Adapt DB-PSO patterns clustering algorithms and its applications in image segmentation
Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number...
Saved in:
Published in | Multimedia tools and applications Vol. 75; no. 23; pp. 15327 - 15339 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-015-2518-4 |
Cover
Loading…
Abstract | Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine. |
---|---|
AbstractList | Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine. Clustering algorithm is a crucial step before to analysis object's feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA) combined the particle swarm optimization (PSO) clustering algorithm and adapt DB_index measuring methodology to efficiently decide the real number of clusters, cluster centers, and then to recognize the correct catalog even if there are exiting some cases in various shapes, multi-dimension, real life training patterns and image datasets. In general, the PSO is adapted for dealing complex and global optimization problems. The population-based evolutional PSO learning algorithm with the self-adapt mathematic index can fit the data vibration to perform the real criterion of homogeneity of neighboring pixels in many image vision and understanding cases. Owing to the purpose of generating automatic clustering algorithms, the specific fitness function contains the DB_validity measure to significantly improve resolutions of spatial information among the given training patterns. The computation of image DB_index is delivered to retrieve the specific objects by evaluating the characters of given patterns. The novel ADPCA actually indicate the homogeneity region of interesting pictures and eliminate small pieces of elements by the supports of DB index measure, which can be used to dynamically compute the maximal similarity and small difference of the discussed image patterns. Several artificial datasets include the three-dimensional dataset with five spherical clusters, two-dimensional patterns with three different sizes circles, one Chtree Fractal image patterns, one real life IRIS data and one grey level image data, which are given as training patterns to demonstrate the adaptation and efficiency of the ADPCA learning method. It presents that ADPCA determine the correct clustering number and suitable cluster position in different data clustering examples. Two image segmentation applications also show that ADPCA can achieve correct detection of subjects. In conclusion, several simulations compared with the traditional k-means algorithm demonstrate the great results of ADPCA learning machine. |
Author | Chen, Hua-Ching Feng, Hsuan-Ming Chen, Ching-Yi Zha, Yu-Xiang Lin, Te-Hui |
Author_xml | – sequence: 1 givenname: Hua-Ching surname: Chen fullname: Chen, Hua-Ching organization: Department of Computer Science and Information Engineering, National Quemoy University – sequence: 2 givenname: Hsuan-Ming orcidid: 0000-0002-6498-7006 surname: Feng fullname: Feng, Hsuan-Ming email: hmfeng@nqu.edu.tw organization: Department of Computer Science and Information Engineering, National Quemoy University – sequence: 3 givenname: Te-Hui surname: Lin fullname: Lin, Te-Hui organization: Department of Computer Science and Information Engineering, National Quemoy University – sequence: 4 givenname: Ching-Yi surname: Chen fullname: Chen, Ching-Yi organization: Department of Information and Telecommunications Engineering, Ming Chuan University – sequence: 5 givenname: Yu-Xiang surname: Zha fullname: Zha, Yu-Xiang organization: Department of Computer Science and Information Engineering, National Quemoy University |
BookMark | eNp9kE1LxDAQhoOs4O7qD_BW8OIlmqT5aI_r-gkLK_hxDWk3rVnatCbpwX9vaj2IoKcZhucdZp4FmNnOagBOMbrACIlLjzGiBCLMIGE4g_QAzDETKRSC4Fns0wxBwRA-Agvv9whhzgidg9fVTvUhub6Cj0_bpFchaGd9UjaDj52xdaKaunMmvLU-UXaXmBBr3zemVMF0ETU2Ma2qdeJ13WobvsbH4LBSjdcn33UJXm5vntf3cLO9e1ivNrBMaR5gWhCaYVRQxllGS1IwplSmKoYp05UgimS0IIXOdyVXAumCkUoVOUO8qjinKl2C82lv77r3QfsgW-NL3TTK6m7wEmecMhpRHtGzX-i-G5yN10WKIpYLmtNI4YkqXee905XsXXzPfUiM5GhaTqZlNC1H03LMiF-Z0kwaglOm-TdJpqTvR9fa_bjpz9AnoDKTzA |
CitedBy_id | crossref_primary_10_1007_s11042_017_4872_x crossref_primary_10_1007_s11042_016_4302_5 crossref_primary_10_1177_1748301818797025 |
Cites_doi | 10.1016/j.ins.2012.03.021 10.1109/TPAMI.1984.4767478 10.1016/S0031-3203(01)00108-X 10.1007/s10044-004-0218-1 10.1016/j.asoc.2014.08.011 10.1109/TPAMI.1979.4766909 10.1186/2192-1962-2-10 10.1016/j.neucom.2012.10.022 10.1016/j.engappai.2009.10.002 10.1016/j.patrec.2004.11.002 10.1109/2.294850 10.1186/2192-1962-2-13 10.3745/JIPS.2009.5.1.001 10.15207/JKCS.2013.4.2.001 10.1080/01969727408546059 10.1080/01969720802069906 10.15207/JKCS.2013.4.1.015 10.1186/2192-1962-2-6 10.1080/01969720590961754 10.1016/S0031-3203(99)00137-5 10.1016/j.mcm.2012.12.025 10.1007/978-1-4757-0450-1 10.1016/j.optlaseng.2014.09.005 10.1109/34.85677 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2015 Multimedia Tools and Applications is a copyright of Springer, 2016. |
Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Multimedia Tools and Applications is a copyright of Springer, 2016. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-015-2518-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (UHCL Subscription) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 15339 |
ExternalDocumentID | 4251571661 10_1007_s11042_015_2518_4 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c349t-3b24810b456584c2b55aa8af5145ef72a284b2be9dc6a70eb52fab9506ff664a3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 11 01:51:11 EDT 2025 Fri Jul 25 23:24:02 EDT 2025 Tue Jul 01 02:06:31 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Fri Feb 21 02:33:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | DB validity Image segmentation Particle swarm optimization Clustering algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-3b24810b456584c2b55aa8af5145ef72a284b2be9dc6a70eb52fab9506ff664a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6498-7006 |
PQID | 1840597494 |
PQPubID | 54626 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1864546646 proquest_journals_1840597494 crossref_primary_10_1007_s11042_015_2518_4 crossref_citationtrail_10_1007_s11042_015_2518_4 springer_journals_10_1007_s11042_015_2518_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161200 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161200 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Feng, Wenkang, Liangzhou, Yong, Zhenfu (CR12) 2005; 26 Saba (CR24) 2012; 2 Liu, Jiao, Zhang, Li (CR17) 2012; 204 Pan, Xu, Fu, Dolog, Wang, Leginus (CR20) 2012; 3 Bandopadhyay, Maulik (CR3) 2002; 35 Selim, Ismail (CR25) 1984; 6 Yoon, Kim, Chang (CR30) 2013; 4 Ma, Park, Kim, An (CR18) 2012; 8 Gargiulo, Helgason, Ingvarsson, Mayr, Kern, Carraro (CR15) 2012; 2 Forouzanfar, Forghani, Teshnehlab (CR14) 2010; 23 Yao, Duan, Li, Wang (CR29) 2013; 58 Agrawal, Panda, Dora (CR1) 2014; 24 Chen, Ye (CR5) 2003 Maulik, Bandyopadhyay (CR19) 2000; 33 Feng (CR10) 2005; 36 Davies, Bouldin (CR8) 1979; 2 Singh, Lobiyal (CR26) 2012; 2 Chou, Su, Lai (CR7) 2004; 7 CR6 Feng, Chen, Ye (CR11) 2008; 39 Bezdek (CR4) 1981 Tou, Gonzalez (CR27) 1974 Anderberg (CR2) 1973 Park (CR21) 2009; 5 Park, Jung, Eom, Yeom (CR22) 2013; 9 Peng, Zeng, Yang (CR23) 2013; 4 Zhao (CR31) 2013; 106 Dunn (CR9) 1974; 4 Huang, Zeng (CR16) 2015; 66 Xie, Beni (CR28) 1991; 13 Filho, Treleaven, Alippi (CR13) 1994; 27 CH Chou (2518_CR7) 2004; 7 M Ma (2518_CR18) 2012; 8 U Maulik (2518_CR19) 2000; 33 HM Feng (2518_CR10) 2005; 36 JC Dunn (2518_CR9) 1974; 4 S Bandopadhyay (2518_CR3) 2002; 35 B Singh (2518_CR26) 2012; 2 R Liu (2518_CR17) 2012; 204 HM Feng (2518_CR11) 2008; 39 JW Park (2518_CR21) 2009; 5 XL Xie (2518_CR28) 1991; 13 2518_CR6 SZ Selim (2518_CR25) 1984; 6 M Yoon (2518_CR30) 2013; 4 P Gargiulo (2518_CR15) 2012; 2 C Huang (2518_CR16) 2015; 66 M Forouzanfar (2518_CR14) 2010; 23 G Peng (2518_CR23) 2013; 4 D Feng (2518_CR12) 2005; 26 R Pan (2518_CR20) 2012; 3 S Park (2518_CR22) 2013; 9 H Yao (2518_CR29) 2013; 58 T Saba (2518_CR24) 2012; 2 JT Tou (2518_CR27) 1974 MR Anderberg (2518_CR2) 1973 F Zhao (2518_CR31) 2013; 106 CY Chen (2518_CR5) 2003 JC Bezdek (2518_CR4) 1981 DL Davies (2518_CR8) 1979; 2 JLR Filho (2518_CR13) 1994; 27 S Agrawal (2518_CR1) 2014; 24 |
References_xml | – volume: 204 start-page: 1 year: 2012 end-page: 22 ident: CR17 article-title: Gene transposon based clone selection algorithm for automatic clustering publication-title: Inf Sci doi: 10.1016/j.ins.2012.03.021 – volume: 6 start-page: 81 year: 1984 end-page: 87 ident: CR25 article-title: K-means type algorithms: a generalized convergence theorem and characterization of local optimality publication-title: IEEE Trans Pattern Anal doi: 10.1109/TPAMI.1984.4767478 – volume: 35 start-page: 1197 year: 2002 end-page: 1208 ident: CR3 article-title: Genetic clustering for automatic evolution of clusters and application to image classification publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00108-X – volume: 7 start-page: 205 issue: 2 year: 2004 end-page: 220 ident: CR7 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Anal Applic doi: 10.1007/s10044-004-0218-1 – volume: 24 start-page: 522 year: 2014 end-page: 533 ident: CR1 article-title: A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.08.011 – volume: 2 start-page: 224 year: 1979 end-page: 227 ident: CR8 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 2 start-page: 1 issue: 1 year: 2012 end-page: 11 ident: CR15 article-title: Medical image analysis and 3-d modeling to quantify changes and functional restoration in denervated muscle undergoing electrical stimulation treatment publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-10 – volume: 106 start-page: 115 year: 2013 end-page: 125 ident: CR31 article-title: Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.022 – volume: 23 start-page: 160 issue: 2 year: 2010 end-page: 168 ident: CR14 article-title: Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.10.002 – ident: CR6 – volume: 26 start-page: 597 issue: 5 year: 2005 end-page: 603 ident: CR12 article-title: Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO) publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2004.11.002 – year: 1973 ident: CR2 publication-title: Cluster analysis for application – volume: 27 start-page: 28 issue: 6 year: 1994 end-page: 43 ident: CR13 article-title: Genetic algorithm programming environments publication-title: IEEE Comput doi: 10.1109/2.294850 – volume: 2 start-page: 1 issue: 1 year: 2012 end-page: 18 ident: CR26 article-title: A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-13 – volume: 5 start-page: 1 issue: 1 year: 2009 end-page: 4 ident: CR21 article-title: A new variational level set evolving algorithm for image segmentation publication-title: J Inf Process Syst doi: 10.3745/JIPS.2009.5.1.001 – volume: 3 start-page: 13 issue: 1 year: 2012 end-page: 20 ident: CR20 article-title: Improving recommendations by the clustering of tag neighbours publication-title: J Convergence – volume: 4 start-page: 1 issue: 2 year: 2013 end-page: 4 ident: CR23 article-title: A hybrid computational intelligence approach for the VRP problem publication-title: J Convergence doi: 10.15207/JKCS.2013.4.2.001 – volume: 4 start-page: 95 issue: 1 year: 1974 end-page: 104 ident: CR9 article-title: Well separated clusters and optimal fuzzy partitions publication-title: J Cybern doi: 10.1080/01969727408546059 – volume: 8 start-page: 653 issue: 4 year: 2012 end-page: 668 ident: CR18 article-title: Online recognition of handwritten Korean and english characters publication-title: JIPS – volume: 39 start-page: 520 issue: 5 year: 2008 end-page: 537 ident: CR11 article-title: Heuristic particle swarm optimization learning based image compression system publication-title: Cybern Syst: Int J doi: 10.1080/01969720802069906 – volume: 4 start-page: 15 issue: 1 year: 2013 end-page: 22 ident: CR30 article-title: An energy-efficient routing protocol using message success rate in wireless sensor networks publication-title: J Convergence doi: 10.15207/JKCS.2013.4.1.015 – volume: 2 start-page: 1 issue: 1 year: 2012 end-page: 11 ident: CR24 article-title: Implications of E-learning systems and self-efficiency on students outcomes: a model approach publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-6 – volume: 36 start-page: 623 issue: 6 year: 2005 end-page: 639 ident: CR10 article-title: Self generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization publication-title: Cybern Syst: Int J doi: 10.1080/01969720590961754 – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: CR19 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00137-5 – volume: 9 start-page: 205 issue: 2 year: 2013 end-page: 216 ident: CR22 article-title: An analysis of replication enhancement for a high availability cluster publication-title: JIPS – start-page: 1470 year: 2003 end-page: 1475 ident: CR5 publication-title: K-means algorithm based on particle swarm optimization. 2003 International conference on informatics, cybernetics, and systems – volume: 58 start-page: 790 issue: 3 year: 2013 end-page: 798 ident: CR29 article-title: An improved K-means clustering algorithm for fish image segmentation publication-title: Math Comput Model doi: 10.1016/j.mcm.2012.12.025 – year: 1974 ident: CR27 publication-title: Pattern recognition principles – year: 1981 ident: CR4 publication-title: Pattern recognition with fuzzy objective function algorithms doi: 10.1007/978-1-4757-0450-1 – volume: 66 start-page: 187 year: 2015 end-page: 203 ident: CR16 article-title: Robust image segmentation using local robust statistics and correntropy-based K-means clustering publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.09.005 – volume: 13 start-page: 841 issue: 8 year: 1991 end-page: 847 ident: CR28 article-title: A validity measure for fuzzy clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.85677 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 2518_CR15 publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-10 – volume: 35 start-page: 1197 year: 2002 ident: 2518_CR3 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(01)00108-X – volume: 4 start-page: 95 issue: 1 year: 1974 ident: 2518_CR9 publication-title: J Cybern doi: 10.1080/01969727408546059 – volume: 23 start-page: 160 issue: 2 year: 2010 ident: 2518_CR14 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2009.10.002 – volume: 2 start-page: 224 year: 1979 ident: 2518_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 3 start-page: 13 issue: 1 year: 2012 ident: 2518_CR20 publication-title: J Convergence – volume: 9 start-page: 205 issue: 2 year: 2013 ident: 2518_CR22 publication-title: JIPS – volume-title: Pattern recognition principles year: 1974 ident: 2518_CR27 – volume: 6 start-page: 81 year: 1984 ident: 2518_CR25 publication-title: IEEE Trans Pattern Anal doi: 10.1109/TPAMI.1984.4767478 – volume-title: Cluster analysis for application year: 1973 ident: 2518_CR2 – volume: 106 start-page: 115 year: 2013 ident: 2518_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.022 – volume: 13 start-page: 841 issue: 8 year: 1991 ident: 2518_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.85677 – volume: 204 start-page: 1 year: 2012 ident: 2518_CR17 publication-title: Inf Sci doi: 10.1016/j.ins.2012.03.021 – volume: 8 start-page: 653 issue: 4 year: 2012 ident: 2518_CR18 publication-title: JIPS – volume: 39 start-page: 520 issue: 5 year: 2008 ident: 2518_CR11 publication-title: Cybern Syst: Int J doi: 10.1080/01969720802069906 – volume: 7 start-page: 205 issue: 2 year: 2004 ident: 2518_CR7 publication-title: Pattern Anal Applic – volume: 33 start-page: 1455 year: 2000 ident: 2518_CR19 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(99)00137-5 – volume: 26 start-page: 597 issue: 5 year: 2005 ident: 2518_CR12 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2004.11.002 – volume: 4 start-page: 15 issue: 1 year: 2013 ident: 2518_CR30 publication-title: J Convergence doi: 10.15207/JKCS.2013.4.1.015 – volume-title: Pattern recognition with fuzzy objective function algorithms year: 1981 ident: 2518_CR4 doi: 10.1007/978-1-4757-0450-1 – volume: 24 start-page: 522 year: 2014 ident: 2518_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.08.011 – start-page: 1470 volume-title: K-means algorithm based on particle swarm optimization. 2003 International conference on informatics, cybernetics, and systems year: 2003 ident: 2518_CR5 – volume: 5 start-page: 1 issue: 1 year: 2009 ident: 2518_CR21 publication-title: J Inf Process Syst doi: 10.3745/JIPS.2009.5.1.001 – volume: 4 start-page: 1 issue: 2 year: 2013 ident: 2518_CR23 publication-title: J Convergence doi: 10.15207/JKCS.2013.4.2.001 – volume: 36 start-page: 623 issue: 6 year: 2005 ident: 2518_CR10 publication-title: Cybern Syst: Int J doi: 10.1080/01969720590961754 – volume: 66 start-page: 187 year: 2015 ident: 2518_CR16 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.09.005 – volume: 27 start-page: 28 issue: 6 year: 1994 ident: 2518_CR13 publication-title: IEEE Comput doi: 10.1109/2.294850 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 2518_CR24 publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-6 – ident: 2518_CR6 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 2518_CR26 publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/2192-1962-2-13 – volume: 58 start-page: 790 issue: 3 year: 2013 ident: 2518_CR29 publication-title: Math Comput Model doi: 10.1016/j.mcm.2012.12.025 |
SSID | ssj0016524 |
Score | 2.1151621 |
Snippet | Clustering algorithm is a crucial step before to analysis object’s feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA)... Clustering algorithm is a crucial step before to analysis object's feature in image applications. The adapt DB-PSO patterns clustering algorithms (ADPCA)... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15327 |
SubjectTerms | Algorithms Analysis Clustering Clusters Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Datasets Homogeneity Image processing systems Multimedia Information Systems Optimization Special Purpose and Application-Based Systems Studies Swarm intelligence Training Validity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-x8sIeYDDQyhgyEk9MFvmw3fgJtRsIIfEhNhBv0TlxWKU2LST9_3dOnbZMGk95iBMrd767X3y-3wEcE6TVGGrLY42CCwwTjm4PPouUzmUgekFTIXd9oy4fxNWTfPIbbpU_Vtn6xMZR55PM7ZGfuj8RB361OJu-cNc1ymVXfQuND7BOLjiRHVgfnN_c3S_yCEr6trZJwCk2hm1esymeC11pCoVDTjE-4eJtZFrCzX8ypE3gufgEmx4xsv5cxduwZssd2Gq7MTBvnDvwcYVa8DM89nOc1uzngN_9umXThkWzrFg2mjlmBBrCcPRM31f_GVcMy5wNa7quZLPZsGTDMXkbVtnnsa9QKnfh4eL8949L7nso8CwWuuaxiUQSBsYBt0RkkZESMcGCcJK0RS9CCk8mMlbnmcJeYI2MCjRaBqoolBIY70GnnJT2CzBZIGok-05IDaR7LESuMxULozE2QdGFoJVfmnmCcdfnYpQuqZGdyFMSeepEnoounCwemc7ZNd4bfNAqJfWGVqXLZdGFo8VtMhGX98DSTmZujKMto69RXfjeKnPlFf-bcP_9Cb_CBqEnNT_bcgCd-nVmvxFCqc2hX4Z_Ad7y4SE priority: 102 providerName: ProQuest |
Title | Adapt DB-PSO patterns clustering algorithms and its applications in image segmentation |
URI | https://link.springer.com/article/10.1007/s11042-015-2518-4 https://www.proquest.com/docview/1840597494 https://www.proquest.com/docview/1864546646 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NeGEPwGAT5aMy0p42WcqH7caPBVrQEB_a1ok9RefEgUptWpH0_-ecJm1BDGlPfvDFUe5yvt_5fHcAXwnSavS15aFGwQX6EUd3Bp8ESqfSEx2vypC7vlGXA_HjXt7XedxFc9u9CUlWO_Uy2c13qSRkvjjZ5IiLNdiQ5Lq7e3yDoLsIHShZd7KNPE7m0G9CmW8t8dIYLRHmq6BoZWv6O7BVg0TWnUv1E3yw-S5sNw0YWK2Pu_BxpZrgHvzppjgt2fkpv_t1y6ZV4cy8YMlo5oohEAnD0cPkaVg-jguGecqGJY0rAWw2zNlwTBsMK-zDuE5Kyj_DoN_7fXbJ67YJPAmFLnloAhH5nnFYLRJJYKREjDAjaCRt1gmQLJIJjNVporDjWSODDI2WnsoypQSGX2A9n-R2H5jMEDWSSkfkdpC4MROpTlQojMbQeFkLvIZ_cVLXFHetLUbxshqyY3lMLI8dy2PRgm-LR6bzghrvER81Qolr3Spi55M6N0jT9MlimrTChTowt5OZo3GVyuhrVAu-N8JcWeJfLzz4L-pD2CT8pOa3W45gvXya2WPCKKVpw1rUv2jDRvfi71WPxtPezd3PdvWnPgMZTeAw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcaClULPThSuUCssjD9sYHhPrUlrZLBS3qLR0nTllpN7uQrFD_FL-x42yyuyDRW085xLGVeX72eGYAdgjSavS15aFGwQX6EUd3Bp8ESqfSE22vypA766rOpfh8Ja8W4E-TC-OuVTY2sTLU6TBxZ-Qf3E7EgV8tPo1-ctc1ykVXmxYaE7E4sbe_actWfDw-IP6-DYKjw4v9Dq-7CvAkFLrkoQlE5HvGQZlIJIGREjHCjJCDtFk7QDLYJjBWp4nCtmeNDDI0Wnoqy5QSGNK8j2CJYIYmLVraO-yef53GLZSs2-hGHidf7Ddx1CpZz3epMOR-OWGKiIu_PeEM3v4Tka0c3dEKPKsRKtudiNRzWLD5Kiw33R9YbQxW4elcKcMX8H03xVHJDvb4-bcvbFRV7cwLlvTHrhIDDWHYvyF6lj8GBcM8Zb2SnnPRc9bLWW9A1o0V9mZQZ0TlL-HyQai7Bov5MLevgMkMUSPZk4jYTrKGmUh1okJhNIbGy1rgNfSLk7qgueur0Y9npZgdyWMieexIHosWvJt-MppU87hv8HrDlLhW7CKeiWELtqevSSVdnAVzOxy7Ma5MGv2NasH7hplzU_xvwdf3L7gFjzsXZ6fx6XH35A08IeSmJvdq1mGx_DW2G4SOSrNZiySD64fWgjtTGR45 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwwMcAURhgJHgBWcuH7cYPCG101cagVMDQ3sI5sUelNi0kFeJf46_jnCZtQWJve8pDHFs5_3z3s893B_CMKK3GUFseaxRcYJhw9GfwWaR0LgPRC-oIufdDdXQq3p7Jsy343cbC-GuVrU6sFXU-y_wZ-Z7fiXjyq8Wea65FjPqD1_Pv3FeQ8p7WtpzGEiIn9tdP2r6Vr477NNfPo2hw-PnNEW8qDPAsFrrisYlEEgbG05pEZJGREjFBRyxCWteLkJS3iYzVeaawF1gjI4dGy0A5p5TAmPq9Ats9sopJB7YPDoejjysfhpJNSd0k4GSXw9anWgfuhT4shkwxJ36RcPG3VVxT3X-8s7XRG9yCGw1bZftLeN2GLVvswM22EgRrFMMOXN9Ia3gHvuznOK9Y_4CPPn1g8zqDZ1GybLLwWRmoCcPJOcmz-jYtGRY5G1f03PCks3HBxlPSdKy059MmOqq4C6eXIt170Clmhb0PTDpEjaRbEoIA4Q6dyHWmYmE0xiZwXQha-aVZk9zc19iYpOu0zF7kKYk89SJPRRderD6ZLzN7XNR4t52UtFnkZbqGZBeerl7T8vQ-FyzsbOHb-JRp9DeqCy_bydzo4n8DPrh4wCdwldCfvjsenjyEa0Ti1PKKzS50qh8L-4iIUmUeN4hk8PWyF8EfjR8iZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapt+DB-PSO+patterns+clustering+algorithms+and+its+applications+in+image+segmentation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chen%2C+Hua-Ching&rft.au=Feng%2C+Hsuan-Ming&rft.au=Lin%2C+Te-Hui&rft.au=Chen%2C+Ching-Yi&rft.date=2016-12-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=75&rft.issue=23&rft.spage=15327&rft.epage=15339&rft_id=info:doi/10.1007%2Fs11042-015-2518-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_015_2518_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |