Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation

Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To r...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 7; pp. 3197 - 3208
Main Authors Zhang, Huaqi, Liu, Jie, Wang, Pengyu, Yu, Zekuan, Liu, Weifan, Chen, Huang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.
AbstractList Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.
Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin & Eosin (H&E) and Immunohistochemically (IHC) stained images, which can provide comprehensive gold standard for cancer diagnosis. To resolve this issue, we propose a cross-boosted multi-target domain adaptation pipeline for multi-modality histopathology images, which contains Cross-frequency Style-auxiliary Translation Network (CSTN) and Dual Cross-boosted Segmentation Network (DCSN). Firstly, CSTN achieves the one-to-many translation from fluorescence microscopy images to H&E and IHC images for providing source domain training data. To generate images with realistic color and texture, Cross-frequency Feature Transfer Module (CFTM) is developed to pertinently restructure and normalize high-frequency content and low-frequency style features from different domains. Then, DCSN fulfills multi-target domain adaptive segmentation, where a dual-branch encoder is introduced, and Bidirectional Cross-domain Boosting Module (BCBM) is designed to implement cross-modality information complementation through bidirectional inter-domain collaboration. Finally, we establish Multi-modality Thymus Histopathology (MThH) dataset, which is the largest publicly available H&E and IHC image benchmark. Experiments on MThH dataset and several public datasets show that the proposed pipeline outperforms state-of-the-art methods on both histopathology image translation and segmentation.
Author Liu, Jie
Liu, Weifan
Yu, Zekuan
Wang, Pengyu
Zhang, Huaqi
Chen, Huang
Author_xml – sequence: 1
  givenname: Huaqi
  surname: Zhang
  fullname: Zhang, Huaqi
  email: zhq15132453336@163.com
  organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-6738-4801
  surname: Liu
  fullname: Liu, Jie
  email: 20112040@bjtu.edu.cn
  organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Pengyu
  orcidid: 0000-0003-0997-9887
  surname: Wang
  fullname: Wang, Pengyu
  email: y10180292@mail.ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 4
  givenname: Zekuan
  orcidid: 0000-0003-3655-872X
  surname: Yu
  fullname: Yu, Zekuan
  email: yzk@fudan.edu.cn
  organization: Academy of Engineering and Technology, Fudan University, Shanghai, China
– sequence: 5
  givenname: Weifan
  orcidid: 0000-0002-0710-9311
  surname: Liu
  fullname: Liu, Weifan
  email: wliu07@syr.edu
  organization: Department of Mathematics, Syracuse University, New York, NY, USA
– sequence: 6
  givenname: Huang
  surname: Chen
  fullname: Chen, Huang
  email: 1058749185@qq.com
  organization: Department of Pathology, China-Japan Friendship Hospital, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35196252$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtu2zAYhYkiRXNpHqAoUAjokkUuLxIvY-I2sQsbHeqdoKVfLgOJdEhq8NuXhuwMGcKFBPF9B-R_rtGF8w4Q-kLwjBCsfvx-WCxnFFM6Y6RmQrEP6IoSLktKsbw4n4mqLtFtjM84L5mvFP-ELllNFKc1vUIv8-BjLB-8jwnaYj32yZYbE3aQip9-MNYV963ZJ5Osd0XnwwlZ-9b0Nh2KhY3J703653u_OxTLweyg2ATjYj85xrXFX9gN4KaQz-hjZ_oIt6f9Bm0ef23mi3L152k5v1-VDatUKivGODGUV6zjFRV1BaQRqsWYsgqw3MptC0IqUguDWUdYXUMjKkJBcoIJYzfobordB_8yQkx6sLGBvjcO_Bg15YzKTEqe0e9v0Gc_BpcflylJFSUS40x9O1HjdoBW74MdTDjo8ywzICagOY40QKcbO305BWN7TbA-FqePxeljcfpUXDbJG_Mc_p7zdXIsALzySlCMhWD_AVXOoUo
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s11517_024_03222_9
crossref_primary_10_1109_LSP_2023_3344312
crossref_primary_10_1016_j_inffus_2024_102333
crossref_primary_10_1007_s11263_024_02004_y
crossref_primary_10_1007_s11042_023_16400_y
crossref_primary_10_1109_TIP_2024_3349866
crossref_primary_10_1109_JBHI_2023_3272342
crossref_primary_10_1109_JBHI_2022_3217015
Cites_doi 10.1109/CVPR.2018.00070
10.1109/CVPRW50498.2020.00104
10.1109/TIP.2012.2219547
10.1609/aaai.v33i01.3301865
10.1109/TMI.2019.2903562
10.1109/CVPR.2016.90
10.1007/978-3-030-00889-5_1
10.1109/TPAMI.2018.2856256
10.1109/ICCV.2017.167
10.1109/TMI.2020.3023466
10.1109/TPAMI.2012.213
10.1109/CVPR.2019.00710
10.1016/j.media.2019.101547
10.1109/JBHI.2019.2949837
10.1109/CVPR42600.2020.00781
10.1038/nmeth.2083
10.1109/CVPR.2018.00780
10.1109/WACV48630.2021.00404
10.1109/CVPR46437.2021.00809
10.1109/TMI.2020.3000314
10.1109/CVPR46437.2021.00106
10.1109/TMI.2017.2677499
10.1109/JBHI.2020.3039741
10.3389/fbioe.2019.00053
10.1109/JBHI.2020.3027566
10.1109/ICCV.2019.00353
10.1109/CVPR.2019.00200
10.1109/ISBI48211.2021.9433883
10.1109/ICCV48922.2021.00894
10.1142/9789814644730_0029
10.1016/j.patcog.2020.107404
10.1109/CVPR42600.2020.00223
10.1007/978-3-030-32254-0_58
10.1109/TIP.2019.2963389
10.1109/TMI.2018.2865709
10.1016/j.media.2019.101563
10.1109/CVPR42600.2020.00819
10.1109/ICCV.2017.244
10.1109/JBHI.2020.3015844
10.1007/978-3-030-11021-5_5
10.1109/TMI.2019.2899910
10.1109/CVPR46437.2021.01086
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3153793
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3208
ExternalDocumentID 35196252
10_1109_JBHI_2022_3153793
9720077
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fudan University
  grantid: gyy_yc_2020-8
  funderid: 10.13039/501100003347
– fundername: National Natural Science Foundation of China
  grantid: KKA309004533
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0700401
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-43361a2643f642754e1c79d00234e08b8bde789157a03f1355ec7412e8610133
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 11:35:30 EDT 2025
Mon Jun 30 04:51:03 EDT 2025
Thu Jan 02 22:54:59 EST 2025
Tue Jul 01 03:00:02 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
Wed Aug 27 02:23:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-43361a2643f642754e1c79d00234e08b8bde789157a03f1355ec7412e8610133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6738-4801
0000-0003-0997-9887
0000-0003-3655-872X
0000-0002-0710-9311
PMID 35196252
PQID 2682921800
PQPubID 85417
PageCount 12
ParticipantIDs proquest_journals_2682921800
pubmed_primary_35196252
crossref_citationtrail_10_1109_JBHI_2022_3153793
crossref_primary_10_1109_JBHI_2022_3153793
ieee_primary_9720077
proquest_miscellaneous_2632810186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
vu (ref35) 2019; 7
kim (ref10) 0
ref17
ref16
ref19
ref18
li (ref20) 0
ronneberger (ref45) 0
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
li (ref13) 0
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
bi?kowski (ref38) 0
ref24
ref26
ref22
ref21
ref28
ref27
ref29
luo (ref23) 0
wu (ref25) 0
References_xml – ident: ref27
  doi: 10.1109/CVPR.2018.00070
– ident: ref17
  doi: 10.1109/CVPRW50498.2020.00104
– start-page: 4334
  year: 0
  ident: ref25
  article-title: Cross-domain semantic segmentation via domain-invariant interactive relation transfer
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref40
  doi: 10.1109/TIP.2012.2219547
– ident: ref7
  doi: 10.1609/aaai.v33i01.3301865
– ident: ref47
  doi: 10.1109/TMI.2019.2903562
– ident: ref19
  doi: 10.1109/CVPR.2016.90
– ident: ref46
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref39
  doi: 10.1109/TPAMI.2018.2856256
– ident: ref12
  doi: 10.1109/ICCV.2017.167
– ident: ref5
  doi: 10.1109/TMI.2020.3023466
– ident: ref22
  doi: 10.1109/TPAMI.2012.213
– ident: ref6
  doi: 10.1109/CVPR.2019.00710
– ident: ref36
  doi: 10.1016/j.media.2019.101547
– ident: ref3
  doi: 10.1109/JBHI.2019.2949837
– ident: ref14
  doi: 10.1109/CVPR42600.2020.00781
– ident: ref37
  doi: 10.1038/nmeth.2083
– ident: ref15
  doi: 10.1109/CVPR.2018.00780
– ident: ref43
  doi: 10.1109/WACV48630.2021.00404
– year: 0
  ident: ref38
  article-title: Demystifying MMD GANs
  publication-title: Proc Int Conf Learn Represent
– start-page: 385
  year: 0
  ident: ref13
  article-title: Universal style transfer via feature transforms
  publication-title: Proc Adv Neural Informat Process Syst
– ident: ref8
  doi: 10.1109/CVPR46437.2021.00809
– ident: ref30
  doi: 10.1109/TMI.2020.3000314
– ident: ref44
  doi: 10.1109/CVPR46437.2021.00106
– ident: ref31
  doi: 10.1109/TMI.2017.2677499
– ident: ref2
  doi: 10.1109/JBHI.2020.3039741
– year: 0
  ident: ref23
  article-title: Differentiable learning-to-normalize via switchable normalization
  publication-title: Proc Int Conf Learn Represent
– volume: 7
  start-page: 1
  year: 2019
  ident: ref35
  article-title: Methods for segmentation and classification of digital microscopy tissue images
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00053
– ident: ref1
  doi: 10.1109/JBHI.2020.3027566
– ident: ref21
  doi: 10.1109/ICCV.2019.00353
– ident: ref41
  doi: 10.1109/CVPR.2019.00200
– ident: ref49
  doi: 10.1109/ISBI48211.2021.9433883
– ident: ref9
  doi: 10.1109/ICCV48922.2021.00894
– ident: ref33
  doi: 10.1142/9789814644730_0029
– ident: ref24
  doi: 10.1016/j.patcog.2020.107404
– start-page: 3809
  year: 0
  ident: ref20
  article-title: Learning linear transformations for fast arbitrary style transfer
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref28
  doi: 10.1109/CVPR42600.2020.00223
– ident: ref26
  doi: 10.1007/978-3-030-32254-0_58
– ident: ref18
  doi: 10.1109/TIP.2019.2963389
– ident: ref32
  doi: 10.1109/TMI.2018.2865709
– ident: ref34
  doi: 10.1016/j.media.2019.101563
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00819
– start-page: 234
  year: 0
  ident: ref45
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv
– ident: ref4
  doi: 10.1109/ICCV.2017.244
– ident: ref48
  doi: 10.1109/JBHI.2020.3015844
– ident: ref29
  doi: 10.1007/978-3-030-11021-5_5
– ident: ref42
  doi: 10.1109/TMI.2019.2899910
– ident: ref16
  doi: 10.1109/CVPR46437.2021.01086
– year: 0
  ident: ref10
  article-title: U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation
  publication-title: Proc Int Conf Learn Represent
SSID ssj0000816896
Score 2.3927605
Snippet Recent digital pathology workflows mainly focus on mono-modality histopathology image analysis. However, they ignore the complementarity between Haematoxylin &...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3197
SubjectTerms Adaptation
bidirectional cross-domain boosting
Coders
Complementarity
Complementation
cross-frequency feature transfer
Datasets
Digital imaging
Domains
Feature extraction
Fluorescence
Fluorescence microscopy
Frequency modulation
Hafnium
Histopathology
Image analysis
Image color analysis
Image processing
Image segmentation
Medical imaging
Modules
Multi-modality histopathology image
multi-target domain adaptation
Pipelines
Translation
Title Cross-Boosted Multi-Target Domain Adaptation for Multi-Modality Histopathology Image Translation and Segmentation
URI https://ieeexplore.ieee.org/document/9720077
https://www.ncbi.nlm.nih.gov/pubmed/35196252
https://www.proquest.com/docview/2682921800
https://www.proquest.com/docview/2632810186
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT6RAEK6oB-PF567iK22yJ7OM0DTT9NFnRpPZi2PijUB3Y4wO-Ji5-OutanpINK7xRqCAJlVNffUG-IOnEYTaOOQi1aHQSoeZQJsHTRUhuS1Q5ZO_Y_ivP7gRV7fp7Rz87WphrLUu-cz26NDF8k2jp-QqO1KSPGtyHubRcGtrtTp_ihsg4cZxcTwIcSMKH8SMI3V0dTK4RGOQc7RR0wRlcgkWaTQdon_-QSO5ESv_R5tO61yswHC23jbZ5KE3nZQ9_fapleNPP2gVlj38ZMetvKzBnK3XYXHoA-wb8HxKawxPGlf7wVx5bjhy2eLsrBkX9zU7NsVTG79nCHg9ybAxDtAz13aExhw7dz27HOP_ijmF2CbdsaI27NrejX3NU_0LRhfno9NB6KcyhDoRakIlVv24QByVVGi7yFTYWEtlSPkLG2VlVhorMxWnsoiSKkY8YzXCFm4zRGpoEf-Ghbqp7RawqkqQQHJNXQErYVRpZGJkxLWheB0PIJoxJte-YzkNznjMneUSqZzYmhNbc8_WAA67W57adh3fEW8QSzpCz40Admfcz_2Gfs15P-MK4VAUBXDQXcatSPGVorbNlGgSTv3Ssn4Am63UdM-eCdv21-_cgSVaWZsHvAsLk5ep3UO0Myn3nZi_A5m99hM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Pb9MwFH-aNmnswoABCwwwElyQ0iWOU8eHHfaHqd3WXSjSblZiOwixJoO1QvBV-Cp8uL3nuJFAwG0St6h9bVPnZ7_f-w_wCl9GEurSmIvcxMIoExcCbR40VYTkrkSVT_6Oyflw9F6cXOQXK_Cjr4VxzvnkMzegSx_Lt61ZkKtsV0nyrMmQQnnqvn1FA-16b3yET_M158dvp4ejOMwQiE0m1JwKgoZpiVo_q5Fpy1y41EhlSVUJlxRVUVknC5XmskyyOkXt6wwqWe4K5BUpeTvxfF9DmpHzrjisd-D4iRV-_hfHixh3vghR0zRRuycHozFan5yjUZxnuAk2YJ1m4aG5wX9RgX6my9_prVdzx5vwc7lAXXbLp8FiXg3M9996R_6nK3gP7gZ6zfa7_XAfVlzzANYnIYFgCz4f0pLEB62vbWG-_Die-mx4dtTOyo8N27flVZefwJDQB5FJa73BwnxbFRrj7MMRbDzD85h5hd8lFbKyseyd-zALNV3NQ5jexv99BKtN27htYHWdoYDkhroe1sKqysrMyoQbS_FIHkGyxIE2oSM7DQa51N4yS5QmFGlCkQ4oiuBN_5Grrh3Jv4S3CAG9YHj4EewswabDgXWt-bDgCulekkTwsn8bjxqKH5WNaxckk3HqB1cMI3jcgbT_7iW2n_z5N1_AndF0cqbPxuenT2GD7rLLed6B1fmXhXuGzG5ePfc7jIG-ZTzeAN8STYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Boosted+Multi-Target+Domain+Adaptation+for+Multi-Modality+Histopathology+Image+Translation+and+Segmentation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Huaqi&rft.au=Liu%2C+Jie&rft.au=Wang%2C+Pengyu&rft.au=Yu%2C+Zekuan&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=26&rft.issue=7&rft.spage=3197&rft.epage=3208&rft_id=info:doi/10.1109%2FJBHI.2022.3153793&rft_id=info%3Apmid%2F35196252&rft.externalDocID=9720077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon