A novel method for error analysis in radiation thermometry with application to industrial furnaces
Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry tech...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 190; p. 110646 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
28.02.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace’s operation in real-time. To validate the proposed system’s functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems.
[Display omitted]
•A methodology for budgeting major sources of error during radiation thermometry measurements.•Deep learning-based surrogate models are proposed for fast parameter inference.•An end-to-end computing architecture for thermal imagery acquisition & analysis.•Applied to a real-world application case in a petrochemical plant. |
---|---|
AbstractList | Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace’s operation in real-time. To validate the proposed system’s functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems.
[Display omitted]
•A methodology for budgeting major sources of error during radiation thermometry measurements.•Deep learning-based surrogate models are proposed for fast parameter inference.•An end-to-end computing architecture for thermal imagery acquisition & analysis.•Applied to a real-world application case in a petrochemical plant. Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected radiation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain experts to analyze the furnace's operation in real-time. To validate the proposed system's functionality, a real-world application case in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring, thereby increasing operational security and improving the efficiency of such energy-intensive systems. |
ArticleNumber | 110646 |
Author | Viles, Elisabeth Maiza, Mikel Arzua, Ignacio Solsona, Roger Martinez, Iñigo Olaizola, Igor G. Otamendi, Urtzi Fernandez, Arturo |
Author_xml | – sequence: 1 givenname: Iñigo orcidid: 0000-0001-8174-9272 surname: Martinez fullname: Martinez, Iñigo email: imartinez@vicomtech.org organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 2 givenname: Urtzi orcidid: 0000-0002-4233-4258 surname: Otamendi fullname: Otamendi, Urtzi organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 3 givenname: Igor G. orcidid: 0000-0002-9965-2038 surname: Olaizola fullname: Olaizola, Igor G. organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 4 givenname: Roger surname: Solsona fullname: Solsona, Roger organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 5 givenname: Mikel orcidid: 0000-0002-6321-8053 surname: Maiza fullname: Maiza, Mikel organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 6 givenname: Elisabeth orcidid: 0000-0002-5080-482X surname: Viles fullname: Viles, Elisabeth organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain – sequence: 7 givenname: Arturo surname: Fernandez fullname: Fernandez, Arturo organization: Petronor Innovation, Muskiz 48550, Spain – sequence: 8 givenname: Ignacio surname: Arzua fullname: Arzua, Ignacio organization: Petróleos del Norte, Muskiz 48550, Spain |
BookMark | eNqNkMFq3DAQhkVJoZu076CSs7caSZbtUwhLmwQCuaTQm5CtMavFlrYjbcq-fb3dHEpOucwc5vt_hu-SXcQUkbGvINYgwHzbrWd0-UA4YyxrKSSsAYTR5gNbQduoSoP8dcFWQhpVSanhE7vMeSeEMKozK9bf8phecOIzlm3yfEzEkWiZLrrpmEPmIXJyPrgSUuRlizSnBaYj_xPKlrv9fgrD6zEtsD_kQsFNfDxQdAPmz-zj6KaMX173Ffv54_vz5r56fLp72Nw-VoPSXal06-pm9NJ0BrwQbTu6sUXlsXFCjaBk22vooXO1Rok91rLxoJpaIPTGSK2u2PW5d0_p9wFzsbt0emHKVhoNnapVLRfq5kwNlHImHO0Qyr_3C7kwWRD2JNbu7H9i7UmsPYtdGro3DXsKs6Pju7KbcxYXES8ByeYhYBzQB8KhWJ_CO1r-AoEmnpU |
CitedBy_id | crossref_primary_10_3390_pr10122528 crossref_primary_10_1016_j_infrared_2025_105747 crossref_primary_10_1364_OE_472493 crossref_primary_10_1016_j_measurement_2022_111762 crossref_primary_10_3390_s22166143 crossref_primary_10_1016_j_measurement_2023_112804 crossref_primary_10_1016_j_measurement_2023_114041 |
Cites_doi | 10.1016/S0308-0161(99)00090-3 10.1016/0017-9310(73)90248-2 10.1088/0957-0233/27/9/094002 10.1007/s10765-008-0385-1 10.1007/BF01438976 10.1080/13682199.2000.11784341 10.1111/0272-4332.00040 10.1016/j.infrared.2013.07.005 10.1063/1.2898138 10.1016/j.crhy.2010.05.001 10.1080/10739149.2016.1262396 10.1364/AO.33.001950 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 28, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 28, 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2021.110646 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2021_110646 S0263224121015141 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH WUQ XPP EFKBS |
ID | FETCH-LOGICAL-c349t-48a57fd26961d0088faf8e3de7a03f1328b41b19a54e2ebe527d13750e1b66243 |
IEDL.DBID | .~1 |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 09:15:29 EDT 2025 Tue Jul 01 04:38:04 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Fri Feb 23 02:40:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Monitoring system Deep learning Petrochemical industry Radiation thermometry Error analysis Surrogate model Infrared imagery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-48a57fd26961d0088faf8e3de7a03f1328b41b19a54e2ebe527d13750e1b66243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9965-2038 0000-0002-6321-8053 0000-0001-8174-9272 0000-0002-5080-482X 0000-0002-4233-4258 |
PQID | 2641935352 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2641935352 crossref_citationtrail_10_1016_j_measurement_2021_110646 crossref_primary_10_1016_j_measurement_2021_110646 elsevier_sciencedirect_doi_10_1016_j_measurement_2021_110646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-28 |
PublicationDateYYYYMMDD | 2022-02-28 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Sabine Brueske, Kramer (b1) 2015 Maldague (b14) 1999; 57 M. Niffenegger (b10) 2002 Lopez, Huot (b4) 2019 Irani (b18) 2004 Moss, Barrien, Walczynski (b2) 2000; 77 de Arrieta, Echániz, Fuente, Campillo-Robles, Igartua, López (b33) 2020; 57 Saunders (b5) 2007 DeWitt, Nutter (b7) 1988 (b6) 2021 Weigle (b13) 2005 Neuer (b16) 1995; 16 Kirkup, Frenkel (b21) 2006 Pollock (b8) 1991 Dem’yanenko, Esaev, Knyazev, Kulipanov, Vinokurov (b29) 2008; 92 Edwards, Balakrishnan (b17) 1973; 16 Oda, Yoneyama, Sasaki, Sano, Kurashina, Hosako, Sekine, Sudoh, Irie (b28) 2008 Struß (b15) 2003 (b20) 2020 Svantner, Vacíková, Honner (b12) 2013; 61 Saunders, Fischer, Sadli, Battuello, Park, Yuan, Yoon, Li, Van Der Ham, Sakuma (b22) 2008; 29 Kingma, Ba (b31) 2014 Corwin, Rodenburgh (b23) 1994; 33 Patel, Pandey (b11) 2016; 45 Oda (b19) 2010; 11 Willmott, Lowe, Broughton, White, Machin (b26) 2016; 27 (b30) 2021 Agarap (b32) 2018 Pregowski, Goleniewski, Komosa, Korytkowski, Zwolenik (b3) 2009 F.E. Liebmann, M.A.C. Carrasco, Infrared uncertainty budget determination in an industrial application, in: Proc. of, 2008. Machin, Chu (b27) 2000; 48 Shaddix (b9) 1999 Saltelli (b25) 2002; 22 Struß (10.1016/j.measurement.2021.110646_b15) 2003 Neuer (10.1016/j.measurement.2021.110646_b16) 1995; 16 Kingma (10.1016/j.measurement.2021.110646_b31) 2014 (10.1016/j.measurement.2021.110646_b6) 2021 Shaddix (10.1016/j.measurement.2021.110646_b9) 1999 Oda (10.1016/j.measurement.2021.110646_b28) 2008 Lopez (10.1016/j.measurement.2021.110646_b4) 2019 (10.1016/j.measurement.2021.110646_b30) 2021 (10.1016/j.measurement.2021.110646_b20) 2020 Moss (10.1016/j.measurement.2021.110646_b2) 2000; 77 Willmott (10.1016/j.measurement.2021.110646_b26) 2016; 27 Dem’yanenko (10.1016/j.measurement.2021.110646_b29) 2008; 92 Pollock (10.1016/j.measurement.2021.110646_b8) 1991 Oda (10.1016/j.measurement.2021.110646_b19) 2010; 11 Weigle (10.1016/j.measurement.2021.110646_b13) 2005 Saunders (10.1016/j.measurement.2021.110646_b22) 2008; 29 Kirkup (10.1016/j.measurement.2021.110646_b21) 2006 Saunders (10.1016/j.measurement.2021.110646_b5) 2007 Corwin (10.1016/j.measurement.2021.110646_b23) 1994; 33 de Arrieta (10.1016/j.measurement.2021.110646_b33) 2020; 57 10.1016/j.measurement.2021.110646_b24 Svantner (10.1016/j.measurement.2021.110646_b12) 2013; 61 Saltelli (10.1016/j.measurement.2021.110646_b25) 2002; 22 Patel (10.1016/j.measurement.2021.110646_b11) 2016; 45 Pregowski (10.1016/j.measurement.2021.110646_b3) 2009 M. Niffenegger (10.1016/j.measurement.2021.110646_b10) 2002 Sabine Brueske (10.1016/j.measurement.2021.110646_b1) 2015 DeWitt (10.1016/j.measurement.2021.110646_b7) 1988 Irani (10.1016/j.measurement.2021.110646_b18) 2004 Maldague (10.1016/j.measurement.2021.110646_b14) 1999; 57 Agarap (10.1016/j.measurement.2021.110646_b32) 2018 Edwards (10.1016/j.measurement.2021.110646_b17) 1973; 16 Machin (10.1016/j.measurement.2021.110646_b27) 2000; 48 |
References_xml | – volume: 33 start-page: 1950 year: 1994 end-page: 1957 ident: b23 article-title: Temperature error in radiation thermometry caused by emissivity and reflectance measurement error publication-title: Appl. Opt. – start-page: 26 year: 2019 end-page: 32 ident: b4 article-title: Advanced signal processing applied to thermographic inspection of petrochemical furnaces publication-title: Thermosense: Thermal Infrared Applications XLI, Vol. 11004 – volume: 16 start-page: 257 year: 1995 end-page: 265 ident: b16 article-title: Spectral and total emissivity measurements of highly emitting materials publication-title: Int. J. Thermophys. – volume: 57 start-page: 6 pp year: 1999 ident: b14 article-title: Pipe inspection by infrared thermography publication-title: Mater. Eval. – year: 2018 ident: b32 article-title: Deep learning using rectified linear units (ReLU) – year: 1991 ident: b8 article-title: Thermocouples: Theory and Properties – year: 2020 ident: b20 article-title: ASTM E344-20, Terminology Relating to Thermometry and Hydrometry – volume: 92 year: 2008 ident: b29 article-title: Imaging with a 90 frames/ s microbolometer focal plane array and high-power terahertz free electron laser publication-title: Appl. Phys. Lett. – volume: 11 start-page: 496 year: 2010 end-page: 509 ident: b19 article-title: Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging publication-title: C. R. Phys. – year: 2007 ident: b5 article-title: Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry, Vol. 78 – year: 2015 ident: b1 article-title: Bandwidth study on energy use and potential energy savings opportunities in U.S. petroleum refining – volume: 45 start-page: 366 year: 2016 end-page: 381 ident: b11 article-title: Automated instrumentation for high-temperature seebeck coefficient measurements publication-title: Instrum. Sci. Technol. – start-page: 69402Y year: 2008 ident: b28 article-title: Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays publication-title: Infrared Technology and Applications XXXIV, Vol. 6940 – volume: 27 year: 2016 ident: b26 article-title: Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory publication-title: Meas. Sci. Technol. – year: 2021 ident: b30 article-title: Fti-eb borescope – volume: 57 year: 2020 ident: b33 article-title: Updated measurement method and uncertainty budget for direct emissivity measurements at the university of the basque country publication-title: Metrologia – year: 2002 ident: b10 article-title: The Change of the Seebeck Coefficient Due to Neutron Irradiation and Thermal Fatigue of Nuclear Reactor Pressure Vessel Steel and its Application to the Monitoring of Material Degradation – volume: 22 start-page: 579 year: 2002 end-page: 590 ident: b25 article-title: Sensitivity analysis for importance assessment publication-title: Risk Anal. – volume: 16 start-page: 25 year: 1973 end-page: 40 ident: b17 article-title: Thermal radiation by combustion gases publication-title: Int. J. Heat Mass Transfer – reference: F.E. Liebmann, M.A.C. Carrasco, Infrared uncertainty budget determination in an industrial application, in: Proc. of, 2008. – start-page: 131 year: 2009 end-page: 141 ident: b3 article-title: Heating medium absorption and emission as factors in thermographic investigations of petrochemical furnaces publication-title: Thermosense XXXI, Vol. 7299 – start-page: 221 year: 2004 end-page: 226 ident: b18 article-title: Furnace wall-tube monitoring with a dual-band portable imaging radiometer publication-title: Thermosense XXVI, Vol. 5405 – volume: 77 start-page: 105 year: 2000 end-page: 112 ident: b2 article-title: Life management of refinery furnace tubing publication-title: Int. J. Press. Vessels Pip. – year: 2003 ident: b15 article-title: Transfer radiation thermometer covering the temperature range from -50 – year: 1988 ident: b7 article-title: Theory and Practice of Radiation Thermometry – start-page: 100 year: 2005 end-page: 108 ident: b13 article-title: Applications of infrared thermography for petrochemical process heaters publication-title: Thermosense XXVII, Vol. 5782 – year: 2021 ident: b6 article-title: Long-term overheat – year: 2014 ident: b31 article-title: Adam: A method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 29 start-page: 1066 year: 2008 end-page: 1083 ident: b22 article-title: Uncertainty budgets for calibration of radiation thermometers below the silver point publication-title: Int. J. Thermophys. – year: 2006 ident: b21 article-title: An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement) – year: 1999 ident: b9 article-title: Correcting thermocouple measurements for radiation loss: A critical review – volume: 61 start-page: 20 year: 2013 end-page: 26 ident: b12 article-title: Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis publication-title: Infrared Phys. Technol. – volume: 48 start-page: 15 year: 2000 end-page: 22 ident: b27 article-title: High-quality blackbody sources for infrared thermometry and thermography between- 40 and 1000 publication-title: J. Imaging Sci. – volume: 77 start-page: 105 issue: 2 year: 2000 ident: 10.1016/j.measurement.2021.110646_b2 article-title: Life management of refinery furnace tubing publication-title: Int. J. Press. Vessels Pip. doi: 10.1016/S0308-0161(99)00090-3 – year: 1991 ident: 10.1016/j.measurement.2021.110646_b8 – start-page: 26 year: 2019 ident: 10.1016/j.measurement.2021.110646_b4 article-title: Advanced signal processing applied to thermographic inspection of petrochemical furnaces – year: 2014 ident: 10.1016/j.measurement.2021.110646_b31 article-title: Adam: A method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 16 start-page: 25 issue: 1 year: 1973 ident: 10.1016/j.measurement.2021.110646_b17 article-title: Thermal radiation by combustion gases publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(73)90248-2 – volume: 27 issue: 9 year: 2016 ident: 10.1016/j.measurement.2021.110646_b26 article-title: Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/9/094002 – volume: 29 start-page: 1066 issue: 3 year: 2008 ident: 10.1016/j.measurement.2021.110646_b22 article-title: Uncertainty budgets for calibration of radiation thermometers below the silver point publication-title: Int. J. Thermophys. doi: 10.1007/s10765-008-0385-1 – year: 2002 ident: 10.1016/j.measurement.2021.110646_b10 – start-page: 131 year: 2009 ident: 10.1016/j.measurement.2021.110646_b3 article-title: Heating medium absorption and emission as factors in thermographic investigations of petrochemical furnaces – volume: 16 start-page: 257 issue: 1 year: 1995 ident: 10.1016/j.measurement.2021.110646_b16 article-title: Spectral and total emissivity measurements of highly emitting materials publication-title: Int. J. Thermophys. doi: 10.1007/BF01438976 – year: 2018 ident: 10.1016/j.measurement.2021.110646_b32 – year: 2003 ident: 10.1016/j.measurement.2021.110646_b15 – year: 2007 ident: 10.1016/j.measurement.2021.110646_b5 – volume: 57 issue: 4 year: 2020 ident: 10.1016/j.measurement.2021.110646_b33 article-title: Updated measurement method and uncertainty budget for direct emissivity measurements at the university of the basque country publication-title: Metrologia – year: 2021 ident: 10.1016/j.measurement.2021.110646_b6 – start-page: 100 year: 2005 ident: 10.1016/j.measurement.2021.110646_b13 article-title: Applications of infrared thermography for petrochemical process heaters – year: 2006 ident: 10.1016/j.measurement.2021.110646_b21 – volume: 48 start-page: 15 issue: 1 year: 2000 ident: 10.1016/j.measurement.2021.110646_b27 article-title: High-quality blackbody sources for infrared thermometry and thermography between- 40 and 1000° C publication-title: J. Imaging Sci. doi: 10.1080/13682199.2000.11784341 – start-page: 69402Y year: 2008 ident: 10.1016/j.measurement.2021.110646_b28 article-title: Detection of terahertz radiation from quantum cascade laser using vanadium oxide microbolometer focal plane arrays – year: 2020 ident: 10.1016/j.measurement.2021.110646_b20 – start-page: 221 year: 2004 ident: 10.1016/j.measurement.2021.110646_b18 article-title: Furnace wall-tube monitoring with a dual-band portable imaging radiometer – volume: 22 start-page: 579 issue: 3 year: 2002 ident: 10.1016/j.measurement.2021.110646_b25 article-title: Sensitivity analysis for importance assessment publication-title: Risk Anal. doi: 10.1111/0272-4332.00040 – volume: 61 start-page: 20 year: 2013 ident: 10.1016/j.measurement.2021.110646_b12 article-title: Non-contact charge temperature measurement on industrial continuous furnaces and steel charge emissivity analysis publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2013.07.005 – volume: 57 start-page: 6 pp issue: 9 year: 1999 ident: 10.1016/j.measurement.2021.110646_b14 article-title: Pipe inspection by infrared thermography publication-title: Mater. Eval. – year: 2021 ident: 10.1016/j.measurement.2021.110646_b30 – volume: 92 issue: 13 year: 2008 ident: 10.1016/j.measurement.2021.110646_b29 article-title: Imaging with a 90 frames/ s microbolometer focal plane array and high-power terahertz free electron laser publication-title: Appl. Phys. Lett. doi: 10.1063/1.2898138 – volume: 11 start-page: 496 issue: 7–8 year: 2010 ident: 10.1016/j.measurement.2021.110646_b19 article-title: Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging publication-title: C. R. Phys. doi: 10.1016/j.crhy.2010.05.001 – year: 1999 ident: 10.1016/j.measurement.2021.110646_b9 – ident: 10.1016/j.measurement.2021.110646_b24 – year: 1988 ident: 10.1016/j.measurement.2021.110646_b7 – year: 2015 ident: 10.1016/j.measurement.2021.110646_b1 – volume: 45 start-page: 366 issue: 4 year: 2016 ident: 10.1016/j.measurement.2021.110646_b11 article-title: Automated instrumentation for high-temperature seebeck coefficient measurements publication-title: Instrum. Sci. Technol. doi: 10.1080/10739149.2016.1262396 – volume: 33 start-page: 1950 issue: 10 year: 1994 ident: 10.1016/j.measurement.2021.110646_b23 article-title: Temperature error in radiation thermometry caused by emissivity and reflectance measurement error publication-title: Appl. Opt. doi: 10.1364/AO.33.001950 |
SSID | ssj0006396 |
Score | 2.346934 |
Snippet | Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measurement uncertainty is a risk for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110646 |
SubjectTerms | Atmospheric models Chemical industry Continuous furnaces Deep learning Emissions Error analysis Error correction Furnaces Infrared imagery Measurement Monitoring Monitoring system Petrochemical industry Petrochemicals Radiation Radiation thermometry Real time operation Surrogate model Thermometers Thermometry Uncertainty |
Title | A novel method for error analysis in radiation thermometry with application to industrial furnaces |
URI | https://dx.doi.org/10.1016/j.measurement.2021.110646 https://www.proquest.com/docview/2641935352 |
Volume | 190 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1EUfQgWhU_ywpeY5vNZrMBL6VYqqIXFbwtm2YDlTaRGAUv_nZn8mGreCh4ySHshjCzmfd2M_MG4Mz34kjKRDo-gqEjQiEcxB3hmDCIQ-W5pmuowPn2Tg4fxfWT_7QE_aYWhtIq69hfxfQyWtd3OrU1Oy_jcee-S1LjCEC4aUHYKovXhQholZ9_ztI8EIFldc7iOTR6DU5nOV7T2TkcbhW5S0nxkrjw3xj1K1qXEDTYgs2aO7Je9XrbsGTTFmzMKQq2YLXM6By97kDUY2n2bies6hHNkJwym-d4NbUOCRunLCdpAvINIyI4zXBw_sHocJbN_dpmRYaDmx4fLKH3wPiyC4-Dy4f-0KkbKjgjT4SFI5TxgyTmMpRujOCvEpMo68U2MF0vwX2pioQbuaHxheXoXZ8Hseshp7AuOpQLbw-W0yy1-8AU7ttGEdJFJACC25CUHk2oEiUjy2WcHIBqTKhHtdo4Nb2Y6Cat7FnPWV-T9XVl_QPg31NfKsmNRSZdNH7SP9aPRmhYZPpx41tdf8SvGrki0lvSvzn839OPYJ1T1URZCX8My0X-Zk-QyxRRu1ysbVjpXd0M774AHxz1aw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6k4usgWhWrVVfwGttsNtsNeJFiqdp6UaG3ZdNsoFJTSavgxd_uTB62igfBSw5hNywzu_N9s5kHwJnvRaGUsXR8BENHBEI4iDvCMUErCpTnmqahBOf-new-ipuBP1iCdpkLQ2GVhe3PbXpmrYs3jUKajZfRqHHfpFLjCEDotCBsUfL6ssDjS20Mzj_mcR4IwTK_aPEcGr4Kp_Mgr-f5RRz6itylqHhJZPh3kPphrjMM6mzBZkEe2WW-vm1YskkVNhZKClZhJQvpHE53ILxkyeTNjlneJJohO2U2TfFpikIkbJSwlGoTkHIYMcHnCQ5O3xndzrKFf9tsNsHBZZMPFtM60MDswmPn6qHddYqOCs7QE8HMEcr4rTjiMpBuhOivYhMr60W2ZZpejI6pCoUbuoHxheWoXp-3ItdDUmFd1CgX3h5Ukkli94EpdNyGIfJFZACC24BKPZpAxUqGlssoroEqRaiHRblx6nox1mVc2ZNekL4m6etc-jXgX1Nf8pobf5l0UepJf9tAGrHhL9PrpW51cYqnGski8lsqgHPwv6-fwFr3od_Tveu720NY55RCkaXF16EyS1_tERKbWXicbdxPtwr2-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+error+analysis+in+radiation+thermometry+with+application+to+industrial+furnaces&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Otamendi%2C+Urtzi&rft.au=Olaizola%2C+Igor+G&rft.au=Solsona%2C+Roger&rft.date=2022-02-28&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=190&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2021.110646&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |