Anisotropic angular scattering models of elastic electron-neutral collisions for Monte Carlo plasma simulations

Abstract Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and macroscopic processes. A prime example of this interplay is how particle and Monte Carlo (MC) simulation codes describe angular scattering of electrons...

Full description

Saved in:
Bibliographic Details
Published inPlasma sources science & technology Vol. 31; no. 6; pp. 65013 - 65028
Main Authors Park, Ryan M, Kupets, Willem, Zammit, Mark C, Colgan, James, Fontes, Christopher J, Scheiner, Brett S, Timmermans, Eddy, Tang, Xian-Zhu, Scarlett, Liam H, Fursa, Dmitry V, Bray, Igor, Garland, Nathan A
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and macroscopic processes. A prime example of this interplay is how particle and Monte Carlo (MC) simulation codes describe angular scattering of electrons following elastic scattering events. The forward peaked nature of high energy electron elastic scattering is relatively trivial to accurately describe in plasma simulations. However, for lower energy collisions, which produce near isotropic or backward peaked differential cross sections, there is not a strong consensus among the plasma modeling community on how to best describe these angular scattering trends. In this study, we propose a systematic method to approximate the aforementioned non-trivial angular scattering behavior with a formula that can be readily implemented in particle-in-cell (PIC) and/or MC plasma simulation codes. The present approach is specifically applied to fusion relevant atomic hydrogen and helium, as well as for molecular hydrogen, and results are also applicable to the atomic isotopes and homonuclear molecular isotopologues of these species. Comparisons between the present angular distribution function and benchmark scattering data were used to validate the proposed models. In addition, two-term Boltzmann calculations and PIC direct simulation MC simulations revealed that the proposed angular distribution function is accurate, agreeing very well with benchmark convergent close-coupling scattering calculations, and electron transport measurements. These studies confirmed that the present angular distribution function model can be utilized without the need of renormalization to the momentum transfer cross section (as opposed to using the elastic scattering integrated cross section), which has been suggested by several studies in order to correct for deficient angular scattering models, and to agree with transport measurements. Hence, the present anisotropic angular scattering model can be utilized to accurately model the momentum transfer as well as the electron trajectories of elastic collisions.
AbstractList Abstract Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and macroscopic processes. A prime example of this interplay is how particle and Monte Carlo (MC) simulation codes describe angular scattering of electrons following elastic scattering events. The forward peaked nature of high energy electron elastic scattering is relatively trivial to accurately describe in plasma simulations. However, for lower energy collisions, which produce near isotropic or backward peaked differential cross sections, there is not a strong consensus among the plasma modeling community on how to best describe these angular scattering trends. In this study, we propose a systematic method to approximate the aforementioned non-trivial angular scattering behavior with a formula that can be readily implemented in particle-in-cell (PIC) and/or MC plasma simulation codes. The present approach is specifically applied to fusion relevant atomic hydrogen and helium, as well as for molecular hydrogen, and results are also applicable to the atomic isotopes and homonuclear molecular isotopologues of these species. Comparisons between the present angular distribution function and benchmark scattering data were used to validate the proposed models. In addition, two-term Boltzmann calculations and PIC direct simulation MC simulations revealed that the proposed angular distribution function is accurate, agreeing very well with benchmark convergent close-coupling scattering calculations, and electron transport measurements. These studies confirmed that the present angular distribution function model can be utilized without the need of renormalization to the momentum transfer cross section (as opposed to using the elastic scattering integrated cross section), which has been suggested by several studies in order to correct for deficient angular scattering models, and to agree with transport measurements. Hence, the present anisotropic angular scattering model can be utilized to accurately model the momentum transfer as well as the electron trajectories of elastic collisions.
Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and macroscopic processes. A prime example of this interplay is how particle and Monte Carlo (MC) simulation codes describe angular scattering of electrons following elastic scattering events. The forward peaked nature of high energy electron elastic scattering is relatively trivial to accurately describe in plasma simulations. However, for lower energy collisions, which produce near isotropic or backward peaked differential cross sections, there is not a strong consensus among the plasma modeling community on how to best describe these angular scattering trends. Here, in this study, we propose a systematic method to approximate the aforementioned non-trivial angular scattering behavior with a formula that can be readily implemented in particle-in-cell (PIC) and/or MC plasma simulation codes. The present approach is specifically applied to fusion relevant atomic hydrogen and helium, as well as for molecular hydrogen, and results are also applicable to the atomic isotopes and homonuclear molecular isotopologues of these species. Comparisons between the present angular distribution function and benchmark scattering data were used to validate the proposed models. In addition, two-term Boltzmann calculations and PIC direct simulation MC simulations revealed that the proposed angular distribution function is accurate, agreeing very well with benchmark convergent close-coupling scattering calculations, and electron transport measurements. These studies confirmed that the present angular distribution function model can be utilized without the need of renormalization to the momentum transfer cross section (as opposed to using the elastic scattering integrated cross section), which has been suggested by several studies in order to correct for deficient angular scattering models, and to agree with transport measurements. Hence, the present anisotropic angular scattering model can be utilized to accurately model the momentum transfer as well as the electron trajectories of elastic collisions.
Author Scarlett, Liam H
Kupets, Willem
Tang, Xian-Zhu
Fursa, Dmitry V
Park, Ryan M
Zammit, Mark C
Scheiner, Brett S
Fontes, Christopher J
Colgan, James
Bray, Igor
Garland, Nathan A
Timmermans, Eddy
Author_xml – sequence: 1
  givenname: Ryan M
  surname: Park
  fullname: Park, Ryan M
  organization: Tulane University Tulane Department of Chemical and Biomolecular Engineering, New Orleans, LA 70118, United States of America
– sequence: 2
  givenname: Willem
  surname: Kupets
  fullname: Kupets, Willem
  organization: Los Alamos National Laboratory Theoretical Division, Los Alamos, NM 87545, United States of America
– sequence: 3
  givenname: Mark C
  orcidid: 0000-0003-0473-379X
  surname: Zammit
  fullname: Zammit, Mark C
  organization: Los Alamos National Laboratory Theoretical Division, Los Alamos, NM 87545, United States of America
– sequence: 4
  givenname: James
  orcidid: 0000-0003-1045-3858
  surname: Colgan
  fullname: Colgan, James
  organization: Los Alamos National Laboratory Theoretical Division, Los Alamos, NM 87545, United States of America
– sequence: 5
  givenname: Christopher J
  surname: Fontes
  fullname: Fontes, Christopher J
  organization: Los Alamos National Laboratory Computational Physics Division, Los Alamos, NM 87545, United States of America
– sequence: 6
  givenname: Brett S
  surname: Scheiner
  fullname: Scheiner, Brett S
  organization: Los Alamos National Laboratory Computational Physics Division, Los Alamos, NM 87545, United States of America
– sequence: 7
  givenname: Eddy
  surname: Timmermans
  fullname: Timmermans, Eddy
  organization: Los Alamos National Laboratory Computational Physics Division, Los Alamos, NM 87545, United States of America
– sequence: 8
  givenname: Xian-Zhu
  orcidid: 0000-0002-4036-6643
  surname: Tang
  fullname: Tang, Xian-Zhu
  organization: Los Alamos National Laboratory Theoretical Division, Los Alamos, NM 87545, United States of America
– sequence: 9
  givenname: Liam H
  orcidid: 0000-0002-9900-9712
  surname: Scarlett
  fullname: Scarlett, Liam H
  organization: Curtin University Curtin Institute for Computation and Department of Physics and Astronomy, Perth, Western Australia 6102, Australia
– sequence: 10
  givenname: Dmitry V
  orcidid: 0000-0002-3951-9016
  surname: Fursa
  fullname: Fursa, Dmitry V
  organization: Curtin University Curtin Institute for Computation and Department of Physics and Astronomy, Perth, Western Australia 6102, Australia
– sequence: 11
  givenname: Igor
  orcidid: 0000-0001-7554-8044
  surname: Bray
  fullname: Bray, Igor
  organization: Curtin University Curtin Institute for Computation and Department of Physics and Astronomy, Perth, Western Australia 6102, Australia
– sequence: 12
  givenname: Nathan A
  orcidid: 0000-0003-0343-0199
  surname: Garland
  fullname: Garland, Nathan A
  organization: Griffith University School of Environment & Science, Nathan, QLD 4111, Australia
BackLink https://www.osti.gov/servlets/purl/2318946$$D View this record in Osti.gov
BookMark eNp1kM1LAzEQxYNUsK3ePQbPrs1kv7LHUvyCihc9h2ya1JRssiTpwf_eLCvenMvA8HuPN2-FFs47hdAtkAcgjG2gbKBo6q7eCNky0Bdo-XdaoCXpmrIgtKZXaBXjiRAARtsl8ltnok_Bj0Zi4Y5nKwKOUqSkgnFHPPiDshF7jZUVMWVIWSUz7wqnzikIi6W31kTjXcTaB_zmXVJ4J4L1eMyaQeBohuybJuQaXWpho7r53Wv0-fT4sXsp9u_Pr7vtvpBl1aWiIrQFEGUHB6LzUCqg7SgIDYx1eSQFpepalawlfS9EzxpJ2162jQZdiXKN7mZfn0PzKE1S8kt653J4TktgXdVkiMyQDD7GoDQfgxlE-OZA-NQqnyrkU4V8bjVL7meJ8SM_-XNw-Yv_8R-dsHz6
CODEN PSTEEU
CitedBy_id crossref_primary_10_1088_1361_6463_ad3477
crossref_primary_10_1088_1361_6595_ad2491
crossref_primary_10_1063_5_0190352
crossref_primary_10_1063_5_0153862
Cites_doi 10.1016/0009-2614(88)85126-1
10.1088/1361-6595/aae055
10.1088/0022-3727/46/33/334001
10.1071/ph670369
10.1088/0370-1328/83/1/316
10.1088/1742-6596/180/1/012055
10.1088/1361-6587/abdd75
10.1103/physreva.95.022708
10.1103/physreva.41.1112
10.1103/physrevlett.76.2674
10.1063/1.371443
10.1029/ja084ia06p02715
10.1088/0953-4075/30/5/022
10.1088/0022-3727/20/12/007
10.1029/2005ja011350
10.1088/1361-6455/aa6e74
10.1140/epjd/e2020-100549-0
10.1103/physreve.91.043304
10.1103/physreva.49.1066
10.1002/ctpp.201100051
10.1103/physrevlett.89.273201
10.1103/physrev.179.186
10.1088/0022-3727/42/19/194001
10.1103/physrevlett.69.53
10.1088/0953-4075/35/15/201
10.1088/1361-6595/aa51ef
10.1088/0963-0252/25/5/055026
10.1088/1361-6595/aae05c
10.1088/0022-3727/46/33/334002
10.1029/2019jd031564
10.1002/ppap.201600098
10.1071/ph740235
10.1063/1.4751865
10.1071/ph700667
10.1088/1361-6455/aa9048
10.1103/physreva.83.052711
10.1088/0953-4075/29/22/023
10.1088/1361-6595/aa5cce
10.1088/0953-4075/30/24/023
10.1016/j.adt.2005.07.004
10.1063/1.350555
10.1103/physrev.133.1005
10.1071/PH920185
10.1103/physreva.46.6995
10.1016/0010-4655(94)00171-w
10.1103/physrevlett.116.233201
10.1063/1.5004717
10.1103/physreve.65.037402
10.1088/0963-0252/14/4/011
10.1088/0741-3335/55/12/124041
10.1103/physreva.97.050702
10.1088/1361-6595/aa73c6
10.1088/0963-0252/16/1/S01
10.1088/0022-3727/10/3/011
10.1103/physreva.52.1279
10.1088/1361-6595/aaf968
10.1088/0022-3727/14/11/008
10.1088/1361-6455/aa8a23
10.1103/physreva.15.1847
10.1103/PhysRev.128.2661
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd
Copyright_xml – notice: 2022 IOP Publishing Ltd
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1088/1361-6595/ac781f
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-6595
ExternalDocumentID 2318946
10_1088_1361_6595_ac781f
psstac781f
GrantInformation_xml – fundername: National Nuclear Security Administration of the U.S. Department of Energy
  grantid: 89233218NCA000001
– fundername: Los Alamos National Laboratory (LANL)
– fundername: Australian Government
  funderid: https://doi.org/10.13039/100015539
– fundername: LANL’s ASC PEM Atomic Physics Project
– fundername: Laboratory Directed Research and Development
  grantid: 20200356ER
  funderid: https://doi.org/10.13039/100007000
– fundername: United States Air Force
– fundername: Curtin University
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
UCJ
W28
XPP
ZMT
AAYXX
CITATION
OIOZB
OTOTI
ID FETCH-LOGICAL-c349t-402711a391d0ffff22a17921af1889999c21ee55e3870bbaab86c27bc76f1f4a3
IEDL.DBID IOP
ISSN 0963-0252
IngestDate Mon Oct 14 04:25:06 EDT 2024
Fri Aug 23 04:05:28 EDT 2024
Wed Aug 21 03:35:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-402711a391d0ffff22a17921af1889999c21ee55e3870bbaab86c27bc76f1f4a3
Notes PSST-104972.R1
LA-UR-21-32313
89233218CNA000001
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-0473-379X
0000-0003-0343-0199
0000-0002-4036-6643
0000-0002-3951-9016
0000-0001-7554-8044
0000-0002-9900-9712
0000-0003-1045-3858
000000030473379X
0000000299009712
0000000310453858
0000000239519016
0000000310872964
0000000303430199
0000000175548044
0000000160029129
0000000252361276
0000000240366643
OpenAccessLink https://www.osti.gov/servlets/purl/2318946
PageCount 16
ParticipantIDs osti_scitechconnect_2318946
crossref_primary_10_1088_1361_6595_ac781f
iop_journals_10_1088_1361_6595_ac781f
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plasma sources science & technology
PublicationTitleAbbrev PSST
PublicationTitleAlternate Plasma Sources Sci. Technol
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bowers (psstac781fbib14) 2009; 180
Röder (psstac781fbib38) 1997; 30
Garland (psstac781fbib13) 2018; 27
Pack (psstac781fbib61) 1992; 71
Hagelaar (psstac781fbib8) 2005; 14
Casey (psstac781fbib22) 2017; 147
White (psstac781fbib9) 2009; 42
Chanin (psstac781fbib66) 1964; 133
Bray (psstac781fbib32) 2017; 50
Bartschat (psstac781fbib34) 1996; 29
Janssen (psstac781fbib17) 2016; 25
Zammit (psstac781fbib36) 2017; 95
Schmalzried (psstac781fbib18) 2020; 125
Sato (psstac781fbib20) 1988; 145
Bray (psstac781fbib30) 2002; 89
Timko (psstac781fbib47) 2012; 52
Pitchford (psstac781fbib52) 2013; 46
Becker (psstac781fbib11) 2017; 26
Fursa (psstac781fbib29) 1997; 30
Cavalleri (psstac781fbib65) 1969; 179
Warren (psstac781fbib64) 1962; 128
Murphy (psstac781fbib46) 1988
Bray (psstac781fbib24) 1992; 46
Milloy (psstac781fbib58) 1977; 15
Adibzadeh (psstac781fbib44) 2005; 91
Belenguer (psstac781fbib19) 1999; 86
Scarlett (psstac781fbib37) 2020; 74
Bray (psstac781fbib28) 1996; 76
Ren (psstac781fbib39) 2011; 83
Elford (psstac781fbib60) 1974; 27
Bray (psstac781fbib26) 1994; 49
Zammit (psstac781fbib35) 2016; 116
Kücükarpaci (psstac781fbib55) 1981; 14
Zawadzki (psstac781fbib41) 2018; 97
Vahedi (psstac781fbib3) 1995; 87
Alves (psstac781fbib50) 2013; 46
Simonović (psstac781fbib10) 2019; 28
Birdsall (psstac781fbib5) 1997
Okhrimovskyy (psstac781fbib16) 2002; 65
Fursa (psstac781fbib27) 1995; 52
Kallenbach (psstac781fbib21) 2013; 55
Dall’Armi (psstac781fbib63) 1992; 45
Moss (psstac781fbib6) 2006; 111
Mott (psstac781fbib43) 1965
Biagi (psstac781fbib49) 2011
Bray (psstac781fbib31) 2002; 35
Crompton (psstac781fbib56) 1967; 20
Khrabrov (psstac781fbib15) 2012; 19
Bray (psstac781fbib25) 1992; 69
Jackman (psstac781fbib42) 1979; 84
Davies (psstac781fbib59) 1964; 83
Boyle (psstac781fbib7) 2017; 26
Fierro (psstac781fbib48) 2018; 27
Zammit (psstac781fbib33) 2017; 50
Crompton (psstac781fbib57) 1970; 23
Surendra (psstac781fbib1) 1990; 41
Petrović (psstac781fbib23) 2007; 16
Kramida (psstac781fbib45) 2020
Lakshminarasimha (psstac781fbib62) 1977; 10
Hopkins (psstac781fbib53) 2014
Pitchford (psstac781fbib51) 2017; 14
Al-Amin (psstac781fbib54) 1987; 20
Chew (psstac781fbib2) 2021; 63
Tattersall (psstac781fbib4) 2015; 91
Hargreaves (psstac781fbib40) 2017; 50
Garland (psstac781fbib12) 2017; 26
References_xml – year: 2014
  ident: psstac781fbib53
  contributor:
    fullname: Hopkins
– volume: 145
  start-page: 21
  year: 1988
  ident: psstac781fbib20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)85126-1
  contributor:
    fullname: Sato
– volume: 27
  year: 2018
  ident: psstac781fbib48
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aae055
  contributor:
    fullname: Fierro
– volume: 46
  year: 2013
  ident: psstac781fbib52
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/33/334001
  contributor:
    fullname: Pitchford
– year: 2011
  ident: psstac781fbib49
  contributor:
    fullname: Biagi
– volume: 20
  start-page: 369
  year: 1967
  ident: psstac781fbib56
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph670369
  contributor:
    fullname: Crompton
– volume: 83
  start-page: 137
  year: 1964
  ident: psstac781fbib59
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/83/1/316
  contributor:
    fullname: Davies
– volume: 180
  year: 2009
  ident: psstac781fbib14
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/180/1/012055
  contributor:
    fullname: Bowers
– volume: 63
  year: 2021
  ident: psstac781fbib2
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/1361-6587/abdd75
  contributor:
    fullname: Chew
– year: 1988
  ident: psstac781fbib46
  contributor:
    fullname: Murphy
– volume: 95
  year: 2017
  ident: psstac781fbib36
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.95.022708
  contributor:
    fullname: Zammit
– volume: 41
  start-page: 1112
  year: 1990
  ident: psstac781fbib1
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.41.1112
  contributor:
    fullname: Surendra
– volume: 76
  start-page: 2674
  year: 1996
  ident: psstac781fbib28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.76.2674
  contributor:
    fullname: Bray
– volume: 86
  start-page: 4780
  year: 1999
  ident: psstac781fbib19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371443
  contributor:
    fullname: Belenguer
– volume: 84
  start-page: 2715
  year: 1979
  ident: psstac781fbib42
  publication-title: J. Geophys. Res.
  doi: 10.1029/ja084ia06p02715
  contributor:
    fullname: Jackman
– year: 1965
  ident: psstac781fbib43
  contributor:
    fullname: Mott
– volume: 30
  start-page: 1309
  year: 1997
  ident: psstac781fbib38
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/30/5/022
  contributor:
    fullname: Röder
– volume: 20
  start-page: 1590
  year: 1987
  ident: psstac781fbib54
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/20/12/007
  contributor:
    fullname: Al-Amin
– volume: 111
  year: 2006
  ident: psstac781fbib6
  publication-title: J. Geophys. Res.
  doi: 10.1029/2005ja011350
  contributor:
    fullname: Moss
– volume: 50
  year: 2017
  ident: psstac781fbib33
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa6e74
  contributor:
    fullname: Zammit
– volume: 74
  start-page: 36
  year: 2020
  ident: psstac781fbib37
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2020-100549-0
  contributor:
    fullname: Scarlett
– volume: 91
  year: 2015
  ident: psstac781fbib4
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.91.043304
  contributor:
    fullname: Tattersall
– volume: 49
  start-page: 1066
  year: 1994
  ident: psstac781fbib26
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.49.1066
  contributor:
    fullname: Bray
– volume: 52
  start-page: 295
  year: 2012
  ident: psstac781fbib47
  publication-title: Contrib. Plasma Phys.
  doi: 10.1002/ctpp.201100051
  contributor:
    fullname: Timko
– volume: 89
  year: 2002
  ident: psstac781fbib30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.89.273201
  contributor:
    fullname: Bray
– volume: 179
  start-page: 186
  year: 1969
  ident: psstac781fbib65
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.179.186
  contributor:
    fullname: Cavalleri
– volume: 42
  year: 2009
  ident: psstac781fbib9
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/19/194001
  contributor:
    fullname: White
– start-page: 277
  year: 1997
  ident: psstac781fbib5
  contributor:
    fullname: Birdsall
– volume: 69
  start-page: 53
  year: 1992
  ident: psstac781fbib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.69.53
  contributor:
    fullname: Bray
– volume: 35
  start-page: R117
  year: 2002
  ident: psstac781fbib31
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/35/15/201
  contributor:
    fullname: Bray
– volume: 26
  year: 2017
  ident: psstac781fbib7
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aa51ef
  contributor:
    fullname: Boyle
– volume: 25
  year: 2016
  ident: psstac781fbib17
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/25/5/055026
  contributor:
    fullname: Janssen
– year: 2020
  ident: psstac781fbib45
  contributor:
    fullname: Kramida
– volume: 27
  year: 2018
  ident: psstac781fbib13
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aae05c
  contributor:
    fullname: Garland
– volume: 46
  year: 2013
  ident: psstac781fbib50
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/33/334002
  contributor:
    fullname: Alves
– volume: 125
  year: 2020
  ident: psstac781fbib18
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2019jd031564
  contributor:
    fullname: Schmalzried
– volume: 14
  start-page: 1600098
  year: 2017
  ident: psstac781fbib51
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201600098
  contributor:
    fullname: Pitchford
– volume: 27
  start-page: 235
  year: 1974
  ident: psstac781fbib60
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph740235
  contributor:
    fullname: Elford
– volume: 19
  year: 2012
  ident: psstac781fbib15
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4751865
  contributor:
    fullname: Khrabrov
– volume: 23
  start-page: 667
  year: 1970
  ident: psstac781fbib57
  publication-title: Aust. J. Phys.
  doi: 10.1071/ph700667
  contributor:
    fullname: Crompton
– volume: 50
  year: 2017
  ident: psstac781fbib40
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa9048
  contributor:
    fullname: Hargreaves
– volume: 83
  year: 2011
  ident: psstac781fbib39
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.83.052711
  contributor:
    fullname: Ren
– volume: 29
  start-page: 5493
  year: 1996
  ident: psstac781fbib34
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/29/22/023
  contributor:
    fullname: Bartschat
– volume: 26
  year: 2017
  ident: psstac781fbib11
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aa5cce
  contributor:
    fullname: Becker
– volume: 30
  start-page: 5895
  year: 1997
  ident: psstac781fbib29
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/30/24/023
  contributor:
    fullname: Fursa
– volume: 91
  start-page: 8
  year: 2005
  ident: psstac781fbib44
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/j.adt.2005.07.004
  contributor:
    fullname: Adibzadeh
– volume: 71
  start-page: 5363
  year: 1992
  ident: psstac781fbib61
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.350555
  contributor:
    fullname: Pack
– volume: 133
  start-page: 1005
  year: 1964
  ident: psstac781fbib66
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.133.1005
  contributor:
    fullname: Chanin
– volume: 45
  start-page: 185
  year: 1992
  ident: psstac781fbib63
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH920185
  contributor:
    fullname: Dall’Armi
– volume: 46
  start-page: 6995
  year: 1992
  ident: psstac781fbib24
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.46.6995
  contributor:
    fullname: Bray
– volume: 87
  start-page: 179
  year: 1995
  ident: psstac781fbib3
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(94)00171-w
  contributor:
    fullname: Vahedi
– volume: 116
  year: 2016
  ident: psstac781fbib35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.116.233201
  contributor:
    fullname: Zammit
– volume: 147
  year: 2017
  ident: psstac781fbib22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5004717
  contributor:
    fullname: Casey
– volume: 65
  year: 2002
  ident: psstac781fbib16
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.65.037402
  contributor:
    fullname: Okhrimovskyy
– volume: 14
  start-page: 722
  year: 2005
  ident: psstac781fbib8
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/14/4/011
  contributor:
    fullname: Hagelaar
– volume: 55
  year: 2013
  ident: psstac781fbib21
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/55/12/124041
  contributor:
    fullname: Kallenbach
– volume: 97
  year: 2018
  ident: psstac781fbib41
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.97.050702
  contributor:
    fullname: Zawadzki
– volume: 26
  year: 2017
  ident: psstac781fbib12
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aa73c6
  contributor:
    fullname: Garland
– volume: 16
  start-page: S1
  year: 2007
  ident: psstac781fbib23
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/16/1/S01
  contributor:
    fullname: Petrović
– volume: 10
  start-page: 313
  year: 1977
  ident: psstac781fbib62
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/10/3/011
  contributor:
    fullname: Lakshminarasimha
– volume: 52
  start-page: 1279
  year: 1995
  ident: psstac781fbib27
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.52.1279
  contributor:
    fullname: Fursa
– volume: 28
  year: 2019
  ident: psstac781fbib10
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aaf968
  contributor:
    fullname: Simonović
– volume: 14
  start-page: 2001
  year: 1981
  ident: psstac781fbib55
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/14/11/008
  contributor:
    fullname: Kücükarpaci
– volume: 50
  year: 2017
  ident: psstac781fbib32
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa8a23
  contributor:
    fullname: Bray
– volume: 15
  start-page: 1847
  year: 1977
  ident: psstac781fbib58
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.15.1847
  contributor:
    fullname: Milloy
– volume: 128
  start-page: 2661
  year: 1962
  ident: psstac781fbib64
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2661
  contributor:
    fullname: Warren
SSID ssj0011827
Score 2.4254465
Snippet Abstract Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and...
Many laboratory and industrial plasma applications require accurate modeling techniques to understand the interplay between microscopic and macroscopic...
SourceID osti
crossref
iop
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 65013
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
angular
anisotropic
elastic
electron
helium
hydrogen
scattering
Title Anisotropic angular scattering models of elastic electron-neutral collisions for Monte Carlo plasma simulations
URI https://iopscience.iop.org/article/10.1088/1361-6595/ac781f
https://www.osti.gov/servlets/purl/2318946
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7riuDFt6irkoMePHTdPNomeFpEWYVVDwoehJKmCSxqW7bdi7_eSdoVFRExpx6StJ3J40tm5huEjog7BMjIBlQMTMCNTQPFJQ0k1dBAhHEmXLzz-CYaPfDrx_Cxg84-YmGKsl36-_DYEAU3Imwd4sQpYREJHA3eqdKxIHYBLTIhpPPnurq9-zAhAHD2sdLSGypD2toof-rhy560AO-F9bmAGfZpp7lcRU_zb2wcTJ77szrt67dv9I3__Ik1tNIiUDxsqq6jjsk30JL3BNXVJiqG-aQq6mlRTjR2l5lw9MWV9jScsM1hnzqnwoXFBoA39IHnmXSC3MzcvQl2Y8uHrFcYIDEeOwIsfK6mLwUuoc2rwtXktU0bVm2hh8uL-_NR0GZlCDTjsnYHzpgQxSTJBhYKpQomNSXKEtACFE2JMWFoGCwFaapUKiJN41THkSWWK7aNunmRmx2EM5YJTvRAWck4II80DiMZE2pia3nIzC46meslKRvyjcQbzYVInAATJ8CkEeAuOgZZJ-0MrH6p13OqTUBBjiVXO3ciXScAc4Xk0d4fe-mhZeriIPx1zD7q1tOZOQB0UqeHfhS-A_ZD3jA
link.rule.ids 230,315,786,790,891,27955,27956,38898,53875
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELa6WxVxgZaHeLY-lEMP2V07TmwfEbBa2vI4FGlvxnFsaQUk0SZ74dczdrKIVhVCIqccbCee8dgznplvEPpOvBEgUxdRMbIRsy6LNJM0ktRAB5HwXPh854vLdHLDfk6TaVfnNOTClFW39Q_gtQUKbknYBcSJIYlTEnkYvKE2XBA3rHLXQx9BcrmP6Tu_un52I4DyHPKlZXBWJrTzU_5vlL_OpR58G_boEqTsxWkzXke3y_9sg0zuBosmG5jHfyAc3zGRz2it00Txcdv8C_pgiw30KUSEmnoTlcfFrC6beVnNDPaXmmAC49oEOE447nAooVPj0mELCjiMgZcVdaLCLvz9CfZrLKSu1xhUY3zhgbDwiZ7fl7iCPg8a17OHrnxYvYVuxmd_TiZRV50hMjGTjTc8OSE6liQfOXgo1SDclGhHBBhxUhpKrE0SC3wZZZnWmUgN5ZnhqSOO6Xgb9YuysDsI53EuGDEj7WTMQAPJeJJKTqjlzrEktrvox5I3qmpBOFRwnguhPBGVJ6JqibiLjoDeqpPE-pV2-569Cpjk0XKNDysyjQJ1V0iW7r1xlG9o5fp0rH6fX_7aR6vUp0aEG5oD1G_mC3sICkuTfQ2L8gm6T-OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+angular+scattering+models+of+elastic+electron-neutral+collisions+for+Monte+Carlo+plasma+simulations&rft.jtitle=Plasma+sources+science+%26+technology&rft.au=Park%2C+Ryan+M&rft.au=Kupets%2C+Willem&rft.au=Zammit%2C+Mark+C&rft.au=Colgan%2C+James&rft.date=2022-06-01&rft.issn=0963-0252&rft.eissn=1361-6595&rft.volume=31&rft.issue=6&rft.spage=65013&rft_id=info:doi/10.1088%2F1361-6595%2Fac781f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6595_ac781f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-0252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-0252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-0252&client=summon