Adapt DB-PSO patterns clustering algorithms and its applications in image segmentation

Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 75; no. 23; pp. 15327 - 15339
Main Authors Chen, Hua-Ching, Feng, Hsuan-Ming, Lin, Te-Hui, Chen, Ching-Yi, Zha, Yu-Xiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-015-2518-4

Cover

Loading…
Abstract Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine.
AbstractList Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine.
Clustering algorithm is a crucial step before to analysis object's feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine.
Author Chen, Hua-Ching
Feng, Hsuan-Ming
Chen, Ching-Yi
Zha, Yu-Xiang
Lin, Te-Hui
Author_xml – sequence: 1
  givenname: Hua-Ching
  surname: Chen
  fullname: Chen, Hua-Ching
  organization: Department of Computer Science and Information Engineering, National Quemoy University
– sequence: 2
  givenname: Hsuan-Ming
  orcidid: 0000-0002-6498-7006
  surname: Feng
  fullname: Feng, Hsuan-Ming
  email: hmfeng@nqu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Quemoy University
– sequence: 3
  givenname: Te-Hui
  surname: Lin
  fullname: Lin, Te-Hui
  organization: Department of Computer Science and Information Engineering, National Quemoy University
– sequence: 4
  givenname: Ching-Yi
  surname: Chen
  fullname: Chen, Ching-Yi
  organization: Department of Information and Telecommunications Engineering, Ming Chuan University
– sequence: 5
  givenname: Yu-Xiang
  surname: Zha
  fullname: Zha, Yu-Xiang
  organization: Department of Computer Science and Information Engineering, National Quemoy University
BookMark eNp9kE1LxDAQhoOs4O7qD_BW8OIlmqT5aI_r-gkLK_hxDWk3rVnatCbpwX9vaj2IoKcZhucdZp4FmNnOagBOMbrACIlLjzGiBCLMIGE4g_QAzDETKRSC4Fns0wxBwRA-Agvv9whhzgidg9fVTvUhub6Cj0_bpFchaGd9UjaDj52xdaKaunMmvLU-UXaXmBBr3zemVMF0ETU2Ma2qdeJ13WobvsbH4LBSjdcn33UJXm5vntf3cLO9e1ivNrBMaR5gWhCaYVRQxllGS1IwplSmKoYp05UgimS0IIXOdyVXAumCkUoVOUO8qjinKl2C82lv77r3QfsgW-NL3TTK6m7wEmecMhpRHtGzX-i-G5yN10WKIpYLmtNI4YkqXee905XsXXzPfUiM5GhaTqZlNC1H03LMiF-Z0kwaglOm-TdJpqTvR9fa_bjpz9AnoDKTzA
CitedBy_id crossref_primary_10_1007_s11042_017_4872_x
crossref_primary_10_1007_s11042_016_4302_5
crossref_primary_10_1177_1748301818797025
Cites_doi 10.1016/j.ins.2012.03.021
10.1109/TPAMI.1984.4767478
10.1016/S0031-3203(01)00108-X
10.1007/s10044-004-0218-1
10.1016/j.asoc.2014.08.011
10.1109/TPAMI.1979.4766909
10.1186/2192-1962-2-10
10.1016/j.neucom.2012.10.022
10.1016/j.engappai.2009.10.002
10.1016/j.patrec.2004.11.002
10.1109/2.294850
10.1186/2192-1962-2-13
10.3745/JIPS.2009.5.1.001
10.15207/JKCS.2013.4.2.001
10.1080/01969727408546059
10.1080/01969720802069906
10.15207/JKCS.2013.4.1.015
10.1186/2192-1962-2-6
10.1080/01969720590961754
10.1016/S0031-3203(99)00137-5
10.1016/j.mcm.2012.12.025
10.1007/978-1-4757-0450-1
10.1016/j.optlaseng.2014.09.005
10.1109/34.85677
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Multimedia Tools and Applications is a copyright of Springer, 2016.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Multimedia Tools and Applications is a copyright of Springer, 2016.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-015-2518-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (UHCL Subscription)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 15339
ExternalDocumentID 4251571661
10_1007_s11042_015_2518_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c349t-3b24810b456584c2b55aa8af5145ef72a284b2be9dc6a70eb52fab9506ff664a3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 11 01:51:11 EDT 2025
Fri Jul 25 23:24:02 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Fri Feb 21 02:33:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords DB validity
Image segmentation
Particle swarm optimization
Clustering algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3b24810b456584c2b55aa8af5145ef72a284b2be9dc6a70eb52fab9506ff664a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6498-7006
PQID 1840597494
PQPubID 54626
PageCount 13
ParticipantIDs proquest_miscellaneous_1864546646
proquest_journals_1840597494
crossref_primary_10_1007_s11042_015_2518_4
crossref_citationtrail_10_1007_s11042_015_2518_4
springer_journals_10_1007_s11042_015_2518_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161200
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Feng, Wenkang, Liangzhou, Yong, Zhenfu (CR12) 2005; 26
Saba (CR24) 2012; 2
Liu, Jiao, Zhang, Li (CR17) 2012; 204
Pan, Xu, Fu, Dolog, Wang, Leginus (CR20) 2012; 3
Bandopadhyay, Maulik (CR3) 2002; 35
Selim, Ismail (CR25) 1984; 6
Yoon, Kim, Chang (CR30) 2013; 4
Ma, Park, Kim, An (CR18) 2012; 8
Gargiulo, Helgason, Ingvarsson, Mayr, Kern, Carraro (CR15) 2012; 2
Forouzanfar, Forghani, Teshnehlab (CR14) 2010; 23
Yao, Duan, Li, Wang (CR29) 2013; 58
Agrawal, Panda, Dora (CR1) 2014; 24
Chen, Ye (CR5) 2003
Maulik, Bandyopadhyay (CR19) 2000; 33
Feng (CR10) 2005; 36
Davies, Bouldin (CR8) 1979; 2
Singh, Lobiyal (CR26) 2012; 2
Chou, Su, Lai (CR7) 2004; 7
CR6
Feng, Chen, Ye (CR11) 2008; 39
Bezdek (CR4) 1981
Tou, Gonzalez (CR27) 1974
Anderberg (CR2) 1973
Park (CR21) 2009; 5
Park, Jung, Eom, Yeom (CR22) 2013; 9
Peng, Zeng, Yang (CR23) 2013; 4
Zhao (CR31) 2013; 106
Dunn (CR9) 1974; 4
Huang, Zeng (CR16) 2015; 66
Xie, Beni (CR28) 1991; 13
Filho, Treleaven, Alippi (CR13) 1994; 27
CH Chou (2518_CR7) 2004; 7
M Ma (2518_CR18) 2012; 8
U Maulik (2518_CR19) 2000; 33
HM Feng (2518_CR10) 2005; 36
JC Dunn (2518_CR9) 1974; 4
S Bandopadhyay (2518_CR3) 2002; 35
B Singh (2518_CR26) 2012; 2
R Liu (2518_CR17) 2012; 204
HM Feng (2518_CR11) 2008; 39
JW Park (2518_CR21) 2009; 5
XL Xie (2518_CR28) 1991; 13
2518_CR6
SZ Selim (2518_CR25) 1984; 6
M Yoon (2518_CR30) 2013; 4
P Gargiulo (2518_CR15) 2012; 2
C Huang (2518_CR16) 2015; 66
M Forouzanfar (2518_CR14) 2010; 23
G Peng (2518_CR23) 2013; 4
D Feng (2518_CR12) 2005; 26
R Pan (2518_CR20) 2012; 3
S Park (2518_CR22) 2013; 9
H Yao (2518_CR29) 2013; 58
T Saba (2518_CR24) 2012; 2
JT Tou (2518_CR27) 1974
MR Anderberg (2518_CR2) 1973
F Zhao (2518_CR31) 2013; 106
CY Chen (2518_CR5) 2003
JC Bezdek (2518_CR4) 1981
DL Davies (2518_CR8) 1979; 2
JLR Filho (2518_CR13) 1994; 27
S Agrawal (2518_CR1) 2014; 24
References_xml – volume: 204
  start-page: 1
  year: 2012
  end-page: 22
  ident: CR17
  article-title: Gene transposon based clone selection algorithm for automatic clustering
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.03.021
– volume: 6
  start-page: 81
  year: 1984
  end-page: 87
  ident: CR25
  article-title: K-means type algorithms: a generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.1984.4767478
– volume: 35
  start-page: 1197
  year: 2002
  end-page: 1208
  ident: CR3
  article-title: Genetic clustering for automatic evolution of clusters and application to image classification
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00108-X
– volume: 7
  start-page: 205
  issue: 2
  year: 2004
  end-page: 220
  ident: CR7
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-004-0218-1
– volume: 24
  start-page: 522
  year: 2014
  end-page: 533
  ident: CR1
  article-title: A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.08.011
– volume: 2
  start-page: 224
  year: 1979
  end-page: 227
  ident: CR8
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  end-page: 11
  ident: CR15
  article-title: Medical image analysis and 3-d modeling to quantify changes and functional restoration in denervated muscle undergoing electrical stimulation treatment
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-10
– volume: 106
  start-page: 115
  year: 2013
  end-page: 125
  ident: CR31
  article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.022
– volume: 23
  start-page: 160
  issue: 2
  year: 2010
  end-page: 168
  ident: CR14
  article-title: Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.10.002
– ident: CR6
– volume: 26
  start-page: 597
  issue: 5
  year: 2005
  end-page: 603
  ident: CR12
  article-title: Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO)
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2004.11.002
– year: 1973
  ident: CR2
  publication-title: Cluster analysis for application
– volume: 27
  start-page: 28
  issue: 6
  year: 1994
  end-page: 43
  ident: CR13
  article-title: Genetic algorithm programming environments
  publication-title: IEEE Comput
  doi: 10.1109/2.294850
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  end-page: 18
  ident: CR26
  article-title: A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-13
– volume: 5
  start-page: 1
  issue: 1
  year: 2009
  end-page: 4
  ident: CR21
  article-title: A new variational level set evolving algorithm for image segmentation
  publication-title: J Inf Process Syst
  doi: 10.3745/JIPS.2009.5.1.001
– volume: 3
  start-page: 13
  issue: 1
  year: 2012
  end-page: 20
  ident: CR20
  article-title: Improving recommendations by the clustering of tag neighbours
  publication-title: J Convergence
– volume: 4
  start-page: 1
  issue: 2
  year: 2013
  end-page: 4
  ident: CR23
  article-title: A hybrid computational intelligence approach for the VRP problem
  publication-title: J Convergence
  doi: 10.15207/JKCS.2013.4.2.001
– volume: 4
  start-page: 95
  issue: 1
  year: 1974
  end-page: 104
  ident: CR9
  article-title: Well separated clusters and optimal fuzzy partitions
  publication-title: J Cybern
  doi: 10.1080/01969727408546059
– volume: 8
  start-page: 653
  issue: 4
  year: 2012
  end-page: 668
  ident: CR18
  article-title: Online recognition of handwritten Korean and english characters
  publication-title: JIPS
– volume: 39
  start-page: 520
  issue: 5
  year: 2008
  end-page: 537
  ident: CR11
  article-title: Heuristic particle swarm optimization learning based image compression system
  publication-title: Cybern Syst: Int J
  doi: 10.1080/01969720802069906
– volume: 4
  start-page: 15
  issue: 1
  year: 2013
  end-page: 22
  ident: CR30
  article-title: An energy-efficient routing protocol using message success rate in wireless sensor networks
  publication-title: J Convergence
  doi: 10.15207/JKCS.2013.4.1.015
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  end-page: 11
  ident: CR24
  article-title: Implications of E-learning systems and self-efficiency on students outcomes: a model approach
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-6
– volume: 36
  start-page: 623
  issue: 6
  year: 2005
  end-page: 639
  ident: CR10
  article-title: Self generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization
  publication-title: Cybern Syst: Int J
  doi: 10.1080/01969720590961754
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: CR19
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 9
  start-page: 205
  issue: 2
  year: 2013
  end-page: 216
  ident: CR22
  article-title: An analysis of replication enhancement for a high availability cluster
  publication-title: JIPS
– start-page: 1470
  year: 2003
  end-page: 1475
  ident: CR5
  publication-title: K-means algorithm based on particle swarm optimization. 2003 International conference on informatics, cybernetics, and systems
– volume: 58
  start-page: 790
  issue: 3
  year: 2013
  end-page: 798
  ident: CR29
  article-title: An improved K-means clustering algorithm for fish image segmentation
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.12.025
– year: 1974
  ident: CR27
  publication-title: Pattern recognition principles
– year: 1981
  ident: CR4
  publication-title: Pattern recognition with fuzzy objective function algorithms
  doi: 10.1007/978-1-4757-0450-1
– volume: 66
  start-page: 187
  year: 2015
  end-page: 203
  ident: CR16
  article-title: Robust image segmentation using local robust statistics and correntropy-based K-means clustering
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.09.005
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  end-page: 847
  ident: CR28
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.85677
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 2518_CR15
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-10
– volume: 35
  start-page: 1197
  year: 2002
  ident: 2518_CR3
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00108-X
– volume: 4
  start-page: 95
  issue: 1
  year: 1974
  ident: 2518_CR9
  publication-title: J Cybern
  doi: 10.1080/01969727408546059
– volume: 23
  start-page: 160
  issue: 2
  year: 2010
  ident: 2518_CR14
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2009.10.002
– volume: 2
  start-page: 224
  year: 1979
  ident: 2518_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 3
  start-page: 13
  issue: 1
  year: 2012
  ident: 2518_CR20
  publication-title: J Convergence
– volume: 9
  start-page: 205
  issue: 2
  year: 2013
  ident: 2518_CR22
  publication-title: JIPS
– volume-title: Pattern recognition principles
  year: 1974
  ident: 2518_CR27
– volume: 6
  start-page: 81
  year: 1984
  ident: 2518_CR25
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.1984.4767478
– volume-title: Cluster analysis for application
  year: 1973
  ident: 2518_CR2
– volume: 106
  start-page: 115
  year: 2013
  ident: 2518_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.022
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 2518_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.85677
– volume: 204
  start-page: 1
  year: 2012
  ident: 2518_CR17
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.03.021
– volume: 8
  start-page: 653
  issue: 4
  year: 2012
  ident: 2518_CR18
  publication-title: JIPS
– volume: 39
  start-page: 520
  issue: 5
  year: 2008
  ident: 2518_CR11
  publication-title: Cybern Syst: Int J
  doi: 10.1080/01969720802069906
– volume: 7
  start-page: 205
  issue: 2
  year: 2004
  ident: 2518_CR7
  publication-title: Pattern Anal Applic
– volume: 33
  start-page: 1455
  year: 2000
  ident: 2518_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 26
  start-page: 597
  issue: 5
  year: 2005
  ident: 2518_CR12
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2004.11.002
– volume: 4
  start-page: 15
  issue: 1
  year: 2013
  ident: 2518_CR30
  publication-title: J Convergence
  doi: 10.15207/JKCS.2013.4.1.015
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 2518_CR4
  doi: 10.1007/978-1-4757-0450-1
– volume: 24
  start-page: 522
  year: 2014
  ident: 2518_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.08.011
– start-page: 1470
  volume-title: K-means algorithm based on particle swarm optimization. 2003 International conference on informatics, cybernetics, and systems
  year: 2003
  ident: 2518_CR5
– volume: 5
  start-page: 1
  issue: 1
  year: 2009
  ident: 2518_CR21
  publication-title: J Inf Process Syst
  doi: 10.3745/JIPS.2009.5.1.001
– volume: 4
  start-page: 1
  issue: 2
  year: 2013
  ident: 2518_CR23
  publication-title: J Convergence
  doi: 10.15207/JKCS.2013.4.2.001
– volume: 36
  start-page: 623
  issue: 6
  year: 2005
  ident: 2518_CR10
  publication-title: Cybern Syst: Int J
  doi: 10.1080/01969720590961754
– volume: 66
  start-page: 187
  year: 2015
  ident: 2518_CR16
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.09.005
– volume: 27
  start-page: 28
  issue: 6
  year: 1994
  ident: 2518_CR13
  publication-title: IEEE Comput
  doi: 10.1109/2.294850
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 2518_CR24
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-6
– ident: 2518_CR6
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 2518_CR26
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/2192-1962-2-13
– volume: 58
  start-page: 790
  issue: 3
  year: 2013
  ident: 2518_CR29
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.12.025
SSID ssj0016524
Score 2.1151621
Snippet Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA)...
Clustering algorithm is a crucial step before to analysis object's feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15327
SubjectTerms Algorithms
Analysis
Clustering
Clusters
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Datasets
Homogeneity
Image processing systems
Multimedia Information Systems
Optimization
Special Purpose and Application-Based Systems
Studies
Swarm intelligence
Training
Validity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8sIeYDDQyhgyEk9MFvmw3fgJtRsIIfEhNhBv0TlxWKU2LST9_3dOnbZMGk95iBMrd767X3y-3wEcE6TVGGrLY42CCwwTjm4PPouUzmUgekFTIXd9oy4fxNWTfPIbbpU_Vtn6xMZR55PM7ZGfuj8RB361OJu-cNc1ymVXfQuND7BOLjiRHVgfnN_c3S_yCEr6trZJwCk2hm1esymeC11pCoVDTjE-4eJtZFrCzX8ypE3gufgEmx4xsv5cxduwZssd2Gq7MTBvnDvwcYVa8DM89nOc1uzngN_9umXThkWzrFg2mjlmBBrCcPRM31f_GVcMy5wNa7quZLPZsGTDMXkbVtnnsa9QKnfh4eL8949L7nso8CwWuuaxiUQSBsYBt0RkkZESMcGCcJK0RS9CCk8mMlbnmcJeYI2MCjRaBqoolBIY70GnnJT2CzBZIGok-05IDaR7LESuMxULozE2QdGFoJVfmnmCcdfnYpQuqZGdyFMSeepEnoounCwemc7ZNd4bfNAqJfWGVqXLZdGFo8VtMhGX98DSTmZujKMto69RXfjeKnPlFf-bcP_9Cb_CBqEnNT_bcgCd-nVmvxFCqc2hX4Z_Ad7y4SE
  priority: 102
  providerName: ProQuest
Title Adapt DB-PSO patterns clustering algorithms and its applications in image segmentation
URI https://link.springer.com/article/10.1007/s11042-015-2518-4
https://www.proquest.com/docview/1840597494
https://www.proquest.com/docview/1864546646
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NeGEPwGAT5aMy0p42WcqH7caPBVrQEB_a1ok9RefEgUptWpH0_-ecJm1BDGlPfvDFUe5yvt_5fHcAXwnSavS15aFGwQX6EUd3Bp8ESqfSEx2vypC7vlGXA_HjXt7XedxFc9u9CUlWO_Uy2c13qSRkvjjZ5IiLNdiQ5Lq7e3yDoLsIHShZd7KNPE7m0G9CmW8t8dIYLRHmq6BoZWv6O7BVg0TWnUv1E3yw-S5sNw0YWK2Pu_BxpZrgHvzppjgt2fkpv_t1y6ZV4cy8YMlo5oohEAnD0cPkaVg-jguGecqGJY0rAWw2zNlwTBsMK-zDuE5Kyj_DoN_7fXbJ67YJPAmFLnloAhH5nnFYLRJJYKREjDAjaCRt1gmQLJIJjNVporDjWSODDI2WnsoypQSGX2A9n-R2H5jMEDWSSkfkdpC4MROpTlQojMbQeFkLvIZ_cVLXFHetLUbxshqyY3lMLI8dy2PRgm-LR6bzghrvER81Qolr3Spi55M6N0jT9MlimrTChTowt5OZo3GVyuhrVAu-N8JcWeJfLzz4L-pD2CT8pOa3W45gvXya2WPCKKVpw1rUv2jDRvfi71WPxtPezd3PdvWnPgMZTeAw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcaClULPThSuUCssjD9sYHhPrUlrZLBS3qLR0nTllpN7uQrFD_FL-x42yyuyDRW085xLGVeX72eGYAdgjSavS15aFGwQX6EUd3Bp8ESqfSE22vypA766rOpfh8Ja8W4E-TC-OuVTY2sTLU6TBxZ-Qf3E7EgV8tPo1-ctc1ykVXmxYaE7E4sbe_actWfDw-IP6-DYKjw4v9Dq-7CvAkFLrkoQlE5HvGQZlIJIGREjHCjJCDtFk7QDLYJjBWp4nCtmeNDDI0Wnoqy5QSGNK8j2CJYIYmLVraO-yef53GLZSs2-hGHidf7Ddx1CpZz3epMOR-OWGKiIu_PeEM3v4Tka0c3dEKPKsRKtudiNRzWLD5Kiw33R9YbQxW4elcKcMX8H03xVHJDvb4-bcvbFRV7cwLlvTHrhIDDWHYvyF6lj8GBcM8Zb2SnnPRc9bLWW9A1o0V9mZQZ0TlL-HyQai7Bov5MLevgMkMUSPZk4jYTrKGmUh1okJhNIbGy1rgNfSLk7qgueur0Y9npZgdyWMieexIHosWvJt-MppU87hv8HrDlLhW7CKeiWELtqevSSVdnAVzOxy7Ma5MGv2NasH7hplzU_xvwdf3L7gFjzsXZ6fx6XH35A08IeSmJvdq1mGx_DW2G4SOSrNZiySD64fWgjtTGR45
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwwMcAURhgJHgBWcuH7cYPCG101cagVMDQ3sI5sUelNi0kFeJf46_jnCZtQWJve8pDHFs5_3z3s893B_CMKK3GUFseaxRcYJhw9GfwWaR0LgPRC-oIufdDdXQq3p7Jsy343cbC-GuVrU6sFXU-y_wZ-Z7fiXjyq8Wea65FjPqD1_Pv3FeQ8p7WtpzGEiIn9tdP2r6Vr477NNfPo2hw-PnNEW8qDPAsFrrisYlEEgbG05pEZJGREjFBRyxCWteLkJS3iYzVeaawF1gjI4dGy0A5p5TAmPq9Ats9sopJB7YPDoejjysfhpJNSd0k4GSXw9anWgfuhT4shkwxJ36RcPG3VVxT3X-8s7XRG9yCGw1bZftLeN2GLVvswM22EgRrFMMOXN9Ia3gHvuznOK9Y_4CPPn1g8zqDZ1GybLLwWRmoCcPJOcmz-jYtGRY5G1f03PCks3HBxlPSdKy059MmOqq4C6eXIt170Clmhb0PTDpEjaRbEoIA4Q6dyHWmYmE0xiZwXQha-aVZk9zc19iYpOu0zF7kKYk89SJPRRderD6ZLzN7XNR4t52UtFnkZbqGZBeerl7T8vQ-FyzsbOHb-JRp9DeqCy_bydzo4n8DPrh4wCdwldCfvjsenjyEa0Ti1PKKzS50qh8L-4iIUmUeN4hk8PWyF8EfjR8iZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapt+DB-PSO+patterns+clustering+algorithms+and+its+applications+in+image+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chen%2C+Hua-Ching&rft.au=Feng%2C+Hsuan-Ming&rft.au=Lin%2C+Te-Hui&rft.au=Chen%2C+Ching-Yi&rft.date=2016-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=75&rft.issue=23&rft.spage=15327&rft.epage=15339&rft_id=info:doi/10.1007%2Fs11042-015-2518-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_015_2518_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon