Visual Reasoning Strategies for Effect Size Judgments and Decisions

Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 27; no. 2; pp. 272 - 282
Main Authors Kale, Alex, Kay, Matthew, Hullman, Jessica
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.
AbstractList Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.
Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices emphasize means, users may overlook uncertainty information and misinterpret visual distance as a proxy for effect size. We present findings from a mixed design experiment on Mechanical Turk which tests eight uncertainty visualization designs: 95% containment intervals, hypothetical outcome plots, densities, and quantile dotplots, each with and without means added. We find that adding means to uncertainty visualizations has small biasing effects on both magnitude estimation and decision-making, consistent with discounting uncertainty. We also see that visualization designs that support the least biased effect size estimation do not support the best decision-making, suggesting that a chart user's sense of effect size may not necessarily be identical when they use the same information for different tasks. In a qualitative analysis of users' strategy descriptions, we find that many users switch strategies and do not employ an optimal strategy when one exists. Uncertainty visualizations which are optimally designed in theory may not be the most effective in practice because of the ways that users satisfice with heuristics, suggesting opportunities to better understand visualization effectiveness by modeling sets of potential strategies.
Author Kale, Alex
Hullman, Jessica
Kay, Matthew
Author_xml – sequence: 1
  givenname: Alex
  surname: Kale
  fullname: Kale, Alex
  email: kalea@uw.edu
  organization: University of Washington
– sequence: 2
  givenname: Matthew
  surname: Kay
  fullname: Kay, Matthew
  email: mjskay@umich.edu
  organization: University of Michigan
– sequence: 3
  givenname: Jessica
  surname: Hullman
  fullname: Hullman, Jessica
  email: jhullman@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33048681$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVIifPvA4RCWcill3VGGllaHYubpgmBQuL4KrTyrFFYa9PV7qH59JWx3UMOZQ4zh98bZt47Y8exi8TYFYcp52BuFsv53VSAgClCLpwdsVNuJC9hBuo4z6B1KZRQE3aW0isAl7IyJ2yCCLJSFT9l82VIo2uLJ3KpiyGui-ehdwOtA6Wi6fritmnID8VzeKfiYVytNxSHVLi4Kr6TDyl0MV2wT41rE13u-zl7-XG7mP8sH3_d3c-_PZYepRlKKUWDslFecwG6RtIOiQQY1Apq16yqqs7XK12TAS80GlIKRF15yrBBPGdfd3vf-u73SGmwm5A8ta2L1I3JCjnjHCXXOqPXH9DXbuxjvi5TFWZPUJtMfdlTY72hlX3rw8b1f-zBngzoHeD7LqWeGuvD4Ib8dDYptJaD3QZht0HYbRB2H0RW8g_Kw_L_aT7vNIGI_vFGCIFK4l9qc5Cb
CODEN ITVGEA
CitedBy_id crossref_primary_10_3390_sym16080986
crossref_primary_10_1109_TVCG_2024_3456366
crossref_primary_10_1177_14738716231173731
crossref_primary_10_1111_cgf_15100
crossref_primary_10_1177_14738716241259432
crossref_primary_10_1002_for_3222
crossref_primary_10_1109_TVCG_2023_3251950
crossref_primary_10_1109_TVCG_2021_3114684
crossref_primary_10_1145_3479572
crossref_primary_10_1177_09567976241231506
crossref_primary_10_1146_annurev_statistics_040722_052011
crossref_primary_10_1109_TVCG_2022_3210763
crossref_primary_10_1109_TVCG_2021_3114824
crossref_primary_10_1109_TVCG_2022_3209377
crossref_primary_10_1109_TVCG_2022_3209457
crossref_primary_10_1109_TVCG_2022_3158093
crossref_primary_10_1109_TVCG_2024_3456396
crossref_primary_10_1109_TVCG_2022_3146508
crossref_primary_10_1016_j_cag_2023_01_010
crossref_primary_10_1109_TVCG_2023_3326512
crossref_primary_10_3389_fpsyg_2020_579267
crossref_primary_10_1109_TVCG_2021_3114679
crossref_primary_10_1109_TVCG_2022_3226463
crossref_primary_10_1109_TVCG_2023_3346640
crossref_primary_10_1109_TVCG_2024_3388515
crossref_primary_10_7554_eLife_65902
crossref_primary_10_1017_S1930297500007981
crossref_primary_10_1371_journal_pcbi_1010622
crossref_primary_10_1111_cgf_14826
crossref_primary_10_1109_TVCG_2021_3114813
crossref_primary_10_1177_15291006211051956
crossref_primary_10_1073_pnas_2302491120
crossref_primary_10_1038_s41598_022_05353_1
crossref_primary_10_1080_00031305_2023_2270649
crossref_primary_10_1109_TVCG_2022_3209348
crossref_primary_10_1177_10731911221147042
crossref_primary_10_1109_TVCG_2022_3209405
crossref_primary_10_2478_popets_2022_0058
Cites_doi 10.1186/s41235-019-0182-3
10.3758/s13423-013-0572-3
10.1037/0003-066X.60.2.170
10.1006/cogp.1998.0710
10.1037/h0042769
10.1097/00001888-199805000-00024
10.1037/a0025185
10.1371/journal.pone.0142444
10.1126/science.185.4157.1124
10.1073/pnas.1722389115
10.1111/j.1740-9713.2013.00636.x
10.1109/TVCG.2018.2864909
10.1016/0041-5553(76)90154-3
10.2139/ssrn.3117054
10.1126/science.7455683
10.2307/1914185
10.1167/16.5.11
10.1177/2059799116672879
10.1037/a0023265
10.1037/h0046162
10.6028/NIST.TN.1297
10.1001/archpediatrics.2011.97
10.1037/1082-989X.10.4.389
10.1109/TVCG.2019.2934287
10.1111/1467-985X.00120
10.1109/TVCG.2019.2934786
10.2307/2288400
10.3389/fpsyg.2019.00813
10.1111/rssa.12378
10.1145/3313831.3376454
10.3389/fnins.2012.00001
10.1145/3290605.3300912
10.3386/w23294
10.1198/0003130032369
10.3386/w24905
10.1145/3313831.3376222
10.1037/a0014474
10.1177/0963721413481473
10.1177/0956797613504966
10.1109/TVCG.2014.2346298
10.1145/3173574.3173718
10.1037/0033-295X.107.3.500
10.1037/0033-2909.111.2.361
10.1037/0033-2909.115.2.228
10.1037/0033-295X.102.4.684
10.1016/j.ijforecast.2012.02.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2020.3030335
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 282
ExternalDocumentID 33048681
10_1109_TVCG_2020_3030335
9222364
Genre orig-research
Journal Article
GrantInformation_xml – fundername: U.S. Navy; Department of the Navy
  grantid: N17A-T004
  funderid: 10.13039/100009896
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-442f34f6c71207b3e7a3ee2093760bafd88b19467be90c2739e6602b8ceb3e933
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 12:36:56 EDT 2025
Mon Jun 30 03:04:05 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Tue Jul 01 03:58:56 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Wed Aug 27 02:27:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-442f34f6c71207b3e7a3ee2093760bafd88b19467be90c2739e6602b8ceb3e933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33048681
PQID 2483262379
PQPubID 75741
PageCount 11
ParticipantIDs proquest_miscellaneous_2451134177
pubmed_primary_33048681
proquest_journals_2483262379
crossref_primary_10_1109_TVCG_2020_3030335
crossref_citationtrail_10_1109_TVCG_2020_3030335
ieee_primary_9222364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
huff (ref24) 1993
ref54
ref10
kale (ref32) 2019
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
baron (ref1) 2008
von neumann (ref57) 1944
ref48
ref47
ref44
pinheiro (ref43) 2020
ref49
ref7
ref9
ref3
ref40
ref35
ref37
ref36
ref31
wilkinson (ref60) 1973; 22
ref33
ref2
kahneman (ref30) 2011
ref38
tukey (ref53) 1977
biirkner (ref5) 2020
coe (ref8) 2002
micallef (ref41) 2012; 18
ref23
ref26
ref25
ref20
pearson (ref42) 1895; 186
ref22
ref21
kay (ref34) 0
ref28
ref27
ref29
brinton (ref4) 1939
chance (ref6) 0
ref62
ref61
manski (ref39) 2019
References_xml – ident: ref61
  doi: 10.1186/s41235-019-0182-3
– ident: ref19
  doi: 10.3758/s13423-013-0572-3
– ident: ref12
  doi: 10.1037/0003-066X.60.2.170
– ident: ref18
  doi: 10.1006/cogp.1998.0710
– year: 1939
  ident: ref4
  publication-title: Graphic presentation
– ident: ref45
  doi: 10.1037/h0042769
– ident: ref20
  doi: 10.1097/00001888-199805000-00024
– volume: 22
  start-page: 392
  year: 1973
  ident: ref60
  article-title: Symbolic Description of Factorial Models for Analysis of Variance
  publication-title: Journal of the Royal Statistical Society Series C (Applied Statistics)
– ident: ref29
  doi: 10.1037/a0025185
– ident: ref26
  doi: 10.1371/journal.pone.0142444
– ident: ref54
  doi: 10.1126/science.185.4157.1124
– ident: ref37
  doi: 10.1073/pnas.1722389115
– ident: ref56
  doi: 10.1111/j.1740-9713.2013.00636.x
– ident: ref33
  doi: 10.1109/TVCG.2018.2864909
– ident: ref46
  doi: 10.1016/0041-5553(76)90154-3
– ident: ref59
  doi: 10.2139/ssrn.3117054
– ident: ref55
  doi: 10.1126/science.7455683
– ident: ref31
  doi: 10.2307/1914185
– ident: ref51
  doi: 10.1167/16.5.11
– year: 0
  ident: ref34
  article-title: When (ish) is My Bus? User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems
  publication-title: Proceedings of the 2016 ACM annual conference on Human Factors in Computing Systems
– ident: ref50
  doi: 10.1177/2059799116672879
– ident: ref22
  doi: 10.1037/a0023265
– year: 2020
  ident: ref43
  publication-title: nlme Linear and Nonlinear Mixed Effects Models
– ident: ref49
  doi: 10.1037/h0046162
– ident: ref52
  doi: 10.6028/NIST.TN.1297
– ident: ref13
  doi: 10.1001/archpediatrics.2011.97
– ident: ref3
  doi: 10.1037/1082-989X.10.4.389
– ident: ref25
  doi: 10.1109/TVCG.2019.2934287
– year: 1993
  ident: ref24
  publication-title: How to Lie with Statistics
– ident: ref48
  doi: 10.1111/1467-985X.00120
– start-page: 1
  year: 2019
  ident: ref39
  article-title: The lure of incredible certitude
  publication-title: Economics and Philosophy
– ident: ref27
  doi: 10.1109/TVCG.2019.2934786
– ident: ref7
  doi: 10.2307/2288400
– ident: ref44
  doi: 10.3389/fpsyg.2019.00813
– ident: ref15
  doi: 10.1111/rssa.12378
– ident: ref21
  doi: 10.1145/3313831.3376454
– year: 1977
  ident: ref53
  publication-title: Exploratory Data Analysis
– ident: ref62
  doi: 10.3389/fnins.2012.00001
– ident: ref36
  doi: 10.1145/3290605.3300912
– ident: ref35
  doi: 10.3386/w23294
– ident: ref2
  doi: 10.1198/0003130032369
– year: 2011
  ident: ref30
  publication-title: Thinking Fast and Slow
– ident: ref38
  doi: 10.3386/w24905
– ident: ref9
  doi: 10.1145/3313831.3376222
– year: 2008
  ident: ref1
  publication-title: Thinking and Deciding
– year: 2019
  ident: ref32
  article-title: Adaptation and learning priors in visual inference
  publication-title: VisXVision Workshop at IEEE VIS 2019
– ident: ref16
  doi: 10.1037/a0014474
– volume: 18
  start-page: 2536
  year: 2012
  ident: ref41
  article-title: Assessing the effect of visualizations on Bayesian reasoning through crowdsourcing to cite this version
  publication-title: IEEE Transactions on Visualization and Computer Graphics Institute of Electrical and Electronics Engineers
– volume: 186
  start-page: 343
  year: 1895
  ident: ref42
  article-title: Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material
  publication-title: Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences
– ident: ref28
  doi: 10.1177/0963721413481473
– ident: ref11
  doi: 10.1177/0956797613504966
– ident: ref10
  doi: 10.1109/TVCG.2014.2346298
– ident: ref14
  doi: 10.1145/3173574.3173718
– year: 2020
  ident: ref5
  publication-title: brms Bayesian Regression Models using 'Stan'
– start-page: 2
  year: 0
  ident: ref6
  article-title: Developing Simulation Activities to Improve Students' Statistical Reasoning
  publication-title: Proceedings of the International Conference on Technology in Mathematics Education
– ident: ref23
  doi: 10.1037/0033-295X.107.3.500
– year: 1944
  ident: ref57
  publication-title: Theory of Games and Economic Behavior (60th Anniversary Commemorative Edition)
– ident: ref40
  doi: 10.1037/0033-2909.111.2.361
– ident: ref58
  doi: 10.1037/0033-2909.115.2.228
– ident: ref17
  doi: 10.1037/0033-295X.102.4.684
– year: 2002
  ident: ref8
  publication-title: It's the Effect Size Stupid What Effect Size Is and Why It Is Important
– ident: ref47
  doi: 10.1016/j.ijforecast.2012.02.002
SSID ssj0014489
Score 2.56876
Snippet Uncertainty visualizations often emphasize point estimates to support magnitude estimates or decisions through visual comparison. However, when design choices...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 272
SubjectTerms Containment
data cognition
Data visualization
Decision making
Design
Estimation
graphical perception
Optimization
Qualitative analysis
Task analysis
Uncertainty
Uncertainty visualization
User satisfaction
Visual effects
Visualization
Title Visual Reasoning Strategies for Effect Size Judgments and Decisions
URI https://ieeexplore.ieee.org/document/9222364
https://www.ncbi.nlm.nih.gov/pubmed/33048681
https://www.proquest.com/docview/2483262379
https://www.proquest.com/docview/2451134177
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9YwDLe2neAAjPEobFOQOE30W5uEPI7o28Y0aRzYQ7tVaeKiCdQP0a-X_fU46UOAAO1Wqe4jthP_HDs2wFtFMjdGlXnQXuUyyCZ3nOajQemboEyNSdLnn9TplTy7eX-zAe_mszCImJLPcBEvUyw_rHwft8oObTRmSm7CJjluw1mtOWJAboYd8gt1zgmljxHMsrCHl9fLj-QJcnJQSaWFiN1qohtvlCl_M0epv8q_oWYyOSeP4Xz62SHT5OuiX9cLf_dHHcf7juYJPBqxJ_swKMs2bGD7FB7-UpFwB5bXt11PNJ_RdWmjlk3la7FjhG_ZUO2YXdzeITvrw5d0Qo65NrCjsVtP9wyuTo4vl6f52Gch90LadS4lb4RslNclL3QtUDuByAsbE2Zq1wRj6tLSilqjLTzhHYtKFbw2njxxtEI8h6121eJLYE3h0DtLrxHkOYZgNfdESGso8b_0LoNiYnflxyLksRfGtyo5I4WtorCqKKxqFFYGB_Mj34cKHP8j3omMnglHHmewO8m0GudoV3FJqxmhP20zeDPfptkVQyauxVUfaQiQkqHXOoMXgy7M755U6NXfv_kaHsQxDxneu7C1_tHjHgGYdb2fNPcnrsPnpg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMojUMBInBDZJrbrxxEtlKV0e4Bt1VvkOBNUtcoisrn01zN2HgIEiFukTB6eGXu-8YxnAF4pkrkxKk8r7VUqK1mnjtN8NCh9XSlTYpT08lgtTuTh2f7ZFryZzsIgYkw-w1m4jLH8au27sFW2Z4MxU_IaXCe7v5_3p7WmmAE5GrbPMNQpJ5w-xDDzzO6tTucfyBfk5KKSUgsR-tUER94ok_9ikGKHlb-DzWh0Du7AcvzdPtfkYtZtypm_-q2S4_-O5y7cHtAne9uryz3YwuY-3PqpJuEOzE_P245oPqNr41YtGwvYYssI4bK-3jH7cn6F7LCrvsYzcsw1FXs39OtpH8DJwfvVfJEOnRZSL6TdpFLyWshaeZ3zTJcCtROIPLMhZaZ0dWVMmVtaU0u0mSfEY1GpjJfGky-OVoiHsN2sG3wMrM4cemfpNYJ8x6qymnsipFWU-J97l0A2srvwQxny0A3jsojuSGaLIKwiCKsYhJXA6-mRb30Njn8R7wRGT4QDjxPYHWVaDLO0Lbik9Yzwn7YJvJxu0_wKQRPX4LoLNARJydRrncCjXhemd48q9OTP33wBNxar5VFx9PH401O4Gcbf53vvwvbme4fPCM5syudRi38A77vq7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Reasoning+Strategies+for+Effect+Size+Judgments+and+Decisions&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Kale%2C+Alex&rft.au=Kay%2C+Matthew&rft.au=Hullman%2C+Jessica&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=27&rft.issue=2&rft.spage=272&rft.epage=282&rft_id=info:doi/10.1109%2FTVCG.2020.3030335&rft_id=info%3Apmid%2F33048681&rft.externalDocID=9222364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon