Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling

The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data manage...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 8; pp. 2592 - 2601
Main Authors Jiang, Xinyu, Bardizbanian, Berj, Dai, Chenyun, Chen, Wei, Clancy, Edward
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation.
AbstractList The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation.
The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation.The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject on a second day. Improving the generalization performance of models is essential but challenging. In this work, we investigate how data management strategies contribute to the performance of elbow joint EMG-torque models in cross-subject evaluation. Data management can be divided into two parts, namely data acquisition and data utilization. For data acquisition, analysis of data from 65 subjects shows that training set data diversity (number of subjects) is more important than data size (total data duration). For data utilization, we propose a correlation-based data weighting (COR-W) method for model calibration which is unsupervised in the modeling stage. We first evaluated the domain shift level between data in each training trial (source domain) and data acquired from a new subject (target domain) via the mismatch of feature correlation, using only EMG signals in the target domain without the synchronized torque values (hence unsupervised during model training). Data weights were assigned to each training trial according to different domain shift levels. The weighted least squares method using the obtained data weights was then employed to develop a calibrated EMG-torque model for the new subject. The COR-W method can achieve a low root mean square error (9.29% maximum voluntary contraction) in cross-subject evaluation, with significant performance improvement compared to models without calibration. Both the data acquisition and utilization strategies contribute to the performance of EMG-torque models in cross-subject evaluation.
Author Chen, Wei
Jiang, Xinyu
Dai, Chenyun
Clancy, Edward
Bardizbanian, Berj
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0002-8518-1415
  surname: Jiang
  fullname: Jiang, Xinyu
– sequence: 2
  givenname: Berj
  surname: Bardizbanian
  fullname: Bardizbanian, Berj
– sequence: 3
  givenname: Chenyun
  orcidid: 0000-0002-3056-4339
  surname: Dai
  fullname: Dai, Chenyun
  email: chenyundai@fudan.edu.cn
  organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3720-718X
  surname: Chen
  fullname: Chen, Wei
  email: w_chen@fudan.edu.cn
  organization: Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 5
  givenname: Edward
  orcidid: 0000-0002-0729-2523
  surname: Clancy
  fullname: Clancy, Edward
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33788675$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaZy0P6AEgqCXXNbV6GO1OubDSQteenHPiyzNJhvWkiOtKf33lbGTQw49DcM878zLvGfkJMSAhHwFNgdg5vvqpl3MOeMwF6w2poYPZAZKNRVXAk7IjDFoKsONPCVnOT-XVjay_kROhdBNU2s1I-2dnSxtbbCPuMEw0T4muko25B4TXaJNYQiP9Hq7TdG6J8x0inQxruMfumgfqlVMLzukbfQ4Fu4z-djbMeOXYz0nv-8Xq9sf1fLXw8_b62XlhDRTJZlUWloPnjXGGGnB-LrnDrTrrZbecbVeNxKhZxq89tbXZcKMY1gr3ztxTq4Oe4urcj9P3WbIDsfRBoy73HHFtBagORT02zv0Oe5SKO4KpTgoo2tVqMsjtVtv0HfbNGxs-tu9PqoAcABcijkn7N8QYN0-jG4fRrcPozuGUTT6ncYNk52GGKZkh_G_youDckDEt0tGGC6YFP8AQe6Uxw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_JBHI_2023_3262316
crossref_primary_10_1177_00202940221105092
crossref_primary_10_1016_j_bspc_2024_106892
crossref_primary_10_1109_TIM_2022_3141163
crossref_primary_10_1088_1741_2552_ad184f
crossref_primary_10_1109_TMRB_2024_3408312
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1016_j_bspc_2021_103012
crossref_primary_10_1109_TNSRE_2022_3194246
crossref_primary_10_1109_TNSRE_2021_3082551
crossref_primary_10_1088_1741_2552_ad1786
crossref_primary_10_1016_j_bspc_2022_103522
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1016_j_jelekin_2024_102864
crossref_primary_10_1109_JBHI_2023_3330192
crossref_primary_10_1109_JBHI_2024_3383598
crossref_primary_10_3390_s22010211
crossref_primary_10_1016_j_neunet_2024_106960
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1186_s13634_024_01183_7
Cites_doi 10.1109/EMBC44109.2020.9175675
10.1137/080738970
10.1109/RBME.2010.2085429
10.1016/j.jbiomech.2005.08.007
10.1109/BIOCAS.2019.8919154
10.1109/TNSRE.2015.2492619
10.1109/10.844217
10.1109/TNN.2010.2091281
10.1145/3240508.3240512
10.1088/1741-2552/aa9666
10.1109/TBME.2008.2007967
10.1016/0024-3795(87)90103-0
10.1109/ICCV.2013.274
10.1109/ROBOT.2009.5152247
10.1109/TNSRE.2015.2405765
10.1007/s10439-019-02240-1
10.1109/10.764948
10.1109/JBHI.2020.3027389
10.1109/TNSRE.2013.2243470
10.1109/TNSRE.2016.2639443
10.1109/10.634654
10.1109/EMBC44109.2020.9175370
10.1214/aoms/1177728986
10.1109/TII.2020.3001612
10.1109/JBHI.2019.2926307
10.1109/TNSRE.2013.2278411
10.1109/TNSRE.2018.2838448
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2021.3069961
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2601
ExternalDocumentID 33788675
10_1109_TBME_2021_3069961
9392304
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  grantid: 20ZR1403400
  funderid: 10.13039/100007219
– fundername: Shanghai Pujiang Program
  grantid: 19PJ1401100
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-404574ad1d089994a19d6f2c17cfa74dc25bb84e1f071d7dad67cf09c0e65dfc3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 11:42:01 EDT 2025
Mon Jun 30 08:42:05 EDT 2025
Wed Feb 19 02:28:33 EST 2025
Tue Jul 01 03:28:35 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-404574ad1d089994a19d6f2c17cfa74dc25bb84e1f071d7dad67cf09c0e65dfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8518-1415
0000-0003-3720-718X
0000-0002-0729-2523
0000-0002-3056-4339
PMID 33788675
PQID 2552159765
PQPubID 85474
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TBME_2021_3069961
crossref_primary_10_1109_TBME_2021_3069961
proquest_journals_2552159765
proquest_miscellaneous_2507731721
pubmed_primary_33788675
ieee_primary_9392304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
holm (ref24) 1979; 6
ref31
ref30
ref11
ref2
ref1
ref16
ref19
ref18
sun (ref17) 0
m (ref9) 2016; 24
ref23
ref26
h (ref5) 2012; 23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
prahm (ref10) 0
ref6
References_xml – start-page: 153
  year: 0
  ident: ref10
  article-title: Transfer learning for rapid re-calibration of a myoelectric prosthesis after electrode shift
  publication-title: Converging Clinical and Engineering Research on Neurorehabilitation II
– ident: ref12
  doi: 10.1109/EMBC44109.2020.9175675
– ident: ref22
  doi: 10.1137/080738970
– ident: ref18
  doi: 10.1109/RBME.2010.2085429
– ident: ref20
  doi: 10.1016/j.jbiomech.2005.08.007
– ident: ref29
  doi: 10.1109/BIOCAS.2019.8919154
– volume: 24
  start-page: 961
  year: 2016
  ident: ref9
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref7
  doi: 10.1109/10.844217
– volume: 6
  start-page: 65
  year: 1979
  ident: ref24
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Stat
– ident: ref28
  doi: 10.1109/TNN.2010.2091281
– ident: ref31
  doi: 10.1145/3240508.3240512
– ident: ref14
  doi: 10.1088/1741-2552/aa9666
– ident: ref15
  doi: 10.1109/TBME.2008.2007967
– ident: ref21
  doi: 10.1016/0024-3795(87)90103-0
– ident: ref30
  doi: 10.1109/ICCV.2013.274
– ident: ref11
  doi: 10.1109/ROBOT.2009.5152247
– ident: ref8
  doi: 10.1109/TNSRE.2015.2405765
– ident: ref3
  doi: 10.1007/s10439-019-02240-1
– ident: ref6
  doi: 10.1109/10.764948
– volume: 23
  start-page: 216
  year: 2012
  ident: ref5
  article-title: Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces
  publication-title: J Electromyogr Kinesiol
– ident: ref26
  doi: 10.1109/JBHI.2020.3027389
– ident: ref19
  doi: 10.1109/TNSRE.2013.2243470
– ident: ref1
  doi: 10.1109/TNSRE.2016.2639443
– ident: ref2
  doi: 10.1109/10.634654
– ident: ref27
  doi: 10.1109/EMBC44109.2020.9175370
– ident: ref23
  doi: 10.1214/aoms/1177728986
– ident: ref25
  doi: 10.1109/TII.2020.3001612
– ident: ref4
  doi: 10.1109/JBHI.2019.2926307
– ident: ref16
  doi: 10.1109/TNSRE.2013.2278411
– ident: ref13
  doi: 10.1109/TNSRE.2018.2838448
– start-page: 2058
  year: 0
  ident: ref17
  article-title: Return of frustratingly easy domain adaptation
  publication-title: Proc 13th AAAI Conf Artif Intell
SSID ssj0014846
Score 2.4760654
Snippet The performance of single-use subject-specific electromyogram (EMG)-torque models degrades significantly when used on a new subject, or even the same subject...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2592
SubjectTerms Adaptation models
Calibration
Contraction
Data acquisition
Data management
Data models
Domains
Elbow
Elbow (anatomy)
Electromyography
EMG-torque model
Least squares method
Modelling
Performance evaluation
prosthesis control
Torque
Training
Transfer learning
unsupervised transfer learning
Utilization
Title Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling
URI https://ieeexplore.ieee.org/document/9392304
https://www.ncbi.nlm.nih.gov/pubmed/33788675
https://www.proquest.com/docview/2552159765
https://www.proquest.com/docview/2507731721
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDlV7AAptCS-5Uk9Vs9iJ46yP0C5FldLTInGLHD96KNqgJSskfj0ziTegqq16i2QnsT3j-JvMzDcAHwv8AoYs8DRoKVMprU0RtfJUWhWslGUz5ZSNXP1Ql1fy-3VxvQGfx1wY730ffOYndNn78l1rV_Sr7FTjYZ4T-ecLNNyGXK3RYyCnQ1IOF7iBMy2jB1NwfTo_r2ZoCWZigvgY8T1Vh8mJR11RdOGz46ivr_J3qNkfORfbUK0HO0Sa_JqsumZiH37jcfzf2ezAVsSe7GxQljew4Re78PoZI-EuvKyir30Pqq-mM-wpPIYhvGX90Rb8kkVe1p_sLJKS-zvWtWx207T3bFZ9S-ftEmfHqNYaZby_hauL2fzLZRqLL6Q2l7pDu1IWpTROOHIMammEdipkVpQ2mFI6mxVNM5VeBAQprnTGKWzh2nKvChds_g42F-3C7wNTRPlSCoSKKpdW8yma48poYbKMm5zzBPhaBrWNzORUIOOm7i0UrmuSYE0SrKMEE_g03nI70HL8q_Merf7YMS58AkdrQddx497VaGEhCEKMViTwYWzGLUd-FLPw7Yr68LLMyXZO4P2gIOOz13p18Od3HsIrGtkQQXgEm91y5Y8R1XTNSa_Oj49v7O4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VrcTjUKClkFLASJwQ2dqJ46yPBbYs0PS0lXqLHD84UG3QNiskfn1nEm-oECBukewktsfOfJOZ-QbgdYFfwJAFngYtZSqltSmiVp5Kq4KVsmymnLKRq3M1v5CfL4vLLXg75sJ47_vgMz-hy96X71q7pl9lxxqVeU7knzuo9wsxZGuNPgM5HdJyuMAjnGkZfZiC6-PFu2qGtmAmJoiQEeFTfZicmNQVxRfeUkh9hZW_g81e6Zw-gGoz3CHW5Ntk3TUT-_M3Jsf_nc9D2I3ok50M2-URbPnlHty_xUm4B3eq6G3fh-qD6Qz7FSDDEOCyXrkFv2KRmfUrO4m05P6adS2bXTXtDzarPqaLdoWzY1RtjXLeH8PF6Wzxfp7G8gupzaXu0LKURSmNE45cg1oaoZ0KmRWlDaaUzmZF00ylFwFhiiudcQpbuLbcq8IFmx_A9rJd-qfAFJG-lALBosql1XyKBrkyWpgs4ybnPAG-kUFtIzc5lci4qnsbheuaJFiTBOsowQTejLd8H4g5_tV5n1Z_7BgXPoGjjaDreHSva7SxEAYhSisSeDU246EjT4pZ-nZNfXhZ5mQ9J_Bk2CDjszf76vDP73wJd-eL6qw--3T-5Rnco1EO8YRHsN2t1v45YpyuedFv7RsW0_A3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Management+for+Transfer+Learning+Approaches+to+Elbow+EMG-Torque+Modeling&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Jiang%2C+Xinyu&rft.au=Bardizbanian%2C+Berj&rft.au=Dai%2C+Chenyun&rft.au=Chen%2C+Wei&rft.date=2021-08-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=68&rft.issue=8&rft.spage=2592&rft_id=info:doi/10.1109%2FTBME.2021.3069961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon