDUY2n2bies6hHNkJwym-d4NbUOCRunLCdpAvINIyI4zXBw_sHocJbN_dpmRYaDmx4fLKH3wPiyC4-Dy4f-0KkbKjgjT4SFI5TxgyTmMpRujOCvEpMo68U2MF0vwX2pioQbuaHxheXoXZ8Hseshp7AuOpQLbw-W0yy1-8AU7ttGEdJFJACC25CUHk2oEiUjy2WcHIBqTKhHtdo4Nb2Y6Cat7FnPWV-T9XVl_QPg31NfKsmNRSZdNH7SP9aPRmhYZPpx41tdf8SvGrki0lvSvzn839OPYJ1T1URZCX8My0X-Zk-QyxRRu1ysbVjpXd0M774AHxz1aw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6k4usgWhWrVVfwGttsNtsNeJFiqdp6UaG3ZdNsoFJTSavgxd_uTB62igfBSw5hNywzu_N9s5kHwJnvRaGUsXR8BENHBEI4iDvCMUErCpTnmqahBOf-new-ipuBP1iCdpkLQ2GVhe3PbXpmrYs3jUKajZfRqHHfpFLjCEDotCBsUfL6ssDjS20Mzj_mcR4IwTK_aPEcGr4Kp_Mgr-f5RRz6itylqHhJZPh3kPphrjMM6mzBZkEe2WW-vm1YskkVNhZKClZhJQvpHE53ILxkyeTNjlneJJohO2U2TfFpikIkbJSwlGoTkHIYMcHnCQ5O3xndzrKFf9tsNsHBZZMPFtM60MDswmPn6qHddYqOCs7QE8HMEcr4rTjiMpBuhOivYhMr60W2ZZpejI6pCoUbuoHxheWoXp-3ItdDUmFd1CgX3h5Ukkli94EpdNyGIfJFZACC24BKPZpAxUqGlssoroEqRaiHRblx6nox1mVc2ZNekL4m6etc-jXgX1Nf8pobf5l0UepJf9tAGrHhL9PrpW51cYqnGski8lsqgHPwv6-fwFr3od_Tveu720NY55RCkaXF16EyS1_tERKbWXicbdxPtwr2-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+error+analysis+in+radiation+thermometry+with+application+to+industrial+furnaces&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Otamendi%2C+Urtzi&rft.au=Olaizola%2C+Igor+G&rft.au=Solsona%2C+Roger&rft.date=2022-02-28&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=190&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2021.110646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon