Crystalline NiFe layered double hydroxide with large pore volume as oxygen evolution electrocatalysts
Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered doubl...
Saved in:
Published in | Materials chemistry and physics Vol. 254; p. 123496 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts.
[Display omitted]
•Crystalline NiFe LDH mesostructure prepared by low-temperature precipitation.•Ni0.66Fe0.33 LDH with high pore volume (0.99 cm3 g−1) as electrocatalyst for OER.•Overpotential of 248 mV and Tafel slope of 46 mV·dec−1 are achieved. |
---|---|
AbstractList | Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts.
[Display omitted]
•Crystalline NiFe LDH mesostructure prepared by low-temperature precipitation.•Ni0.66Fe0.33 LDH with high pore volume (0.99 cm3 g−1) as electrocatalyst for OER.•Overpotential of 248 mV and Tafel slope of 46 mV·dec−1 are achieved. Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical electrochemical water splitting. In this work, we developed a facile low-temperature coprecipitation approach to synthesize NiFe layered double hydroxide (NiFe LDH). By tuning Ni/Fe feed ratio and using Na2CO3 as precipitant, mesoporous NiFe LDH nanoparticles were obtained. The special physicochemical features of these NiFe LDH nanoparticles, including high degree of crystallization, large pore volume and abundant crystalline/amorphous interfaces, synergistically endowed the catalyst with enriched active sites. Consequently, the optimal Ni0.66Fe0.33 LDH electrocatalyst showed excellent activity toward OER in alkaline media, with a low overpotential of 248 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 46 mV dec−1, and strong durability. This work opens an innovative avenue toward the design of advanced NiFe-based catalysts. |
ArticleNumber | 123496 |
Author | Long, Junxi Zhang, Jiaxin Xu, Xuetang Wang, Fan |
Author_xml | – sequence: 1 givenname: Junxi surname: Long fullname: Long, Junxi organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China – sequence: 2 givenname: Jiaxin surname: Zhang fullname: Zhang, Jiaxin organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China – sequence: 3 givenname: Xuetang surname: Xu fullname: Xu, Xuetang email: xxtang@gxu.edu.cn organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China – sequence: 4 givenname: Fan surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn organization: School of Chemistry and Chemical Engineering, Guangxi University, Nanning, PR China |
BookMark | eNqNkLFOwzAQhi1UJNrCOxgxp9hO4iQTQhUFpAoWmC3HObeu0rjYbmneHkdlQEyd7nT-7_Ppm6BRZztA6JaSGSWU329mWxnUGra7de9njLA4Z2lW8Qs0pmVRJWlK2QiNCcuzhORldoUm3m8IoQWl6RjB3PU-yLY1HeA3swDcyh4cNLix-7oFvO4bZ4-mAfxtwjq-uhXgnXWAD7bdbwFLj-2xX0GHYZgEY2PXggrOKhnJEe-v0aWWrYeb3zpFn4unj_lLsnx_fp0_LhMVTw5JyjOQteaS13lFNCeprGSZM6JoTYuayVLXJWG0IbysMw1FzMi8TBupqwy0Tqfo7sTdOfu1Bx_Exu5dF78ULOOMFhXjeUw9nFLKWe8daKFMkMPhwUnTCkrE4FZsxB-3YnArTm4jofpH2Dmzla4_a3d-2oUo4mDACa8MdAoa46I10VhzBuUHqcSgyQ |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2022_126241 crossref_primary_10_1016_j_jcis_2023_05_089 crossref_primary_10_1021_acsanm_4c07004 crossref_primary_10_1021_acssuschemeng_2c02830 crossref_primary_10_1016_j_cej_2023_147789 crossref_primary_10_1016_j_jmst_2022_01_022 crossref_primary_10_1039_D3MA00324H crossref_primary_10_1016_j_jece_2022_108151 crossref_primary_10_1021_acsanm_3c02766 crossref_primary_10_1039_D3DT03373B crossref_primary_10_1039_D4CC05348F crossref_primary_10_20964_2021_11_22 crossref_primary_10_1007_s42823_024_00730_4 crossref_primary_10_1016_j_jpowsour_2024_235302 crossref_primary_10_1016_j_inoche_2024_113500 crossref_primary_10_1016_j_jcis_2021_09_105 crossref_primary_10_3390_pr10040668 crossref_primary_10_1002_cssc_202101873 crossref_primary_10_1002_cctc_202300026 crossref_primary_10_1002_ejic_202000695 crossref_primary_10_1021_acs_inorgchem_4c04958 crossref_primary_10_1016_j_decarb_2024_100097 crossref_primary_10_1021_acs_iecr_2c03105 crossref_primary_10_1016_j_jece_2024_112126 crossref_primary_10_1016_j_jwpe_2022_103236 crossref_primary_10_1016_j_ijhydene_2024_09_320 crossref_primary_10_1016_j_jallcom_2021_159649 crossref_primary_10_1016_j_clay_2023_107195 crossref_primary_10_1016_j_colsurfa_2022_130657 crossref_primary_10_1149_1945_7111_adaa26 |
Cites_doi | 10.1039/C8TA03741H 10.1002/adma.201700017 10.1021/acs.chemmater.9b01263 10.1002/aenm.201701905 10.1021/cm203697w 10.1021/acs.inorgchem.9b01365 10.1039/C5TA10297A 10.1021/acs.nanolett.8b04466 10.1002/aenm.201703189 10.1039/C8CC08511K 10.1039/C4CC03072A 10.1021/acs.jpcc.6b05934 10.1002/adfm.201605307 10.1021/acsami.6b12100 10.1002/chem.201803749 10.1039/C4TA03789H 10.1016/j.nanoen.2019.01.017 10.1039/C9NR07832K 10.1016/j.ijhydene.2019.07.082 10.1039/C7TA10351D 10.1016/j.nanoen.2015.10.030 10.1002/aenm.201702774 10.1039/C8TA11273H 10.1002/adma.201501901 10.1016/j.ijhydene.2018.03.229 10.1039/C7TA00963A 10.1002/cctc.201900718 10.1016/j.apsusc.2017.01.169 10.1002/cctc.201601106 10.1021/acscatal.8b01332 10.1002/adfm.201803329 10.1039/C5TA06788J 10.1021/am505989j 10.1002/anie.201804881 10.1016/j.electacta.2012.05.145 10.1039/C7CC04604A 10.1021/acssuschemeng.9b02297 10.1021/acsenergylett.7b01141 10.1002/advs.201700464 10.1021/acscatal.8b03489 10.1016/j.jpowsour.2018.07.125 10.1002/aenm.201900881 10.1007/s12274-017-1750-9 10.1002/chem.201804118 10.1002/adfm.201803291 10.1016/j.jpowsour.2018.07.074 10.1002/advs.201800064 10.1039/C8TA05054F 10.1016/j.electacta.2019.05.088 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 1, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.matchemphys.2020.123496 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3312 |
ExternalDocumentID | 10_1016_j_matchemphys_2020_123496 S0254058420308610 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SMS SPG SSH WUQ 7SR 7U5 8BQ 8FD AFXIZ EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c349t-364eabf6a6b590f603a9a8520c1b17b2a8fb8021d068b4fe70f6a583daf94eff3 |
IEDL.DBID | .~1 |
ISSN | 0254-0584 |
IngestDate | Sun Jul 13 04:38:29 EDT 2025 Tue Jul 01 00:05:06 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Fri Feb 23 02:47:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Low-temperature coprecipitation NiFe layered Double hydroxide Oxygen evolution reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-364eabf6a6b590f603a9a8520c1b17b2a8fb8021d068b4fe70f6a583daf94eff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2462179265 |
PQPubID | 2045435 |
ParticipantIDs | proquest_journals_2462179265 crossref_citationtrail_10_1016_j_matchemphys_2020_123496 crossref_primary_10_1016_j_matchemphys_2020_123496 elsevier_sciencedirect_doi_10_1016_j_matchemphys_2020_123496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Xie, Qu, Lei, Peng, Liu, Gao, Hao, Cui, Tang (bib15) 2018; 6 Cai, Bu, Wang, Ho, Yang, Wang (bib7) 2019; 7 Li, Sun, Yao, Han (bib9) 2018; 24 Kim, Kim, Kim, Kang (bib13) 2018; 8 Xu, Zhong, Yan, Kang, Yao (bib11) 2018; 6 Dutta, Mutyala, Samantara, Bera, Jena, Pradhan (bib47) 2018; 3 Yang, Dang, Shearer, Sheng, Li, Chen, Xiao, Zhang, Hamers, Jin (bib22) 2018; 8 Shi, Han, He, Cui (bib19) 2019; 44 Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib16) 2019; 9 Gui, Chen, He, Li, Xu, Wang, Sun, Zhao (bib43) 2018; 24 Chen, Shi (bib3) 2018; 6 Jia, Zhang, Gao, Chen, Wang, Zhou, Soo, Hong, Yan, Qian, Zou, Du, Yao (bib20) 2017; 29 Chen, Zheng, Zhang, Fisher, Zhou, Wang, Li, Xu, Li, Sun (bib39) 2018; 8 Han, Zhang, Wang, Xiong, Wang, Cao, Dong (bib12) 2019; 7 Cheng, Liu, Asiri, Xing, Sun (bib45) 2015; 3 Zhou, Chen, Zhao, Lin, Yu, Xu, Wang, Liu, Sun, Dou (bib10) 2018; 8 Zhou, Cai, Lei, Tian, Bi, Jia, Han, Gao, Zhang, Kuang, Pan, Sun, Duan (bib30) 2018; 8 Cai, Zhou, Wang, Bak, Wu, Wu, Tian, Xiong, Li, Liu, Siahrostami, Kuang, Yang, Duan, Feng, Wang, Sun (bib44) 2018; 57 Li, Wang, Wu, Ye, Xu, Li, Wang (bib24) 2017; 403 Wang, Tang, Zhang (bib5) 2018; 28 Zhou, Cai, Bi, Tian, Luo, Zhang, Zhang, Xie, Wang, Li, Kuang, Duan, Bajdich, Siahrostami, Sun (bib40) 2018; 11 Zhang, Shao, Zhou, Li, Xiao, Wei (bib14) 2016; 8 Zhang, Ni, Li, Lin, Zhu, Wang, Wang (bib37) 2017; 53 Carrasco, Sanchis-Gual, Silva, Abellán, Coronado (bib21) 2019; 31 Jana, Saha, Samanta, Murmu, Kim, Kuila, Lee (bib33) 2016; 4 Liu, Fu, Zhang, Xu, Lu, Zhou, Huang (bib41) 2017; 27 Liu, Duan, Sun, Wang, Tade, Wang (bib27) 2016; 120 Ge, Gu, Wang, Tu (bib35) 2014; 2 Huang, Liu, Chen, Pan, Li, Wu, Shek, Wu, Lai (bib29) 2015; 7 Zhao, Jiang, Pi, Huang (bib42) 2017; 9 Mahmood, Yao, Zhang, Pan, Zhang, Zou (bib2) 2018; 5 Tian, Zheng, Lin, Meng, Ding (bib18) 2019; 55 Wang, Yan, Hankari, Zou, Wang (bib8) 2018; 5 Zhang, Jiang, Wang, Hu (bib48) 2019; 19 Zhao, Rui, Dou, Sun (bib1) 2018; 28 Lee, Cho, Cho, Kim, Cho, Kim (bib17) 2019; 315 Zhang, Zhao, An, Xing, Gao, Liu (bib28) 2017; A 5 Ding, Li, Kuang, Qu, Cui, Zhao, Qi, Oropeza, Zhang (bib46) 2019; 11 Yu, Wang, Shifa, Zhan, Lou, Xia, He (bib4) 2019; 58 Sasai, Sato, Sugata, Fujimura, Ishihara, Deguchi, Ohki, Tansho, Shimizu, Oita, Numoto, Fujii, Kawaguchi, Matsuoka, Hagura, Abe, Moriyoshi (bib26) 2019; 58 Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib31) 2015; 27 Xie, Hu, Lv, Sun, Wang, Li, He, Wang, Li (bib32) 2012; 78 Jiang, Ithisuphalap, Zeng, Wu, Yang (bib38) 2018; 399 Lee, Hall, Kim, Mallouk (bib36) 2012; 24 Kong, Feng, Zhang, Zhang, Sun, Yin, Wang, Sun (bib49) 2019; 11 Meng, Zhao, Chen, Wang, Li, Qiu (bib23) 2014; 50 Wang, Xu, Lee (bib34) 2016; 19 Jamesh, Sun (bib6) 2018; 400 Li, Li, Luo, Cen, Ye, Xu, Wang (bib25) 2018; 43 Jana (10.1016/j.matchemphys.2020.123496_bib33) 2016; 4 Ding (10.1016/j.matchemphys.2020.123496_bib46) 2019; 11 Zhang (10.1016/j.matchemphys.2020.123496_bib14) 2016; 8 Lee (10.1016/j.matchemphys.2020.123496_bib36) 2012; 24 Tang (10.1016/j.matchemphys.2020.123496_bib31) 2015; 27 Cai (10.1016/j.matchemphys.2020.123496_bib44) 2018; 57 Meng (10.1016/j.matchemphys.2020.123496_bib23) 2014; 50 Tian (10.1016/j.matchemphys.2020.123496_bib18) 2019; 55 Li (10.1016/j.matchemphys.2020.123496_bib24) 2017; 403 Yu (10.1016/j.matchemphys.2020.123496_bib4) 2019; 58 Li (10.1016/j.matchemphys.2020.123496_bib25) 2018; 43 Ge (10.1016/j.matchemphys.2020.123496_bib35) 2014; 2 Xu (10.1016/j.matchemphys.2020.123496_bib11) 2018; 6 Liu (10.1016/j.matchemphys.2020.123496_bib27) 2016; 120 Han (10.1016/j.matchemphys.2020.123496_bib12) 2019; 7 Jiang (10.1016/j.matchemphys.2020.123496_bib38) 2018; 399 Zhang (10.1016/j.matchemphys.2020.123496_bib28) 2017; A 5 Cai (10.1016/j.matchemphys.2020.123496_bib7) 2019; 7 Cheng (10.1016/j.matchemphys.2020.123496_bib45) 2015; 3 Jia (10.1016/j.matchemphys.2020.123496_bib20) 2017; 29 Zhang (10.1016/j.matchemphys.2020.123496_bib16) 2019; 9 Chen (10.1016/j.matchemphys.2020.123496_bib39) 2018; 8 Zhou (10.1016/j.matchemphys.2020.123496_bib10) 2018; 8 Wang (10.1016/j.matchemphys.2020.123496_bib5) 2018; 28 Mahmood (10.1016/j.matchemphys.2020.123496_bib2) 2018; 5 Carrasco (10.1016/j.matchemphys.2020.123496_bib21) 2019; 31 Wang (10.1016/j.matchemphys.2020.123496_bib34) 2016; 19 Dutta (10.1016/j.matchemphys.2020.123496_bib47) 2018; 3 Gui (10.1016/j.matchemphys.2020.123496_bib43) 2018; 24 Zhang (10.1016/j.matchemphys.2020.123496_bib48) 2019; 19 Li (10.1016/j.matchemphys.2020.123496_bib9) 2018; 24 Zhang (10.1016/j.matchemphys.2020.123496_bib37) 2017; 53 Wang (10.1016/j.matchemphys.2020.123496_bib8) 2018; 5 Liu (10.1016/j.matchemphys.2020.123496_bib41) 2017; 27 Zhao (10.1016/j.matchemphys.2020.123496_bib42) 2017; 9 Sasai (10.1016/j.matchemphys.2020.123496_bib26) 2019; 58 Zhou (10.1016/j.matchemphys.2020.123496_bib40) 2018; 11 Kong (10.1016/j.matchemphys.2020.123496_bib49) 2019; 11 Jamesh (10.1016/j.matchemphys.2020.123496_bib6) 2018; 400 Huang (10.1016/j.matchemphys.2020.123496_bib29) 2015; 7 Kim (10.1016/j.matchemphys.2020.123496_bib13) 2018; 8 Zhou (10.1016/j.matchemphys.2020.123496_bib30) 2018; 8 Chen (10.1016/j.matchemphys.2020.123496_bib3) 2018; 6 Lee (10.1016/j.matchemphys.2020.123496_bib17) 2019; 315 Xie (10.1016/j.matchemphys.2020.123496_bib15) 2018; 6 Shi (10.1016/j.matchemphys.2020.123496_bib19) 2019; 44 Zhao (10.1016/j.matchemphys.2020.123496_bib1) 2018; 28 Yang (10.1016/j.matchemphys.2020.123496_bib22) 2018; 8 Xie (10.1016/j.matchemphys.2020.123496_bib32) 2012; 78 |
References_xml | – volume: 8 start-page: 1702774 year: 2018 ident: bib13 article-title: Recent progress on multimetal oxide catalysts for the oxygen evolution reaction publication-title: Adv. Energy Mater. – volume: 3 start-page: 141 year: 2018 end-page: 148 ident: bib47 article-title: Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity publication-title: ACS Energy Lett. – volume: 8 start-page: 11342 year: 2018 end-page: 11351 ident: bib39 article-title: Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis publication-title: ACS Catal. – volume: 24 start-page: 18334 year: 2018 end-page: 18355 ident: bib9 article-title: Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen publication-title: Chem. Eur J. – volume: 24 start-page: 1158 year: 2012 end-page: 1164 ident: bib36 article-title: A facile and template-free hydrothermal synthesis of Mn publication-title: Chem. Mater. – volume: 78 start-page: 205 year: 2012 end-page: 211 ident: bib32 article-title: Co publication-title: Electrochim. Acta – volume: 7 start-page: 3949 year: 2015 end-page: 3959 ident: bib29 article-title: Fe-Species-Loaded mesoporous MnO publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 17665 year: 2018 end-page: 17671 ident: bib43 article-title: Nickel-based bicarbonates as bifunctional catalysts for oxygen evolution and reduction reaction in alkaline media publication-title: Chem. Eur J. – volume: 7 start-page: 13105 year: 2019 end-page: 13114 ident: bib12 article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 1701905 year: 2018 ident: bib30 article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions publication-title: Adv. Energy Mater. – volume: 19 start-page: 210 year: 2016 end-page: 221 ident: bib34 article-title: High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels publication-title: Nano Energy – volume: 6 start-page: 13538 year: 2018 end-page: 13548 ident: bib3 article-title: Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER) publication-title: J. Mater. Chem. A – volume: 403 start-page: 335 year: 2017 end-page: 341 ident: bib24 article-title: Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation publication-title: Appl. Surf. Sci. – volume: 19 start-page: 530 year: 2019 end-page: 537 ident: bib48 article-title: Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst publication-title: Nano Lett. – volume: 57 start-page: 9392 year: 2018 end-page: 9396 ident: bib44 article-title: Introducing Fe publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 17066 year: 2014 end-page: 17076 ident: bib35 article-title: Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials publication-title: J. Mater. Chem. A – volume: 11 start-page: 23217 year: 2019 end-page: 23225 ident: bib46 article-title: An Fe stabilized metallic phase of NiS publication-title: Nanoscale – volume: 9 start-page: 84 year: 2017 end-page: 88 ident: bib42 article-title: Superior electrochemical oxygen evolution enabled by three-dimensional layered double hydroxide nanosheet superstructures publication-title: ChemCatChem – volume: 5 start-page: 1700464 year: 2018 ident: bib2 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. – volume: 120 start-page: 16871 year: 2016 end-page: 16878 ident: bib27 article-title: Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation publication-title: J. Phys. Chem. C – volume: 31 start-page: 6798 year: 2019 end-page: 6807 ident: bib21 article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides publication-title: Chem. Mater. – volume: 6 start-page: 16121 year: 2018 end-page: 16129 ident: bib15 article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis publication-title: J. Mater. Chem. A – volume: 50 start-page: 12396 year: 2014 end-page: 12399 ident: bib23 article-title: Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia publication-title: Chem. Commun. – volume: 315 start-page: 94 year: 2019 end-page: 101 ident: bib17 article-title: Operational durability of three-dimensional Ni-Fe layered double hydroxide electrocatalyst for water oxidation publication-title: Electrochim. Acta – volume: 44 start-page: 23689 year: 2019 end-page: 23698 ident: bib19 article-title: Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst publication-title: Int. J. Hydrogen Energy – volume: 28 start-page: 1803291 year: 2018 ident: bib1 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. – volume: 43 start-page: 9635 year: 2018 end-page: 9643 ident: bib25 article-title: Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution publication-title: Int. J. Hydrogen Energy – volume: 53 start-page: 8010 year: 2017 end-page: 8013 ident: bib37 article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions publication-title: Chem. Commun. – volume: 11 start-page: 3004 year: 2019 end-page: 3009 ident: bib49 article-title: Hybrid amorphous/crystalline FeNi(oxy) hydroxide nanosheets for enhanced oxygen evolution publication-title: ChemCatChem – volume: 3 start-page: 23207 year: 2015 end-page: 23212 ident: bib45 article-title: A Fe-doped Ni publication-title: J. Mater. Chem. A – volume: 8 start-page: 1703189 year: 2018 ident: bib22 article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction publication-title: Adv. Energy Mater. – volume: 27 start-page: 1605307 year: 2017 ident: bib41 article-title: Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core–shell structured nanotube Array for high-performance flexible all-solid-state battery-type supercapacitors publication-title: Adv. Funct. Mater. – volume: 58 start-page: 10928 year: 2019 end-page: 10935 ident: bib26 article-title: Why do carbonate anions have extremely high stability in the interlayer space of layered double hydroxides? Case study of layered double hydroxide consisting of Mg and Al (Mg/Al = 2) publication-title: Inorg. Chem. – volume: 4 start-page: 2188 year: 2016 end-page: 2197 ident: bib33 article-title: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes publication-title: J. Mater. Chem. A – volume: 27 start-page: 4516 year: 2015 end-page: 4522 ident: bib31 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. – volume: 29 start-page: 1700017 year: 2017 ident: bib20 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. – volume: 11 start-page: 1358 year: 2018 end-page: 1368 ident: bib40 article-title: Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets publication-title: Nano Res. – volume: 7 start-page: 5069 year: 2019 end-page: 5089 ident: bib7 article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A – volume: 55 start-page: 1044 year: 2019 end-page: 1047 ident: bib18 article-title: Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts publication-title: Chem. Commun. – volume: 399 start-page: 66 year: 2018 end-page: 75 ident: bib38 article-title: 3D porous cellular NiCoO publication-title: J. Power Sources – volume: 8 start-page: 5382 year: 2018 end-page: 5393 ident: bib10 article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction publication-title: ACS Catal. – volume: 58 start-page: 244 year: 2019 end-page: 276 ident: bib4 article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction, publication-title: Nano Energy – volume: 6 start-page: 5999 year: 2018 end-page: 6006 ident: bib11 article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts publication-title: J. Mater. Chem. A – volume: 5 start-page: 1800064 year: 2018 ident: bib8 article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting publication-title: Adv. Sci. – volume: 28 start-page: 1803329 year: 2018 ident: bib5 article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries publication-title: Adv. Funct. Mater. – volume: A 5 start-page: 10039 year: 2017 end-page: 10047 ident: bib28 article-title: Heteroelement Y-doped α-Ni(OH) publication-title: J. Mater. Chem. – volume: 9 start-page: 1900881 year: 2019 ident: bib16 article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. – volume: 8 start-page: 33697 year: 2016 end-page: 33703 ident: bib14 article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces – volume: 400 start-page: 31 year: 2018 end-page: 68 ident: bib6 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – a review publication-title: J. Power Sources – volume: 6 start-page: 13538 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib3 article-title: Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER) publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03741H – volume: 29 start-page: 1700017 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib20 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 31 start-page: 6798 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib21 article-title: Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01263 – volume: 8 start-page: 1701905 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib30 article-title: NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701905 – volume: 24 start-page: 1158 year: 2012 ident: 10.1016/j.matchemphys.2020.123496_bib36 article-title: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability publication-title: Chem. Mater. doi: 10.1021/cm203697w – volume: 58 start-page: 10928 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib26 article-title: Why do carbonate anions have extremely high stability in the interlayer space of layered double hydroxides? Case study of layered double hydroxide consisting of Mg and Al (Mg/Al = 2) publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01365 – volume: 4 start-page: 2188 year: 2016 ident: 10.1016/j.matchemphys.2020.123496_bib33 article-title: Growth of Ni–Co binary hydroxide on a reduced graphene oxide surface by a successive ionic layer adsorption and reaction (SILAR) method for high performance asymmetric supercapacitor electrodes publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10297A – volume: 19 start-page: 530 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib48 article-title: Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04466 – volume: 8 start-page: 1703189 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib22 article-title: Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703189 – volume: 55 start-page: 1044 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib18 article-title: Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts publication-title: Chem. Commun. doi: 10.1039/C8CC08511K – volume: 50 start-page: 12396 year: 2014 ident: 10.1016/j.matchemphys.2020.123496_bib23 article-title: Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia publication-title: Chem. Commun. doi: 10.1039/C4CC03072A – volume: 120 start-page: 16871 year: 2016 ident: 10.1016/j.matchemphys.2020.123496_bib27 article-title: Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05934 – volume: 27 start-page: 1605307 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib41 article-title: Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core–shell structured nanotube Array for high-performance flexible all-solid-state battery-type supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605307 – volume: 8 start-page: 33697 year: 2016 ident: 10.1016/j.matchemphys.2020.123496_bib14 article-title: Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12100 – volume: 24 start-page: 18334 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib9 article-title: Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen publication-title: Chem. Eur J. doi: 10.1002/chem.201803749 – volume: 2 start-page: 17066 year: 2014 ident: 10.1016/j.matchemphys.2020.123496_bib35 article-title: Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03789H – volume: 58 start-page: 244 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib4 article-title: Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction, publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.017 – volume: 11 start-page: 23217 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib46 article-title: An Fe stabilized metallic phase of NiS2 for the highly efficient oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C9NR07832K – volume: 44 start-page: 23689 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib19 article-title: Electrochemically engineering defect-rich nickel-iron layered double hydroxides as a whole water splitting electrocatalyst publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.07.082 – volume: 6 start-page: 5999 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib11 article-title: Cobalt layered double hydroxide nanosheets synthesized in water–methanol solution as oxygen evolution electrocatalysts publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10351D – volume: 19 start-page: 210 year: 2016 ident: 10.1016/j.matchemphys.2020.123496_bib34 article-title: High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.030 – volume: 8 start-page: 1702774 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib13 article-title: Recent progress on multimetal oxide catalysts for the oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702774 – volume: 7 start-page: 5069 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib7 article-title: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11273H – volume: 27 start-page: 4516 year: 2015 ident: 10.1016/j.matchemphys.2020.123496_bib31 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. doi: 10.1002/adma.201501901 – volume: 43 start-page: 9635 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib25 article-title: Cobalt carbonate hydroxide mesostructure with high surface area for enhanced electrocatalytic oxygen evolution publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.229 – volume: A 5 start-page: 10039 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib28 article-title: Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance publication-title: J. Mater. Chem. doi: 10.1039/C7TA00963A – volume: 11 start-page: 3004 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib49 article-title: Hybrid amorphous/crystalline FeNi(oxy) hydroxide nanosheets for enhanced oxygen evolution publication-title: ChemCatChem doi: 10.1002/cctc.201900718 – volume: 403 start-page: 335 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib24 article-title: Novel synthesis and shape-dependent catalytic performance of Cu–Mn oxides for CO oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.01.169 – volume: 9 start-page: 84 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib42 article-title: Superior electrochemical oxygen evolution enabled by three-dimensional layered double hydroxide nanosheet superstructures publication-title: ChemCatChem doi: 10.1002/cctc.201601106 – volume: 8 start-page: 5382 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib10 article-title: Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.8b01332 – volume: 28 start-page: 1803329 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib5 article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803329 – volume: 3 start-page: 23207 year: 2015 ident: 10.1016/j.matchemphys.2020.123496_bib45 article-title: A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06788J – volume: 7 start-page: 3949 year: 2015 ident: 10.1016/j.matchemphys.2020.123496_bib29 article-title: Fe-Species-Loaded mesoporous MnO2 superstructural requirements for enhanced catalysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505989j – volume: 57 start-page: 9392 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib44 article-title: Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804881 – volume: 78 start-page: 205 year: 2012 ident: 10.1016/j.matchemphys.2020.123496_bib32 article-title: CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.05.145 – volume: 53 start-page: 8010 year: 2017 ident: 10.1016/j.matchemphys.2020.123496_bib37 article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions publication-title: Chem. Commun. doi: 10.1039/C7CC04604A – volume: 7 start-page: 13105 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib12 article-title: Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02297 – volume: 3 start-page: 141 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib47 article-title: Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01141 – volume: 5 start-page: 1700464 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib2 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 8 start-page: 11342 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib39 article-title: Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.8b03489 – volume: 400 start-page: 31 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib6 article-title: Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – a review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.125 – volume: 9 start-page: 1900881 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib16 article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 – volume: 11 start-page: 1358 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib40 article-title: Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets publication-title: Nano Res. doi: 10.1007/s12274-017-1750-9 – volume: 24 start-page: 17665 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib43 article-title: Nickel-based bicarbonates as bifunctional catalysts for oxygen evolution and reduction reaction in alkaline media publication-title: Chem. Eur J. doi: 10.1002/chem.201804118 – volume: 28 start-page: 1803291 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib1 article-title: Heterostructures for electrochemical hydrogen evolution reaction: a review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 – volume: 399 start-page: 66 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib38 article-title: 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.074 – volume: 5 start-page: 1800064 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib8 article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201800064 – volume: 6 start-page: 16121 year: 2018 ident: 10.1016/j.matchemphys.2020.123496_bib15 article-title: Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05054F – volume: 315 start-page: 94 year: 2019 ident: 10.1016/j.matchemphys.2020.123496_bib17 article-title: Operational durability of three-dimensional Ni-Fe layered double hydroxide electrocatalyst for water oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.088 |
SSID | ssj0017113 |
Score | 2.4535055 |
Snippet | Cost-effective and earth-abundant electrocatalysts with high activity for oxygen evolution reaction (OER) is essential for achieving efficient and economical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123496 |
SubjectTerms | Catalysts Crystal structure Crystallinity Crystallization Electrocatalysis Electrocatalysts Hydroxides Intermetallic compounds Iron compounds Low temperature Low-temperature coprecipitation Nanoparticles Nickel compounds NiFe layered Double hydroxide Oxygen evolution reaction Oxygen evolution reactions Sodium carbonate Water splitting |
Title | Crystalline NiFe layered double hydroxide with large pore volume as oxygen evolution electrocatalysts |
URI | https://dx.doi.org/10.1016/j.matchemphys.2020.123496 https://www.proquest.com/docview/2462179265 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EwY8H0an4MSWCr3VtmqYp-CLDMRX3ooJvJVmvOpmbzCnuxb_dS5vOKQiCj20-aPO73F2O3O8AjmLLUcaTwFORMJ7IkbaUSRJPCZGFWRxGobHxjquObN-Ki7vobg6aVS6MvVbpdH-p0wtt7d403Go2nnu9xrXN4_bJfnJLuSKLNCshYivlxx_Tax5BHJQlkqmzZ3svwuHXHS9yCmlpnmwQgY6K3HItWAL132zUD21dmKDWGqw635Gdlp-3DnM4qMFSsyrZVoOVGXbBDcDmaEK-nyXdRtbptZD19cSW5mTZ8NX0kT1MstHwvZchs9FYah3dIyN_HFmps5h-YcP3CYkYwzcnoszVzSnCPjT9yybcts5umm3PVVXwuvRvYy-UArXJpZYmSvxc-qFOtIq43w1MEBuuVW4UWf7Ml8oQeDH10ZEKM50nAvM83IL5wXCA28B0qHI6riE56AQDEqxaYRLzruIiik2wA6pax7TrKMdt5Yt-Wt0te0xnIEgtBGkJwQ7w6dDnknfjL4NOKrDSb0KUkn34y_B6BXDqdjK1C0mntoTLaPd_s-_Bsn0q8xjrMD8eveI-OTRjc1BI7AEsnJ5ftjufxG_4Jw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqJwQKVQUWiLkeAYNrGdxJbggLZdbWm7F1qpN2NvJu2iZbfa3T5y4U_xBxlvnD6QkCqhXuPYSuaz56XxNwDvc89RxnUSqVS6SJZIR8ppHSkpC1HkIhXO5zsOeln3SH49To8X4HdzF8aXVQbdX-v0ubYOT1pBmq2zwaD1zd_jjsl-ck-5Ql5AqKzcw-qS4rbp591tAvkD552dw3Y3Cq0For6QehaJTKJ1ZWYzl-q4zGJhtVUpj_uJS3LHrSqdIvNXxJly9Ac5vWNTJQpbaollKWjdR7AkSV34tgkff13XlSR5Uvdkpq-L_Oc9hnc3RWXkhRIWP33WgmJT7skdPGP7v4ziX-ZhbvM6K_AsOKvsSy2P57CAo1VYbjc94lbh6S06wxeA7UlFzqZn-UbWG3SQDW3le4GyYnzuhshOq2IyvhoUyHz6l0YnJ8goAEBWK0lmp2x8VdGeZngRzgQLjXrmeSZafvoSjh5E1muwOBqP8BUwK1RJ8SFSREC4I-0jq1DnvK-4THOXrINq5Gj6gePct9oYmqaY7Ye5BYHxEJgagnXg11PPaqKP-0z61IBl7uxaQwbpPtM3GoBNUB00LjMKEzXP0tf_t_pbWO4eHuyb_d3e3ht44kfqS5QbsDibnOMmeVMztzXfvQy-P_Rx-QNvPzS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline+NiFe+layered+double+hydroxide+with+large+pore+volume+as+oxygen+evolution+electrocatalysts&rft.jtitle=Materials+chemistry+and+physics&rft.au=Long%2C+Junxi&rft.au=Zhang%2C+Jiaxin&rft.au=Xu%2C+Xuetang&rft.au=Wang%2C+Fan&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0254-0584&rft.eissn=1879-3312&rft.volume=254&rft_id=info:doi/10.1016%2Fj.matchemphys.2020.123496&rft.externalDocID=S0254058420308610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |