Visual Reasoning Strategies for Effect Size Judgments and Decisions
Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 27; no. 2; pp. 272 - 282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies. |
---|---|
AbstractList | Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies. Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies. |
Author | Kale, Alex Hullman, Jessica Kay, Matthew |
Author_xml | – sequence: 1 givenname: Alex surname: Kale fullname: Kale, Alex email: kalea@uw.edu organization: University of Washington – sequence: 2 givenname: Matthew surname: Kay fullname: Kay, Matthew email: mjskay@umich.edu organization: University of Michigan – sequence: 3 givenname: Jessica surname: Hullman fullname: Hullman, Jessica email: jhullman@northwestern.edu organization: Northwestern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33048681$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rGzEQxUVIifPvA4RCWcill3VGGllaHYubpgmBQuL4KrTyrFFYa9PV7qH59JWx3UMOZQ4zh98bZt47Y8exi8TYFYcp52BuFsv53VSAgClCLpwdsVNuJC9hBuo4z6B1KZRQE3aW0isAl7IyJ2yCCLJSFT9l82VIo2uLJ3KpiyGui-ehdwOtA6Wi6fritmnID8VzeKfiYVytNxSHVLi4Kr6TDyl0MV2wT41rE13u-zl7-XG7mP8sH3_d3c-_PZYepRlKKUWDslFecwG6RtIOiQQY1Apq16yqqs7XK12TAS80GlIKRF15yrBBPGdfd3vf-u73SGmwm5A8ta2L1I3JCjnjHCXXOqPXH9DXbuxjvi5TFWZPUJtMfdlTY72hlX3rw8b1f-zBngzoHeD7LqWeGuvD4Ib8dDYptJaD3QZht0HYbRB2H0RW8g_Kw_L_aT7vNIGI_vFGCIFK4l9qc5Cb |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_3390_sym16080986 crossref_primary_10_1109_TVCG_2024_3456366 crossref_primary_10_1177_14738716231173731 crossref_primary_10_1111_cgf_15100 crossref_primary_10_1177_14738716241259432 crossref_primary_10_1002_for_3222 crossref_primary_10_1109_TVCG_2023_3251950 crossref_primary_10_1109_TVCG_2021_3114684 crossref_primary_10_1145_3479572 crossref_primary_10_1177_09567976241231506 crossref_primary_10_1146_annurev_statistics_040722_052011 crossref_primary_10_1109_TVCG_2022_3210763 crossref_primary_10_1109_TVCG_2021_3114824 crossref_primary_10_1109_TVCG_2022_3209377 crossref_primary_10_1109_TVCG_2022_3209457 crossref_primary_10_1109_TVCG_2022_3158093 crossref_primary_10_1109_TVCG_2024_3456396 crossref_primary_10_1109_TVCG_2022_3146508 crossref_primary_10_1016_j_cag_2023_01_010 crossref_primary_10_1109_TVCG_2023_3326512 crossref_primary_10_3389_fpsyg_2020_579267 crossref_primary_10_1109_TVCG_2021_3114679 crossref_primary_10_1109_TVCG_2022_3226463 crossref_primary_10_1109_TVCG_2023_3346640 crossref_primary_10_1109_TVCG_2024_3388515 crossref_primary_10_7554_eLife_65902 crossref_primary_10_1017_S1930297500007981 crossref_primary_10_1371_journal_pcbi_1010622 crossref_primary_10_1111_cgf_14826 crossref_primary_10_1109_TVCG_2021_3114813 crossref_primary_10_1177_15291006211051956 crossref_primary_10_1073_pnas_2302491120 crossref_primary_10_1038_s41598_022_05353_1 crossref_primary_10_1080_00031305_2023_2270649 crossref_primary_10_1109_TVCG_2022_3209348 crossref_primary_10_1177_10731911221147042 crossref_primary_10_1109_TVCG_2022_3209405 crossref_primary_10_2478_popets_2022_0058 |
Cites_doi | 10.1186/s41235-019-0182-3 10.3758/s13423-013-0572-3 10.1037/0003-066X.60.2.170 10.1006/cogp.1998.0710 10.1037/h0042769 10.1097/00001888-199805000-00024 10.1037/a0025185 10.1371/journal.pone.0142444 10.1126/science.185.4157.1124 10.1073/pnas.1722389115 10.1111/j.1740-9713.2013.00636.x 10.1109/TVCG.2018.2864909 10.1016/0041-5553(76)90154-3 10.2139/ssrn.3117054 10.1126/science.7455683 10.2307/1914185 10.1167/16.5.11 10.1177/2059799116672879 10.1037/a0023265 10.1037/h0046162 10.6028/NIST.TN.1297 10.1001/archpediatrics.2011.97 10.1037/1082-989X.10.4.389 10.1109/TVCG.2019.2934287 10.1111/1467-985X.00120 10.1109/TVCG.2019.2934786 10.2307/2288400 10.3389/fpsyg.2019.00813 10.1111/rssa.12378 10.1145/3313831.3376454 10.3389/fnins.2012.00001 10.1145/3290605.3300912 10.3386/w23294 10.1198/0003130032369 10.3386/w24905 10.1145/3313831.3376222 10.1037/a0014474 10.1177/0963721413481473 10.1177/0956797613504966 10.1109/TVCG.2014.2346298 10.1145/3173574.3173718 10.1037/0033-295X.107.3.500 10.1037/0033-2909.111.2.361 10.1037/0033-2909.115.2.228 10.1037/0033-295X.102.4.684 10.1016/j.ijforecast.2012.02.002 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2020.3030335 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 282 |
ExternalDocumentID | 33048681 10_1109_TVCG_2020_3030335 9222364 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: U.S. Navy; Department of the Navy grantid: N17A-T004 funderid: 10.13039/100009896 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-442f34f6c71207b3e7a3ee2093760bafd88b19467be90c2739e6602b8ceb3e933 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 12:36:56 EDT 2025 Mon Jun 30 03:04:05 EDT 2025 Wed Feb 19 02:30:41 EST 2025 Tue Jul 01 03:58:56 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Wed Aug 27 02:27:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-442f34f6c71207b3e7a3ee2093760bafd88b19467be90c2739e6602b8ceb3e933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33048681 |
PQID | 2483262379 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2451134177 pubmed_primary_33048681 proquest_journals_2483262379 crossref_primary_10_1109_TVCG_2020_3030335 crossref_citationtrail_10_1109_TVCG_2020_3030335 ieee_primary_9222364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 huff (ref24) 1993 ref54 ref10 kale (ref32) 2019 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 baron (ref1) 2008 von neumann (ref57) 1944 ref48 ref47 ref44 pinheiro (ref43) 2020 ref49 ref7 ref9 ref3 ref40 ref35 ref37 ref36 ref31 wilkinson (ref60) 1973; 22 ref33 ref2 kahneman (ref30) 2011 ref38 tukey (ref53) 1977 biirkner (ref5) 2020 coe (ref8) 2002 micallef (ref41) 2012; 18 ref23 ref26 ref25 ref20 pearson (ref42) 1895; 186 ref22 ref21 kay (ref34) 0 ref28 ref27 ref29 brinton (ref4) 1939 chance (ref6) 0 ref62 ref61 manski (ref39) 2019 |
References_xml | – ident: ref61 doi: 10.1186/s41235-019-0182-3 – ident: ref19 doi: 10.3758/s13423-013-0572-3 – ident: ref12 doi: 10.1037/0003-066X.60.2.170 – ident: ref18 doi: 10.1006/cogp.1998.0710 – year: 1939 ident: ref4 publication-title: Graphic presentation – ident: ref45 doi: 10.1037/h0042769 – ident: ref20 doi: 10.1097/00001888-199805000-00024 – volume: 22 start-page: 392 year: 1973 ident: ref60 article-title: Symbolic Description of Factorial Models for Analysis of Variance publication-title: Journal of the Royal Statistical Society Series C (Applied Statistics) – ident: ref29 doi: 10.1037/a0025185 – ident: ref26 doi: 10.1371/journal.pone.0142444 – ident: ref54 doi: 10.1126/science.185.4157.1124 – ident: ref37 doi: 10.1073/pnas.1722389115 – ident: ref56 doi: 10.1111/j.1740-9713.2013.00636.x – ident: ref33 doi: 10.1109/TVCG.2018.2864909 – ident: ref46 doi: 10.1016/0041-5553(76)90154-3 – ident: ref59 doi: 10.2139/ssrn.3117054 – ident: ref55 doi: 10.1126/science.7455683 – ident: ref31 doi: 10.2307/1914185 – ident: ref51 doi: 10.1167/16.5.11 – year: 0 ident: ref34 article-title: When (ish) is My Bus? User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems publication-title: Proceedings of the 2016 ACM annual conference on Human Factors in Computing Systems – ident: ref50 doi: 10.1177/2059799116672879 – ident: ref22 doi: 10.1037/a0023265 – year: 2020 ident: ref43 publication-title: nlme Linear and Nonlinear Mixed Effects Models – ident: ref49 doi: 10.1037/h0046162 – ident: ref52 doi: 10.6028/NIST.TN.1297 – ident: ref13 doi: 10.1001/archpediatrics.2011.97 – ident: ref3 doi: 10.1037/1082-989X.10.4.389 – ident: ref25 doi: 10.1109/TVCG.2019.2934287 – year: 1993 ident: ref24 publication-title: How to Lie with Statistics – ident: ref48 doi: 10.1111/1467-985X.00120 – start-page: 1 year: 2019 ident: ref39 article-title: The lure of incredible certitude publication-title: Economics and Philosophy – ident: ref27 doi: 10.1109/TVCG.2019.2934786 – ident: ref7 doi: 10.2307/2288400 – ident: ref44 doi: 10.3389/fpsyg.2019.00813 – ident: ref15 doi: 10.1111/rssa.12378 – ident: ref21 doi: 10.1145/3313831.3376454 – year: 1977 ident: ref53 publication-title: Exploratory Data Analysis – ident: ref62 doi: 10.3389/fnins.2012.00001 – ident: ref36 doi: 10.1145/3290605.3300912 – ident: ref35 doi: 10.3386/w23294 – ident: ref2 doi: 10.1198/0003130032369 – year: 2011 ident: ref30 publication-title: Thinking Fast and Slow – ident: ref38 doi: 10.3386/w24905 – ident: ref9 doi: 10.1145/3313831.3376222 – year: 2008 ident: ref1 publication-title: Thinking and Deciding – year: 2019 ident: ref32 article-title: Adaptation and learning priors in visual inference publication-title: VisXVision Workshop at IEEE VIS 2019 – ident: ref16 doi: 10.1037/a0014474 – volume: 18 start-page: 2536 year: 2012 ident: ref41 article-title: Assessing the effect of visualizations on Bayesian reasoning through crowdsourcing to cite this version publication-title: IEEE Transactions on Visualization and Computer Graphics Institute of Electrical and Electronics Engineers – volume: 186 start-page: 343 year: 1895 ident: ref42 article-title: Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material publication-title: Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences – ident: ref28 doi: 10.1177/0963721413481473 – ident: ref11 doi: 10.1177/0956797613504966 – ident: ref10 doi: 10.1109/TVCG.2014.2346298 – ident: ref14 doi: 10.1145/3173574.3173718 – year: 2020 ident: ref5 publication-title: brms Bayesian Regression Models using 'Stan' – start-page: 2 year: 0 ident: ref6 article-title: Developing Simulation Activities to Improve Students' Statistical Reasoning publication-title: Proceedings of the International Conference on Technology in Mathematics Education – ident: ref23 doi: 10.1037/0033-295X.107.3.500 – year: 1944 ident: ref57 publication-title: Theory of Games and Economic Behavior (60th Anniversary Commemorative Edition) – ident: ref40 doi: 10.1037/0033-2909.111.2.361 – ident: ref58 doi: 10.1037/0033-2909.115.2.228 – ident: ref17 doi: 10.1037/0033-295X.102.4.684 – year: 2002 ident: ref8 publication-title: It's the Effect Size Stupid What Effect Size Is and Why It Is Important – ident: ref47 doi: 10.1016/j.ijforecast.2012.02.002 |
SSID | ssj0014489 |
Score | 2.56876 |
Snippet | Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 272 |
SubjectTerms | Containment data cognition Data visualization Decision making Design Estimation graphical perception Optimization Qualitative analysis Task analysis Uncertainty Uncertainty visualization User satisfaction Visual effects Visualization |
Title | Visual Reasoning Strategies for Effect Size Judgments and Decisions |
URI | https://ieeexplore.ieee.org/document/9222364 https://www.ncbi.nlm.nih.gov/pubmed/33048681 https://www.proquest.com/docview/2483262379 https://www.proquest.com/docview/2451134177 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9YwDLe2neAAjPEobFOQOE30W5uEPI7o28Y0aRzYQ7tVaeKiCdQP0a-X_fU46UOAAO1Wqe4jthP_HDs2wFtFMjdGlXnQXuUyyCZ3nOajQemboEyNSdLnn9TplTy7eX-zAe_mszCImJLPcBEvUyw_rHwft8oObTRmSm7CJjluw1mtOWJAboYd8gt1zgmljxHMsrCHl9fLj-QJcnJQSaWFiN1qohtvlCl_M0epv8q_oWYyOSeP4Xz62SHT5OuiX9cLf_dHHcf7juYJPBqxJ_swKMs2bGD7FB7-UpFwB5bXt11PNJ_RdWmjlk3la7FjhG_ZUO2YXdzeITvrw5d0Qo65NrCjsVtP9wyuTo4vl6f52Gch90LadS4lb4RslNclL3QtUDuByAsbE2Zq1wRj6tLSilqjLTzhHYtKFbw2njxxtEI8h6121eJLYE3h0DtLrxHkOYZgNfdESGso8b_0LoNiYnflxyLksRfGtyo5I4WtorCqKKxqFFYGB_Mj34cKHP8j3omMnglHHmewO8m0GudoV3FJqxmhP20zeDPfptkVQyauxVUfaQiQkqHXOoMXgy7M755U6NXfv_kaHsQxDxneu7C1_tHjHgGYdb2fNPcnrsPnpg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMojUMBInBDZJrbrxxEtlKV0e4Bt1VvkOBNUtcoisrn01zN2HgIEiFukTB6eGXu-8YxnAF4pkrkxKk8r7VUqK1mnjtN8NCh9XSlTYpT08lgtTuTh2f7ZFryZzsIgYkw-w1m4jLH8au27sFW2Z4MxU_IaXCe7v5_3p7WmmAE5GrbPMNQpJ5w-xDDzzO6tTucfyBfk5KKSUgsR-tUER94ok_9ikGKHlb-DzWh0Du7AcvzdPtfkYtZtypm_-q2S4_-O5y7cHtAne9uryz3YwuY-3PqpJuEOzE_P245oPqNr41YtGwvYYssI4bK-3jH7cn6F7LCrvsYzcsw1FXs39OtpH8DJwfvVfJEOnRZSL6TdpFLyWshaeZ3zTJcCtROIPLMhZaZ0dWVMmVtaU0u0mSfEY1GpjJfGky-OVoiHsN2sG3wMrM4cemfpNYJ8x6qymnsipFWU-J97l0A2srvwQxny0A3jsojuSGaLIKwiCKsYhJXA6-mRb30Njn8R7wRGT4QDjxPYHWVaDLO0Lbik9Yzwn7YJvJxu0_wKQRPX4LoLNARJydRrncCjXhemd48q9OTP33wBNxar5VFx9PH401O4Gcbf53vvwvbme4fPCM5syudRi38A77vq7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Reasoning+Strategies+for+Effect+Size+Judgments+and+Decisions&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Kale%2C+Alex&rft.au=Kay%2C+Matthew&rft.au=Hullman%2C+Jessica&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=27&rft.issue=2&rft.spage=272&rft.epage=282&rft_id=info:doi/10.1109%2FTVCG.2020.3030335&rft_id=info%3Apmid%2F33048681&rft.externalDocID=9222364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |