Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling
The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data manage...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 68; no. 8; pp. 2592 - 2601 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation. |
---|---|
AbstractList | The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation. The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation.The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation. |
Author | Chen, Wei Jiang, Xinyu Dai, Chenyun Clancy, Edward Bardizbanian, Berj |
Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0002-8518-1415 surname: Jiang fullname: Jiang, Xinyu – sequence: 2 givenname: Berj surname: Bardizbanian fullname: Bardizbanian, Berj – sequence: 3 givenname: Chenyun orcidid: 0000-0002-3056-4339 surname: Dai fullname: Dai, Chenyun email: chenyundai@fudan.edu.cn organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 4 givenname: Wei orcidid: 0000-0003-3720-718X surname: Chen fullname: Chen, Wei email: w_chen@fudan.edu.cn organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 5 givenname: Edward orcidid: 0000-0002-0729-2523 surname: Clancy fullname: Clancy, Edward |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33788675$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaZy0P6AEgqCXXNbV6GO1OubDSQteenHPiyzNJhvWkiOtKf33lbGTQw49DcM878zLvGfkJMSAhHwFNgdg5vvqpl3MOeMwF6w2poYPZAZKNRVXAk7IjDFoKsONPCVnOT-XVjay_kROhdBNU2s1I-2dnSxtbbCPuMEw0T4muko25B4TXaJNYQiP9Hq7TdG6J8x0inQxruMfumgfqlVMLzukbfQ4Fu4z-djbMeOXYz0nv-8Xq9sf1fLXw8_b62XlhDRTJZlUWloPnjXGGGnB-LrnDrTrrZbecbVeNxKhZxq89tbXZcKMY1gr3ztxTq4Oe4urcj9P3WbIDsfRBoy73HHFtBagORT02zv0Oe5SKO4KpTgoo2tVqMsjtVtv0HfbNGxs-tu9PqoAcABcijkn7N8QYN0-jG4fRrcPozuGUTT6ncYNk52GGKZkh_G_youDckDEt0tGGC6YFP8AQe6Uxw |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_JBHI_2023_3262316 crossref_primary_10_1177_00202940221105092 crossref_primary_10_1016_j_bspc_2024_106892 crossref_primary_10_1109_TIM_2022_3141163 crossref_primary_10_1088_1741_2552_ad184f crossref_primary_10_1109_TMRB_2024_3408312 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1016_j_bspc_2021_103012 crossref_primary_10_1109_TNSRE_2022_3194246 crossref_primary_10_1109_TNSRE_2021_3082551 crossref_primary_10_1088_1741_2552_ad1786 crossref_primary_10_1016_j_bspc_2022_103522 crossref_primary_10_1109_TNSRE_2023_3295453 crossref_primary_10_1016_j_jelekin_2024_102864 crossref_primary_10_1109_JBHI_2023_3330192 crossref_primary_10_1109_JBHI_2024_3383598 crossref_primary_10_3390_s22010211 crossref_primary_10_1016_j_neunet_2024_106960 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1186_s13634_024_01183_7 |
Cites_doi | 10.1109/EMBC44109.2020.9175675 10.1137/080738970 10.1109/RBME.2010.2085429 10.1016/j.jbiomech.2005.08.007 10.1109/BIOCAS.2019.8919154 10.1109/TNSRE.2015.2492619 10.1109/10.844217 10.1109/TNN.2010.2091281 10.1145/3240508.3240512 10.1088/1741-2552/aa9666 10.1109/TBME.2008.2007967 10.1016/0024-3795(87)90103-0 10.1109/ICCV.2013.274 10.1109/ROBOT.2009.5152247 10.1109/TNSRE.2015.2405765 10.1007/s10439-019-02240-1 10.1109/10.764948 10.1109/JBHI.2020.3027389 10.1109/TNSRE.2013.2243470 10.1109/TNSRE.2016.2639443 10.1109/10.634654 10.1109/EMBC44109.2020.9175370 10.1214/aoms/1177728986 10.1109/TII.2020.3001612 10.1109/JBHI.2019.2926307 10.1109/TNSRE.2013.2278411 10.1109/TNSRE.2018.2838448 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2021.3069961 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2601 |
ExternalDocumentID | 33788675 10_1109_TBME_2021_3069961 9392304 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai grantid: 20ZR1403400 funderid: 10.13039/100007219 – fundername: Shanghai Pujiang Program grantid: 19PJ1401100 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-404574ad1d089994a19d6f2c17cfa74dc25bb84e1f071d7dad67cf09c0e65dfc3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 11:42:01 EDT 2025 Mon Jun 30 08:42:05 EDT 2025 Wed Feb 19 02:28:33 EST 2025 Tue Jul 01 03:28:35 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Wed Aug 27 02:40:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-404574ad1d089994a19d6f2c17cfa74dc25bb84e1f071d7dad67cf09c0e65dfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8518-1415 0000-0003-3720-718X 0000-0002-0729-2523 0000-0002-3056-4339 |
PMID | 33788675 |
PQID | 2552159765 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TBME_2021_3069961 crossref_primary_10_1109_TBME_2021_3069961 proquest_journals_2552159765 proquest_miscellaneous_2507731721 pubmed_primary_33788675 ieee_primary_9392304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 holm (ref24) 1979; 6 ref31 ref30 ref11 ref2 ref1 ref16 ref19 ref18 sun (ref17) 0 m (ref9) 2016; 24 ref23 ref26 h (ref5) 2012; 23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 prahm (ref10) 0 ref6 |
References_xml | – start-page: 153 year: 0 ident: ref10 article-title: Transfer learning for rapid re-calibration of a myoelectric prosthesis after electrode shift publication-title: Converging Clinical and Engineering Research on Neurorehabilitation II – ident: ref12 doi: 10.1109/EMBC44109.2020.9175675 – ident: ref22 doi: 10.1137/080738970 – ident: ref18 doi: 10.1109/RBME.2010.2085429 – ident: ref20 doi: 10.1016/j.jbiomech.2005.08.007 – ident: ref29 doi: 10.1109/BIOCAS.2019.8919154 – volume: 24 start-page: 961 year: 2016 ident: ref9 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2015.2492619 – ident: ref7 doi: 10.1109/10.844217 – volume: 6 start-page: 65 year: 1979 ident: ref24 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – ident: ref28 doi: 10.1109/TNN.2010.2091281 – ident: ref31 doi: 10.1145/3240508.3240512 – ident: ref14 doi: 10.1088/1741-2552/aa9666 – ident: ref15 doi: 10.1109/TBME.2008.2007967 – ident: ref21 doi: 10.1016/0024-3795(87)90103-0 – ident: ref30 doi: 10.1109/ICCV.2013.274 – ident: ref11 doi: 10.1109/ROBOT.2009.5152247 – ident: ref8 doi: 10.1109/TNSRE.2015.2405765 – ident: ref3 doi: 10.1007/s10439-019-02240-1 – ident: ref6 doi: 10.1109/10.764948 – volume: 23 start-page: 216 year: 2012 ident: ref5 article-title: Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces publication-title: J Electromyogr Kinesiol – ident: ref26 doi: 10.1109/JBHI.2020.3027389 – ident: ref19 doi: 10.1109/TNSRE.2013.2243470 – ident: ref1 doi: 10.1109/TNSRE.2016.2639443 – ident: ref2 doi: 10.1109/10.634654 – ident: ref27 doi: 10.1109/EMBC44109.2020.9175370 – ident: ref23 doi: 10.1214/aoms/1177728986 – ident: ref25 doi: 10.1109/TII.2020.3001612 – ident: ref4 doi: 10.1109/JBHI.2019.2926307 – ident: ref16 doi: 10.1109/TNSRE.2013.2278411 – ident: ref13 doi: 10.1109/TNSRE.2018.2838448 – start-page: 2058 year: 0 ident: ref17 article-title: Return of frustratingly easy domain adaptation publication-title: Proc 13th AAAI Conf Artif Intell |
SSID | ssj0014846 |
Score | 2.4760654 |
Snippet | The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2592 |
SubjectTerms | Adaptation models Calibration Contraction Data acquisition Data management Data models Domains Elbow Elbow (anatomy) Electromyography EMG-torque model Least squares method Modelling Performance evaluation prosthesis control Torque Training Transfer learning unsupervised transfer learning Utilization |
Title | Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling |
URI | https://ieeexplore.ieee.org/document/9392304 https://www.ncbi.nlm.nih.gov/pubmed/33788675 https://www.proquest.com/docview/2552159765 https://www.proquest.com/docview/2507731721 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDlV7AAptCS-5Uk9Vs9iJ46yP0C5FldLTInGLHD96KNqgJSskfj0ziTegqq16i2QnsT3j-JvMzDcAHwv8AoYs8DRoKVMprU0RtfJUWhWslGUz5ZSNXP1Ql1fy-3VxvQGfx1wY730ffOYndNn78l1rV_Sr7FTjYZ4T-ecLNNyGXK3RYyCnQ1IOF7iBMy2jB1NwfTo_r2ZoCWZigvgY8T1Vh8mJR11RdOGz46ivr_J3qNkfORfbUK0HO0Sa_JqsumZiH37jcfzf2ezAVsSe7GxQljew4Re78PoZI-EuvKyir30Pqq-mM-wpPIYhvGX90Rb8kkVe1p_sLJKS-zvWtWx207T3bFZ9S-ftEmfHqNYaZby_hauL2fzLZRqLL6Q2l7pDu1IWpTROOHIMammEdipkVpQ2mFI6mxVNM5VeBAQprnTGKWzh2nKvChds_g42F-3C7wNTRPlSCoSKKpdW8yma48poYbKMm5zzBPhaBrWNzORUIOOm7i0UrmuSYE0SrKMEE_g03nI70HL8q_Merf7YMS58AkdrQddx497VaGEhCEKMViTwYWzGLUd-FLPw7Yr68LLMyXZO4P2gIOOz13p18Od3HsIrGtkQQXgEm91y5Y8R1XTNSa_Oj49v7O4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VrcTjUKClkFLASJwQ2dqJ46yPBbYs0PS0lXqLHD84UG3QNiskfn1nEm-oECBukewktsfOfJOZ-QbgdYFfwJAFngYtZSqltSmiVp5Kq4KVsmymnLKRq3M1v5CfL4vLLXg75sJ47_vgMz-hy96X71q7pl9lxxqVeU7knzuo9wsxZGuNPgM5HdJyuMAjnGkZfZiC6-PFu2qGtmAmJoiQEeFTfZicmNQVxRfeUkh9hZW_g81e6Zw-gGoz3CHW5Ntk3TUT-_M3Jsf_nc9D2I3ok50M2-URbPnlHty_xUm4B3eq6G3fh-qD6Qz7FSDDEOCyXrkFv2KRmfUrO4m05P6adS2bXTXtDzarPqaLdoWzY1RtjXLeH8PF6Wzxfp7G8gupzaXu0LKURSmNE45cg1oaoZ0KmRWlDaaUzmZF00ylFwFhiiudcQpbuLbcq8IFmx_A9rJd-qfAFJG-lALBosql1XyKBrkyWpgs4ybnPAG-kUFtIzc5lci4qnsbheuaJFiTBOsowQTejLd8H4g5_tV5n1Z_7BgXPoGjjaDreHSva7SxEAYhSisSeDU246EjT4pZ-nZNfXhZ5mQ9J_Bk2CDjszf76vDP73wJd-eL6qw--3T-5Rnco1EO8YRHsN2t1v45YpyuedFv7RsW0_A3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Management+for+Transfer+Learning+Approaches+to+Elbow+EMG-Torque+Modeling&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Jiang%2C+Xinyu&rft.au=Bardizbanian%2C+Berj&rft.au=Dai%2C+Chenyun&rft.au=Chen%2C+Wei&rft.date=2021-08-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=68&rft.issue=8&rft.spage=2592&rft_id=info:doi/10.1109%2FTBME.2021.3069961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |