Crystalline NiFe layered double hydroxide with large pore volume as oxygen evolution electrocatalysts

Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered doubl...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 254; p. 123496
Main Authors Long, Junxi, Zhang, Jiaxin, Xu, Xuetang, Wang, Fan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts. [Display omitted] •Crystalline NiFe LDH mesostructure prepared by low-temperature precipitation.•Ni0.66Fe0.33 LDH with high pore volume (0.99 cm3 g−1) as electrocatalyst for OER.•Overpotential of 248 mV and Tafel slope of 46 mV·dec−1 are achieved.
AbstractList Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts. [Display omitted] •Crystalline NiFe LDH mesostructure prepared by low-temperature precipitation.•Ni0.66Fe0.33 LDH with high pore volume (0.99 cm3 g−1) as electrocatalyst for OER.•Overpotential of 248 mV and Tafel slope of 46 mV·dec−1 are achieved.
Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts.
ArticleNumber 123496
Author Long, Junxi
Zhang, Jiaxin
Xu, Xuetang
Wang, Fan
Author_xml – sequence: 1
  givenname: Junxi
  surname: Long
  fullname: Long, Junxi
  organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China
– sequence: 2
  givenname: Jiaxin
  surname: Zhang
  fullname: Zhang, Jiaxin
  organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China
– sequence: 3
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  email: xxtang@gxu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China
– sequence: 4
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China
BookMark eNqNkLFOwzAQhi1UJNrCOxgxp9hO4iQTQhUFpAoWmC3HObeu0rjYbmneHkdlQEyd7nT-7_Ppm6BRZztA6JaSGSWU329mWxnUGra7de9njLA4Z2lW8Qs0pmVRJWlK2QiNCcuzhORldoUm3m8IoQWl6RjB3PU-yLY1HeA3swDcyh4cNLix-7oFvO4bZ4-mAfxtwjq-uhXgnXWAD7bdbwFLj-2xX0GHYZgEY2PXggrOKhnJEe-v0aWWrYeb3zpFn4unj_lLsnx_fp0_LhMVTw5JyjOQteaS13lFNCeprGSZM6JoTYuayVLXJWG0IbysMw1FzMi8TBupqwy0Tqfo7sTdOfu1Bx_Exu5dF78ULOOMFhXjeUw9nFLKWe8daKFMkMPhwUnTCkrE4FZsxB-3YnArTm4jofpH2Dmzla4_a3d-2oUo4mDACa8MdAoa46I10VhzBuUHqcSgyQ
CitedBy_id crossref_primary_10_1016_j_matchemphys_2022_126241
crossref_primary_10_1016_j_jcis_2023_05_089
crossref_primary_10_1021_acsanm_4c07004
crossref_primary_10_1021_acssuschemeng_2c02830
crossref_primary_10_1016_j_cej_2023_147789
crossref_primary_10_1016_j_jmst_2022_01_022
crossref_primary_10_1039_D3MA00324H
crossref_primary_10_1016_j_jece_2022_108151
crossref_primary_10_1021_acsanm_3c02766
crossref_primary_10_1039_D3DT03373B
crossref_primary_10_1039_D4CC05348F
crossref_primary_10_20964_2021_11_22
crossref_primary_10_1007_s42823_024_00730_4
crossref_primary_10_1016_j_jpowsour_2024_235302
crossref_primary_10_1016_j_inoche_2024_113500
crossref_primary_10_1016_j_jcis_2021_09_105
crossref_primary_10_3390_pr10040668
crossref_primary_10_1002_cssc_202101873
crossref_primary_10_1002_cctc_202300026
crossref_primary_10_1002_ejic_202000695
crossref_primary_10_1021_acs_inorgchem_4c04958
crossref_primary_10_1016_j_decarb_2024_100097
crossref_primary_10_1021_acs_iecr_2c03105
crossref_primary_10_1016_j_jece_2024_112126
crossref_primary_10_1016_j_jwpe_2022_103236
crossref_primary_10_1016_j_ijhydene_2024_09_320
crossref_primary_10_1016_j_jallcom_2021_159649
crossref_primary_10_1016_j_clay_2023_107195
crossref_primary_10_1016_j_colsurfa_2022_130657
crossref_primary_10_1149_1945_7111_adaa26
Cites_doi 10.1039/C8TA03741H
10.1002/adma.201700017
10.1021/acs.chemmater.9b01263
10.1002/aenm.201701905
10.1021/cm203697w
10.1021/acs.inorgchem.9b01365
10.1039/C5TA10297A
10.1021/acs.nanolett.8b04466
10.1002/aenm.201703189
10.1039/C8CC08511K
10.1039/C4CC03072A
10.1021/acs.jpcc.6b05934
10.1002/adfm.201605307
10.1021/acsami.6b12100
10.1002/chem.201803749
10.1039/C4TA03789H
10.1016/j.nanoen.2019.01.017
10.1039/C9NR07832K
10.1016/j.ijhydene.2019.07.082
10.1039/C7TA10351D
10.1016/j.nanoen.2015.10.030
10.1002/aenm.201702774
10.1039/C8TA11273H
10.1002/adma.201501901
10.1016/j.ijhydene.2018.03.229
10.1039/C7TA00963A
10.1002/cctc.201900718
10.1016/j.apsusc.2017.01.169
10.1002/cctc.201601106
10.1021/acscatal.8b01332
10.1002/adfm.201803329
10.1039/C5TA06788J
10.1021/am505989j
10.1002/anie.201804881
10.1016/j.electacta.2012.05.145
10.1039/C7CC04604A
10.1021/acssuschemeng.9b02297
10.1021/acsenergylett.7b01141
10.1002/advs.201700464
10.1021/acscatal.8b03489
10.1016/j.jpowsour.2018.07.125
10.1002/aenm.201900881
10.1007/s12274-017-1750-9
10.1002/chem.201804118
10.1002/adfm.201803291
10.1016/j.jpowsour.2018.07.074
10.1002/advs.201800064
10.1039/C8TA05054F
10.1016/j.electacta.2019.05.088
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.matchemphys.2020.123496
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3312
ExternalDocumentID 10_1016_j_matchemphys_2020_123496
S0254058420308610
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
7SR
7U5
8BQ
8FD
AFXIZ
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c349t-364eabf6a6b590f603a9a8520c1b17b2a8fb8021d068b4fe70f6a583daf94eff3
IEDL.DBID .~1
ISSN 0254-0584
IngestDate Sun Jul 13 04:38:29 EDT 2025
Tue Jul 01 00:05:06 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Fri Feb 23 02:47:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Low-temperature coprecipitation
NiFe layered Double hydroxide
Oxygen evolution reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-364eabf6a6b590f603a9a8520c1b17b2a8fb8021d068b4fe70f6a583daf94eff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2462179265
PQPubID 2045435
ParticipantIDs proquest_journals_2462179265
crossref_citationtrail_10_1016_j_matchemphys_2020_123496
crossref_primary_10_1016_j_matchemphys_2020_123496
elsevier_sciencedirect_doi_10_1016_j_matchemphys_2020_123496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials chemistry and physics
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Xie, Qu, Lei, Peng, Liu, Gao, Hao, Cui, Tang (bib15) 2018; 6
Cai, Bu, Wang, Ho, Yang, Wang (bib7) 2019; 7
Li, Sun, Yao, Han (bib9) 2018; 24
Kim, Kim, Kim, Kang (bib13) 2018; 8
Xu, Zhong, Yan, Kang, Yao (bib11) 2018; 6
Dutta, Mutyala, Samantara, Bera, Jena, Pradhan (bib47) 2018; 3
Yang, Dang, Shearer, Sheng, Li, Chen, Xiao, Zhang, Hamers, Jin (bib22) 2018; 8
Shi, Han, He, Cui (bib19) 2019; 44
Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib16) 2019; 9
Gui, Chen, He, Li, Xu, Wang, Sun, Zhao (bib43) 2018; 24
Chen, Shi (bib3) 2018; 6
Jia, Zhang, Gao, Chen, Wang, Zhou, Soo, Hong, Yan, Qian, Zou, Du, Yao (bib20) 2017; 29
Chen, Zheng, Zhang, Fisher, Zhou, Wang, Li, Xu, Li, Sun (bib39) 2018; 8
Han, Zhang, Wang, Xiong, Wang, Cao, Dong (bib12) 2019; 7
Cheng, Liu, Asiri, Xing, Sun (bib45) 2015; 3
Zhou, Chen, Zhao, Lin, Yu, Xu, Wang, Liu, Sun, Dou (bib10) 2018; 8
Zhou, Cai, Lei, Tian, Bi, Jia, Han, Gao, Zhang, Kuang, Pan, Sun, Duan (bib30) 2018; 8
Cai, Zhou, Wang, Bak, Wu, Wu, Tian, Xiong, Li, Liu, Siahrostami, Kuang, Yang, Duan, Feng, Wang, Sun (bib44) 2018; 57
Li, Wang, Wu, Ye, Xu, Li, Wang (bib24) 2017; 403
Wang, Tang, Zhang (bib5) 2018; 28
Zhou, Cai, Bi, Tian, Luo, Zhang, Zhang, Xie, Wang, Li, Kuang, Duan, Bajdich, Siahrostami, Sun (bib40) 2018; 11
Zhang, Shao, Zhou, Li, Xiao, Wei (bib14) 2016; 8
Zhang, Ni, Li, Lin, Zhu, Wang, Wang (bib37) 2017; 53
Carrasco, Sanchis-Gual, Silva, Abellán, Coronado (bib21) 2019; 31
Jana, Saha, Samanta, Murmu, Kim, Kuila, Lee (bib33) 2016; 4
Liu, Fu, Zhang, Xu, Lu, Zhou, Huang (bib41) 2017; 27
Liu, Duan, Sun, Wang, Tade, Wang (bib27) 2016; 120
Ge, Gu, Wang, Tu (bib35) 2014; 2
Huang, Liu, Chen, Pan, Li, Wu, Shek, Wu, Lai (bib29) 2015; 7
Zhao, Jiang, Pi, Huang (bib42) 2017; 9
Mahmood, Yao, Zhang, Pan, Zhang, Zou (bib2) 2018; 5
Tian, Zheng, Lin, Meng, Ding (bib18) 2019; 55
Wang, Yan, Hankari, Zou, Wang (bib8) 2018; 5
Zhang, Jiang, Wang, Hu (bib48) 2019; 19
Zhao, Rui, Dou, Sun (bib1) 2018; 28
Lee, Cho, Cho, Kim, Cho, Kim (bib17) 2019; 315
Zhang, Zhao, An, Xing, Gao, Liu (bib28) 2017; A 5
Ding, Li, Kuang, Qu, Cui, Zhao, Qi, Oropeza, Zhang (bib46) 2019; 11
Yu, Wang, Shifa, Zhan, Lou, Xia, He (bib4) 2019; 58
Sasai, Sato, Sugata, Fujimura, Ishihara, Deguchi, Ohki, Tansho, Shimizu, Oita, Numoto, Fujii, Kawaguchi, Matsuoka, Hagura, Abe, Moriyoshi (bib26) 2019; 58
Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib31) 2015; 27
Xie, Hu, Lv, Sun, Wang, Li, He, Wang, Li (bib32) 2012; 78
Jiang, Ithisuphalap, Zeng, Wu, Yang (bib38) 2018; 399
Lee, Hall, Kim, Mallouk (bib36) 2012; 24
Kong, Feng, Zhang, Zhang, Sun, Yin, Wang, Sun (bib49) 2019; 11
Meng, Zhao, Chen, Wang, Li, Qiu (bib23) 2014; 50
Wang, Xu, Lee (bib34) 2016; 19
Jamesh, Sun (bib6) 2018; 400
Li, Li, Luo, Cen, Ye, Xu, Wang (bib25) 2018; 43
Jana (10.1016/j.matchemphys.2020.123496_bib33) 2016; 4
Ding (10.1016/j.matchemphys.2020.123496_bib46) 2019; 11
Zhang (10.1016/j.matchemphys.2020.123496_bib14) 2016; 8
Lee (10.1016/j.matchemphys.2020.123496_bib36) 2012; 24
Tang (10.1016/j.matchemphys.2020.123496_bib31) 2015; 27
Cai (10.1016/j.matchemphys.2020.123496_bib44) 2018; 57
Meng (10.1016/j.matchemphys.2020.123496_bib23) 2014; 50
Tian (10.1016/j.matchemphys.2020.123496_bib18) 2019; 55
Li (10.1016/j.matchemphys.2020.123496_bib24) 2017; 403
Yu (10.1016/j.matchemphys.2020.123496_bib4) 2019; 58
Li (10.1016/j.matchemphys.2020.123496_bib25) 2018; 43
Ge (10.1016/j.matchemphys.2020.123496_bib35) 2014; 2
Xu (10.1016/j.matchemphys.2020.123496_bib11) 2018; 6
Liu (10.1016/j.matchemphys.2020.123496_bib27) 2016; 120
Han (10.1016/j.matchemphys.2020.123496_bib12) 2019; 7
Jiang (10.1016/j.matchemphys.2020.123496_bib38) 2018; 399
Zhang (10.1016/j.matchemphys.2020.123496_bib28) 2017; A 5
Cai (10.1016/j.matchemphys.2020.123496_bib7) 2019; 7
Cheng (10.1016/j.matchemphys.2020.123496_bib45) 2015; 3
Jia (10.1016/j.matchemphys.2020.123496_bib20) 2017; 29
Zhang (10.1016/j.matchemphys.2020.123496_bib16) 2019; 9
Chen (10.1016/j.matchemphys.2020.123496_bib39) 2018; 8
Zhou (10.1016/j.matchemphys.2020.123496_bib10) 2018; 8
Wang (10.1016/j.matchemphys.2020.123496_bib5) 2018; 28
Mahmood (10.1016/j.matchemphys.2020.123496_bib2) 2018; 5
Carrasco (10.1016/j.matchemphys.2020.123496_bib21) 2019; 31
Wang (10.1016/j.matchemphys.2020.123496_bib34) 2016; 19
Dutta (10.1016/j.matchemphys.2020.123496_bib47) 2018; 3
Gui (10.1016/j.matchemphys.2020.123496_bib43) 2018; 24
Zhang (10.1016/j.matchemphys.2020.123496_bib48) 2019; 19
Li (10.1016/j.matchemphys.2020.123496_bib9) 2018; 24
Zhang (10.1016/j.matchemphys.2020.123496_bib37) 2017; 53
Wang (10.1016/j.matchemphys.2020.123496_bib8) 2018; 5
Liu (10.1016/j.matchemphys.2020.123496_bib41) 2017; 27
Zhao (10.1016/j.matchemphys.2020.123496_bib42) 2017; 9
Sasai (10.1016/j.matchemphys.2020.123496_bib26) 2019; 58
Zhou (10.1016/j.matchemphys.2020.123496_bib40) 2018; 11
Kong (10.1016/j.matchemphys.2020.123496_bib49) 2019; 11
Jamesh (10.1016/j.matchemphys.2020.123496_bib6) 2018; 400
Huang (10.1016/j.matchemphys.2020.123496_bib29) 2015; 7
Kim (10.1016/j.matchemphys.2020.123496_bib13) 2018; 8
Zhou (10.1016/j.matchemphys.2020.123496_bib30) 2018; 8
Chen (10.1016/j.matchemphys.2020.123496_bib3) 2018; 6
Lee (10.1016/j.matchemphys.2020.123496_bib17) 2019; 315
Xie (10.1016/j.matchemphys.2020.123496_bib15) 2018; 6
Shi (10.1016/j.matchemphys.2020.123496_bib19) 2019; 44
Zhao (10.1016/j.matchemphys.2020.123496_bib1) 2018; 28
Yang (10.1016/j.matchemphys.2020.123496_bib22) 2018; 8
Xie (10.1016/j.matchemphys.2020.123496_bib32) 2012; 78
References_xml – volume: 8
  start-page: 1702774
  year: 2018
  ident: bib13
  article-title: Recent progress on multimetal oxide catalysts for the oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 141
  year: 2018
  end-page: 148
  ident: bib47
  article-title: Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 11342
  year: 2018
  end-page: 11351
  ident: bib39
  article-title: Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis
  publication-title: ACS Catal.
– volume: 24
  start-page: 18334
  year: 2018
  end-page: 18355
  ident: bib9
  article-title: Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen
  publication-title: Chem. Eur J.
– volume: 24
  start-page: 1158
  year: 2012
  end-page: 1164
  ident: bib36
  article-title: A facile and template-free hydrothermal synthesis of Mn
  publication-title: Chem. Mater.
– volume: 78
  start-page: 205
  year: 2012
  end-page: 211
  ident: bib32
  article-title: Co
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 3949
  year: 2015
  end-page: 3959
  ident: bib29
  article-title: Fe-Species-Loaded mesoporous MnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 17665
  year: 2018
  end-page: 17671
  ident: bib43
  article-title: Nickel-based bicarbonates as bifunctional catalysts for oxygen evolution and reduction reaction in alkaline media
  publication-title: Chem. Eur J.
– volume: 7
  start-page: 13105
  year: 2019
  end-page: 13114
  ident: bib12
  article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 1701905
  year: 2018
  ident: bib30
  article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 210
  year: 2016
  end-page: 221
  ident: bib34
  article-title: High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels
  publication-title: Nano Energy
– volume: 6
  start-page: 13538
  year: 2018
  end-page: 13548
  ident: bib3
  article-title: Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER)
  publication-title: J. Mater. Chem. A
– volume: 403
  start-page: 335
  year: 2017
  end-page: 341
  ident: bib24
  article-title: Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 530
  year: 2019
  end-page: 537
  ident: bib48
  article-title: Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst
  publication-title: Nano Lett.
– volume: 57
  start-page: 9392
  year: 2018
  end-page: 9396
  ident: bib44
  article-title: Introducing Fe
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 17066
  year: 2014
  end-page: 17076
  ident: bib35
  article-title: Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 23217
  year: 2019
  end-page: 23225
  ident: bib46
  article-title: An Fe stabilized metallic phase of NiS
  publication-title: Nanoscale
– volume: 9
  start-page: 84
  year: 2017
  end-page: 88
  ident: bib42
  article-title: Superior electrochemical oxygen evolution enabled by three-dimensional layered double hydroxide nanosheet superstructures
  publication-title: ChemCatChem
– volume: 5
  start-page: 1700464
  year: 2018
  ident: bib2
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
– volume: 120
  start-page: 16871
  year: 2016
  end-page: 16878
  ident: bib27
  article-title: Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation
  publication-title: J. Phys. Chem. C
– volume: 31
  start-page: 6798
  year: 2019
  end-page: 6807
  ident: bib21
  article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides
  publication-title: Chem. Mater.
– volume: 6
  start-page: 16121
  year: 2018
  end-page: 16129
  ident: bib15
  article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 12396
  year: 2014
  end-page: 12399
  ident: bib23
  article-title: Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia
  publication-title: Chem. Commun.
– volume: 315
  start-page: 94
  year: 2019
  end-page: 101
  ident: bib17
  article-title: Operational durability of three-dimensional Ni-Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: Electrochim. Acta
– volume: 44
  start-page: 23689
  year: 2019
  end-page: 23698
  ident: bib19
  article-title: Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  start-page: 1803291
  year: 2018
  ident: bib1
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 9635
  year: 2018
  end-page: 9643
  ident: bib25
  article-title: Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution
  publication-title: Int. J. Hydrogen Energy
– volume: 53
  start-page: 8010
  year: 2017
  end-page: 8013
  ident: bib37
  article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions
  publication-title: Chem. Commun.
– volume: 11
  start-page: 3004
  year: 2019
  end-page: 3009
  ident: bib49
  article-title: Hybrid amorphous/crystalline FeNi(oxy) hydroxide nanosheets for enhanced oxygen evolution
  publication-title: ChemCatChem
– volume: 3
  start-page: 23207
  year: 2015
  end-page: 23212
  ident: bib45
  article-title: A Fe-doped Ni
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1703189
  year: 2018
  ident: bib22
  article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1605307
  year: 2017
  ident: bib41
  article-title: Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core–shell structured nanotube Array for high-performance flexible all-solid-state battery-type supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 10928
  year: 2019
  end-page: 10935
  ident: bib26
  article-title: Why do carbonate anions have extremely high stability in the interlayer space of layered double hydroxides? Case study of layered double hydroxide consisting of Mg and Al (Mg/Al = 2)
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 2188
  year: 2016
  end-page: 2197
  ident: bib33
  article-title: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4516
  year: 2015
  end-page: 4522
  ident: bib31
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1700017
  year: 2017
  ident: bib20
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1358
  year: 2018
  end-page: 1368
  ident: bib40
  article-title: Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets
  publication-title: Nano Res.
– volume: 7
  start-page: 5069
  year: 2019
  end-page: 5089
  ident: bib7
  article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 1044
  year: 2019
  end-page: 1047
  ident: bib18
  article-title: Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts
  publication-title: Chem. Commun.
– volume: 399
  start-page: 66
  year: 2018
  end-page: 75
  ident: bib38
  article-title: 3D porous cellular NiCoO
  publication-title: J. Power Sources
– volume: 8
  start-page: 5382
  year: 2018
  end-page: 5393
  ident: bib10
  article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 58
  start-page: 244
  year: 2019
  end-page: 276
  ident: bib4
  article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction,
  publication-title: Nano Energy
– volume: 6
  start-page: 5999
  year: 2018
  end-page: 6006
  ident: bib11
  article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1800064
  year: 2018
  ident: bib8
  article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting
  publication-title: Adv. Sci.
– volume: 28
  start-page: 1803329
  year: 2018
  ident: bib5
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries
  publication-title: Adv. Funct. Mater.
– volume: A 5
  start-page: 10039
  year: 2017
  end-page: 10047
  ident: bib28
  article-title: Heteroelement Y-doped α-Ni(OH)
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1900881
  year: 2019
  ident: bib16
  article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 33697
  year: 2016
  end-page: 33703
  ident: bib14
  article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 400
  start-page: 31
  year: 2018
  end-page: 68
  ident: bib6
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – a review
  publication-title: J. Power Sources
– volume: 6
  start-page: 13538
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib3
  article-title: Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER)
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03741H
– volume: 29
  start-page: 1700017
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib20
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 31
  start-page: 6798
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib21
  article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01263
– volume: 8
  start-page: 1701905
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib30
  article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701905
– volume: 24
  start-page: 1158
  year: 2012
  ident: 10.1016/j.matchemphys.2020.123496_bib36
  article-title: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability
  publication-title: Chem. Mater.
  doi: 10.1021/cm203697w
– volume: 58
  start-page: 10928
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib26
  article-title: Why do carbonate anions have extremely high stability in the interlayer space of layered double hydroxides? Case study of layered double hydroxide consisting of Mg and Al (Mg/Al = 2)
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01365
– volume: 4
  start-page: 2188
  year: 2016
  ident: 10.1016/j.matchemphys.2020.123496_bib33
  article-title: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10297A
– volume: 19
  start-page: 530
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib48
  article-title: Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04466
– volume: 8
  start-page: 1703189
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib22
  article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703189
– volume: 55
  start-page: 1044
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib18
  article-title: Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08511K
– volume: 50
  start-page: 12396
  year: 2014
  ident: 10.1016/j.matchemphys.2020.123496_bib23
  article-title: Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03072A
– volume: 120
  start-page: 16871
  year: 2016
  ident: 10.1016/j.matchemphys.2020.123496_bib27
  article-title: Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05934
– volume: 27
  start-page: 1605307
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib41
  article-title: Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core–shell structured nanotube Array for high-performance flexible all-solid-state battery-type supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605307
– volume: 8
  start-page: 33697
  year: 2016
  ident: 10.1016/j.matchemphys.2020.123496_bib14
  article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12100
– volume: 24
  start-page: 18334
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib9
  article-title: Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201803749
– volume: 2
  start-page: 17066
  year: 2014
  ident: 10.1016/j.matchemphys.2020.123496_bib35
  article-title: Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03789H
– volume: 58
  start-page: 244
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib4
  article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction,
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.017
– volume: 11
  start-page: 23217
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib46
  article-title: An Fe stabilized metallic phase of NiS2 for the highly efficient oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C9NR07832K
– volume: 44
  start-page: 23689
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib19
  article-title: Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.07.082
– volume: 6
  start-page: 5999
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib11
  article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10351D
– volume: 19
  start-page: 210
  year: 2016
  ident: 10.1016/j.matchemphys.2020.123496_bib34
  article-title: High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.030
– volume: 8
  start-page: 1702774
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib13
  article-title: Recent progress on multimetal oxide catalysts for the oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702774
– volume: 7
  start-page: 5069
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib7
  article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11273H
– volume: 27
  start-page: 4516
  year: 2015
  ident: 10.1016/j.matchemphys.2020.123496_bib31
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501901
– volume: 43
  start-page: 9635
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib25
  article-title: Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.229
– volume: A 5
  start-page: 10039
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib28
  article-title: Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA00963A
– volume: 11
  start-page: 3004
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib49
  article-title: Hybrid amorphous/crystalline FeNi(oxy) hydroxide nanosheets for enhanced oxygen evolution
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900718
– volume: 403
  start-page: 335
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib24
  article-title: Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.01.169
– volume: 9
  start-page: 84
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib42
  article-title: Superior electrochemical oxygen evolution enabled by three-dimensional layered double hydroxide nanosheet superstructures
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601106
– volume: 8
  start-page: 5382
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib10
  article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01332
– volume: 28
  start-page: 1803329
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib5
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803329
– volume: 3
  start-page: 23207
  year: 2015
  ident: 10.1016/j.matchemphys.2020.123496_bib45
  article-title: A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06788J
– volume: 7
  start-page: 3949
  year: 2015
  ident: 10.1016/j.matchemphys.2020.123496_bib29
  article-title: Fe-Species-Loaded mesoporous MnO2 superstructural requirements for enhanced catalysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505989j
– volume: 57
  start-page: 9392
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib44
  article-title: Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804881
– volume: 78
  start-page: 205
  year: 2012
  ident: 10.1016/j.matchemphys.2020.123496_bib32
  article-title: CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.05.145
– volume: 53
  start-page: 8010
  year: 2017
  ident: 10.1016/j.matchemphys.2020.123496_bib37
  article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04604A
– volume: 7
  start-page: 13105
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib12
  article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02297
– volume: 3
  start-page: 141
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib47
  article-title: Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01141
– volume: 5
  start-page: 1700464
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib2
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 8
  start-page: 11342
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib39
  article-title: Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03489
– volume: 400
  start-page: 31
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib6
  article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – a review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.125
– volume: 9
  start-page: 1900881
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib16
  article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 11
  start-page: 1358
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib40
  article-title: Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1750-9
– volume: 24
  start-page: 17665
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib43
  article-title: Nickel-based bicarbonates as bifunctional catalysts for oxygen evolution and reduction reaction in alkaline media
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201804118
– volume: 28
  start-page: 1803291
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib1
  article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803291
– volume: 399
  start-page: 66
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib38
  article-title: 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.074
– volume: 5
  start-page: 1800064
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib8
  article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800064
– volume: 6
  start-page: 16121
  year: 2018
  ident: 10.1016/j.matchemphys.2020.123496_bib15
  article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05054F
– volume: 315
  start-page: 94
  year: 2019
  ident: 10.1016/j.matchemphys.2020.123496_bib17
  article-title: Operational durability of three-dimensional Ni-Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.088
SSID ssj0017113
Score 2.4535055
Snippet Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123496
SubjectTerms Catalysts
Crystal structure
Crystallinity
Crystallization
Electrocatalysis
Electrocatalysts
Hydroxides
Intermetallic compounds
Iron compounds
Low temperature
Low-temperature coprecipitation
Nanoparticles
Nickel compounds
NiFe layered Double hydroxide
Oxygen evolution reaction
Oxygen evolution reactions
Sodium carbonate
Water splitting
Title Crystalline NiFe layered double hydroxide with large pore volume as oxygen evolution electrocatalysts
URI https://dx.doi.org/10.1016/j.matchemphys.2020.123496
https://www.proquest.com/docview/2462179265
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EwY8H0an4MSWCr3VtmqYp-CLDMRX3ooJvJVmvOpmbzCnuxb_dS5vOKQiCj20-aPO73F2O3O8AjmLLUcaTwFORMJ7IkbaUSRJPCZGFWRxGobHxjquObN-Ki7vobg6aVS6MvVbpdH-p0wtt7d403Go2nnu9xrXN4_bJfnJLuSKLNCshYivlxx_Tax5BHJQlkqmzZ3svwuHXHS9yCmlpnmwQgY6K3HItWAL132zUD21dmKDWGqw635Gdlp-3DnM4qMFSsyrZVoOVGXbBDcDmaEK-nyXdRtbptZD19cSW5mTZ8NX0kT1MstHwvZchs9FYah3dIyN_HFmps5h-YcP3CYkYwzcnoszVzSnCPjT9yybcts5umm3PVVXwuvRvYy-UArXJpZYmSvxc-qFOtIq43w1MEBuuVW4UWf7Ml8oQeDH10ZEKM50nAvM83IL5wXCA28B0qHI6riE56AQDEqxaYRLzruIiik2wA6pax7TrKMdt5Yt-Wt0te0xnIEgtBGkJwQ7w6dDnknfjL4NOKrDSb0KUkn34y_B6BXDqdjK1C0mntoTLaPd_s-_Bsn0q8xjrMD8eveI-OTRjc1BI7AEsnJ5ftjufxG_4Jw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqJwQKVQUWiLkeAYNrGdxJbggLZdbWm7F1qpN2NvJu2iZbfa3T5y4U_xBxlvnD6QkCqhXuPYSuaz56XxNwDvc89RxnUSqVS6SJZIR8ppHSkpC1HkIhXO5zsOeln3SH49To8X4HdzF8aXVQbdX-v0ubYOT1pBmq2zwaD1zd_jjsl-ck-5Ql5AqKzcw-qS4rbp591tAvkD552dw3Y3Cq0For6QehaJTKJ1ZWYzl-q4zGJhtVUpj_uJS3LHrSqdIvNXxJly9Ac5vWNTJQpbaollKWjdR7AkSV34tgkff13XlSR5Uvdkpq-L_Oc9hnc3RWXkhRIWP33WgmJT7skdPGP7v4ziX-ZhbvM6K_AsOKvsSy2P57CAo1VYbjc94lbh6S06wxeA7UlFzqZn-UbWG3SQDW3le4GyYnzuhshOq2IyvhoUyHz6l0YnJ8goAEBWK0lmp2x8VdGeZngRzgQLjXrmeSZafvoSjh5E1muwOBqP8BUwK1RJ8SFSREC4I-0jq1DnvK-4THOXrINq5Gj6gePct9oYmqaY7Ye5BYHxEJgagnXg11PPaqKP-0z61IBl7uxaQwbpPtM3GoBNUB00LjMKEzXP0tf_t_pbWO4eHuyb_d3e3ht44kfqS5QbsDibnOMmeVMztzXfvQy-P_Rx-QNvPzS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+NiFe+layered+double+hydroxide+with+large+pore+volume+as+oxygen+evolution+electrocatalysts&rft.jtitle=Materials+chemistry+and+physics&rft.au=Long%2C+Junxi&rft.au=Zhang%2C+Jiaxin&rft.au=Xu%2C+Xuetang&rft.au=Wang%2C+Fan&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=254&rft_id=info:doi/10.1016%2Fj.matchemphys.2020.123496&rft.externalDocID=S0254058420308610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon