Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation
Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To r...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 7; pp. 3197 - 3208 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation. |
---|---|
AbstractList | Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation. Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation. |
Author | Liu, Jie Liu, Weifan Yu, Zekuan Wang, Pengyu Zhang, Huaqi Chen, Huang |
Author_xml | – sequence: 1 givenname: Huaqi surname: Zhang fullname: Zhang, Huaqi email: zhq15132453336@163.com organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Jie orcidid: 0000-0001-6738-4801 surname: Liu fullname: Liu, Jie email: 20112040@bjtu.edu.cn organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Pengyu orcidid: 0000-0003-0997-9887 surname: Wang fullname: Wang, Pengyu email: y10180292@mail.ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 4 givenname: Zekuan orcidid: 0000-0003-3655-872X surname: Yu fullname: Yu, Zekuan email: yzk@fudan.edu.cn organization: Academy of Engineering and Technology, Fudan University, Shanghai, China – sequence: 5 givenname: Weifan orcidid: 0000-0002-0710-9311 surname: Liu fullname: Liu, Weifan email: wliu07@syr.edu organization: Department of Mathematics, Syracuse University, New York, NY, USA – sequence: 6 givenname: Huang surname: Chen fullname: Chen, Huang email: 1058749185@qq.com organization: Department of Pathology, China-Japan Friendship Hospital, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35196252$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtu2zAYhYkiRXNpHqAoUAjokkUuLxIvY-I2sQsbHeqdoKVfLgOJdEhq8NuXhuwMGcKFBPF9B-R_rtGF8w4Q-kLwjBCsfvx-WCxnFFM6Y6RmQrEP6IoSLktKsbw4n4mqLtFtjM84L5mvFP-ELllNFKc1vUIv8-BjLB-8jwnaYj32yZYbE3aQip9-MNYV963ZJ5Osd0XnwwlZ-9b0Nh2KhY3J703653u_OxTLweyg2ATjYj85xrXFX9gN4KaQz-hjZ_oIt6f9Bm0ef23mi3L152k5v1-VDatUKivGODGUV6zjFRV1BaQRqsWYsgqw3MptC0IqUguDWUdYXUMjKkJBcoIJYzfobordB_8yQkx6sLGBvjcO_Bg15YzKTEqe0e9v0Gc_BpcflylJFSUS40x9O1HjdoBW74MdTDjo8ywzICagOY40QKcbO305BWN7TbA-FqePxeljcfpUXDbJG_Mc_p7zdXIsALzySlCMhWD_AVXOoUo |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1007_s11517_024_03222_9 crossref_primary_10_1109_LSP_2023_3344312 crossref_primary_10_1016_j_inffus_2024_102333 crossref_primary_10_1007_s11263_024_02004_y crossref_primary_10_1007_s11042_023_16400_y crossref_primary_10_1109_TIP_2024_3349866 crossref_primary_10_1109_JBHI_2023_3272342 crossref_primary_10_1109_JBHI_2022_3217015 |
Cites_doi | 10.1109/CVPR.2018.00070 10.1109/CVPRW50498.2020.00104 10.1109/TIP.2012.2219547 10.1609/aaai.v33i01.3301865 10.1109/TMI.2019.2903562 10.1109/CVPR.2016.90 10.1007/978-3-030-00889-5_1 10.1109/TPAMI.2018.2856256 10.1109/ICCV.2017.167 10.1109/TMI.2020.3023466 10.1109/TPAMI.2012.213 10.1109/CVPR.2019.00710 10.1016/j.media.2019.101547 10.1109/JBHI.2019.2949837 10.1109/CVPR42600.2020.00781 10.1038/nmeth.2083 10.1109/CVPR.2018.00780 10.1109/WACV48630.2021.00404 10.1109/CVPR46437.2021.00809 10.1109/TMI.2020.3000314 10.1109/CVPR46437.2021.00106 10.1109/TMI.2017.2677499 10.1109/JBHI.2020.3039741 10.3389/fbioe.2019.00053 10.1109/JBHI.2020.3027566 10.1109/ICCV.2019.00353 10.1109/CVPR.2019.00200 10.1109/ISBI48211.2021.9433883 10.1109/ICCV48922.2021.00894 10.1142/9789814644730_0029 10.1016/j.patcog.2020.107404 10.1109/CVPR42600.2020.00223 10.1007/978-3-030-32254-0_58 10.1109/TIP.2019.2963389 10.1109/TMI.2018.2865709 10.1016/j.media.2019.101563 10.1109/CVPR42600.2020.00819 10.1109/ICCV.2017.244 10.1109/JBHI.2020.3015844 10.1007/978-3-030-11021-5_5 10.1109/TMI.2019.2899910 10.1109/CVPR46437.2021.01086 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2022.3153793 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 3208 |
ExternalDocumentID | 35196252 10_1109_JBHI_2022_3153793 9720077 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Fudan University grantid: gyy_yc_2020-8 funderid: 10.13039/501100003347 – fundername: National Natural Science Foundation of China grantid: KKA309004533 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFA0700401 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 6IL ADZIZ CHZPO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c349t-43361a2643f642754e1c79d00234e08b8bde789157a03f1355ec7412e8610133 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 11:35:30 EDT 2025 Mon Jun 30 04:51:03 EDT 2025 Thu Jan 02 22:54:59 EST 2025 Tue Jul 01 03:00:02 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Wed Aug 27 02:23:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-43361a2643f642754e1c79d00234e08b8bde789157a03f1355ec7412e8610133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6738-4801 0000-0003-0997-9887 0000-0003-3655-872X 0000-0002-0710-9311 |
PMID | 35196252 |
PQID | 2682921800 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2682921800 pubmed_primary_35196252 crossref_citationtrail_10_1109_JBHI_2022_3153793 crossref_primary_10_1109_JBHI_2022_3153793 ieee_primary_9720077 proquest_miscellaneous_2632810186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 vu (ref35) 2019; 7 kim (ref10) 0 ref17 ref16 ref19 ref18 li (ref20) 0 ronneberger (ref45) 0 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 li (ref13) 0 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 bi?kowski (ref38) 0 ref24 ref26 ref22 ref21 ref28 ref27 ref29 luo (ref23) 0 wu (ref25) 0 |
References_xml | – ident: ref27 doi: 10.1109/CVPR.2018.00070 – ident: ref17 doi: 10.1109/CVPRW50498.2020.00104 – start-page: 4334 year: 0 ident: ref25 article-title: Cross-domain semantic segmentation via domain-invariant interactive relation transfer publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref40 doi: 10.1109/TIP.2012.2219547 – ident: ref7 doi: 10.1609/aaai.v33i01.3301865 – ident: ref47 doi: 10.1109/TMI.2019.2903562 – ident: ref19 doi: 10.1109/CVPR.2016.90 – ident: ref46 doi: 10.1007/978-3-030-00889-5_1 – ident: ref39 doi: 10.1109/TPAMI.2018.2856256 – ident: ref12 doi: 10.1109/ICCV.2017.167 – ident: ref5 doi: 10.1109/TMI.2020.3023466 – ident: ref22 doi: 10.1109/TPAMI.2012.213 – ident: ref6 doi: 10.1109/CVPR.2019.00710 – ident: ref36 doi: 10.1016/j.media.2019.101547 – ident: ref3 doi: 10.1109/JBHI.2019.2949837 – ident: ref14 doi: 10.1109/CVPR42600.2020.00781 – ident: ref37 doi: 10.1038/nmeth.2083 – ident: ref15 doi: 10.1109/CVPR.2018.00780 – ident: ref43 doi: 10.1109/WACV48630.2021.00404 – year: 0 ident: ref38 article-title: Demystifying MMD GANs publication-title: Proc Int Conf Learn Represent – start-page: 385 year: 0 ident: ref13 article-title: Universal style transfer via feature transforms publication-title: Proc Adv Neural Informat Process Syst – ident: ref8 doi: 10.1109/CVPR46437.2021.00809 – ident: ref30 doi: 10.1109/TMI.2020.3000314 – ident: ref44 doi: 10.1109/CVPR46437.2021.00106 – ident: ref31 doi: 10.1109/TMI.2017.2677499 – ident: ref2 doi: 10.1109/JBHI.2020.3039741 – year: 0 ident: ref23 article-title: Differentiable learning-to-normalize via switchable normalization publication-title: Proc Int Conf Learn Represent – volume: 7 start-page: 1 year: 2019 ident: ref35 article-title: Methods for segmentation and classification of digital microscopy tissue images publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00053 – ident: ref1 doi: 10.1109/JBHI.2020.3027566 – ident: ref21 doi: 10.1109/ICCV.2019.00353 – ident: ref41 doi: 10.1109/CVPR.2019.00200 – ident: ref49 doi: 10.1109/ISBI48211.2021.9433883 – ident: ref9 doi: 10.1109/ICCV48922.2021.00894 – ident: ref33 doi: 10.1142/9789814644730_0029 – ident: ref24 doi: 10.1016/j.patcog.2020.107404 – start-page: 3809 year: 0 ident: ref20 article-title: Learning linear transformations for fast arbitrary style transfer publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref28 doi: 10.1109/CVPR42600.2020.00223 – ident: ref26 doi: 10.1007/978-3-030-32254-0_58 – ident: ref18 doi: 10.1109/TIP.2019.2963389 – ident: ref32 doi: 10.1109/TMI.2018.2865709 – ident: ref34 doi: 10.1016/j.media.2019.101563 – ident: ref11 doi: 10.1109/CVPR42600.2020.00819 – start-page: 234 year: 0 ident: ref45 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv – ident: ref4 doi: 10.1109/ICCV.2017.244 – ident: ref48 doi: 10.1109/JBHI.2020.3015844 – ident: ref29 doi: 10.1007/978-3-030-11021-5_5 – ident: ref42 doi: 10.1109/TMI.2019.2899910 – ident: ref16 doi: 10.1109/CVPR46437.2021.01086 – year: 0 ident: ref10 article-title: U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation publication-title: Proc Int Conf Learn Represent |
SSID | ssj0000816896 |
Score | 2.3927605 |
Snippet | Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin &... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3197 |
SubjectTerms | Adaptation bidirectional cross-domain boosting Coders Complementarity Complementation cross-frequency feature transfer Datasets Digital imaging Domains Feature extraction Fluorescence Fluorescence microscopy Frequency modulation Hafnium Histopathology Image analysis Image color analysis Image processing Image segmentation Medical imaging Modules Multi-modality histopathology image multi-target domain adaptation Pipelines Translation |
Title | Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation |
URI | https://ieeexplore.ieee.org/document/9720077 https://www.ncbi.nlm.nih.gov/pubmed/35196252 https://www.proquest.com/docview/2682921800 https://www.proquest.com/docview/2632810186 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT6RAEK6oB-PF567iK22yJ7OM0DTT9NFnRpPZi2PijUB3Y4wO-Ji5-OutanpINK7xRqCAJlVNffUG-IOnEYTaOOQi1aHQSoeZQJsHTRUhuS1Q5ZO_Y_ivP7gRV7fp7Rz87WphrLUu-cz26NDF8k2jp-QqO1KSPGtyHubRcGtrtTp_ihsg4cZxcTwIcSMKH8SMI3V0dTK4RGOQc7RR0wRlcgkWaTQdon_-QSO5ESv_R5tO61yswHC23jbZ5KE3nZQ9_fapleNPP2gVlj38ZMetvKzBnK3XYXHoA-wb8HxKawxPGlf7wVx5bjhy2eLsrBkX9zU7NsVTG79nCHg9ybAxDtAz13aExhw7dz27HOP_ijmF2CbdsaI27NrejX3NU_0LRhfno9NB6KcyhDoRakIlVv24QByVVGi7yFTYWEtlSPkLG2VlVhorMxWnsoiSKkY8YzXCFm4zRGpoEf-Ghbqp7RawqkqQQHJNXQErYVRpZGJkxLWheB0PIJoxJte-YzkNznjMneUSqZzYmhNbc8_WAA67W57adh3fEW8QSzpCz40Admfcz_2Gfs15P-MK4VAUBXDQXcatSPGVorbNlGgSTv3Ssn4Am63UdM-eCdv21-_cgSVaWZsHvAsLk5ep3UO0Myn3nZi_A5m99hM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH-aNmnswoABCwwwElyQ0iWOU8eHHfaHqd3WXSjSblZiOwixJoO1QvBV-Cp8uL3nuJFAwG0St6h9bVPnZ7_f-w_wCl9GEurSmIvcxMIoExcCbR40VYTkrkSVT_6Oyflw9F6cXOQXK_Cjr4VxzvnkMzegSx_Lt61ZkKtsV0nyrMmQQnnqvn1FA-16b3yET_M158dvp4ejOMwQiE0m1JwKgoZpiVo_q5Fpy1y41EhlSVUJlxRVUVknC5XmskyyOkXt6wwqWe4K5BUpeTvxfF9DmpHzrjisd-D4iRV-_hfHixh3vghR0zRRuycHozFan5yjUZxnuAk2YJ1m4aG5wX9RgX6my9_prVdzx5vwc7lAXXbLp8FiXg3M9996R_6nK3gP7gZ6zfa7_XAfVlzzANYnIYFgCz4f0pLEB62vbWG-_Die-mx4dtTOyo8N27flVZefwJDQB5FJa73BwnxbFRrj7MMRbDzD85h5hd8lFbKyseyd-zALNV3NQ5jexv99BKtN27htYHWdoYDkhroe1sKqysrMyoQbS_FIHkGyxIE2oSM7DQa51N4yS5QmFGlCkQ4oiuBN_5Grrh3Jv4S3CAG9YHj4EewswabDgXWt-bDgCulekkTwsn8bjxqKH5WNaxckk3HqB1cMI3jcgbT_7iW2n_z5N1_AndF0cqbPxuenT2GD7rLLed6B1fmXhXuGzG5ePfc7jIG-ZTzeAN8STYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Boosted+Multi-Target+Domain+Adaptation+for+Multi-Modality+Histopathology+Image+Translation+and+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Huaqi&rft.au=Liu%2C+Jie&rft.au=Wang%2C+Pengyu&rft.au=Yu%2C+Zekuan&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=26&rft.issue=7&rft.spage=3197&rft.epage=3208&rft_id=info:doi/10.1109%2FJBHI.2022.3153793&rft_id=info%3Apmid%2F35196252&rft.externalDocID=9720077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |