Emotion Recognition From Multimodal Physiological Signals Using a Regularized Deep Fusion of Kernel Machine
These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction. However, due to the complexity of emotions and individual differences in physiological responses, how to design reliable and effective models has...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 9; pp. 4386 - 4399 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction. However, due to the complexity of emotions and individual differences in physiological responses, how to design reliable and effective models has become an important issue. In this article, we propose a regularized deep fusion framework for emotion recognition based on multimodal physiological signals. After extracting the effective features from different types of physiological signals, we construct ensemble dense embeddings of multimodal features using kernel matrices, and then utilize a deep network architecture to learn task-specific representations for each kind of physiological signal from these ensemble dense embeddings. Finally, a global fusion layer with a regularization term, which can efficiently explore the correlation and diversity among all of the representations in a synchronous optimization process, is designed to fuse generated representations. Experiments on two benchmark datasets show that this framework can improve the performance of subject-independent emotion recognition compared to single-modal classifiers or other fusion methods. Data visualization also demonstrates that the final fusion representation exhibits higher class-separability power for emotion recognition. |
---|---|
AbstractList | These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction. However, due to the complexity of emotions and individual differences in physiological responses, how to design reliable and effective models has become an important issue. In this article, we propose a regularized deep fusion framework for emotion recognition based on multimodal physiological signals. After extracting the effective features from different types of physiological signals, we construct ensemble dense embeddings of multimodal features using kernel matrices, and then utilize a deep network architecture to learn task-specific representations for each kind of physiological signal from these ensemble dense embeddings. Finally, a global fusion layer with a regularization term, which can efficiently explore the correlation and diversity among all of the representations in a synchronous optimization process, is designed to fuse generated representations. Experiments on two benchmark datasets show that this framework can improve the performance of subject-independent emotion recognition compared to single-modal classifiers or other fusion methods. Data visualization also demonstrates that the final fusion representation exhibits higher class-separability power for emotion recognition. These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction. However, due to the complexity of emotions and individual differences in physiological responses, how to design reliable and effective models has become an important issue. In this article, we propose a regularized deep fusion framework for emotion recognition based on multimodal physiological signals. After extracting the effective features from different types of physiological signals, we construct ensemble dense embeddings of multimodal features using kernel matrices, and then utilize a deep network architecture to learn task-specific representations for each kind of physiological signal from these ensemble dense embeddings. Finally, a global fusion layer with a regularization term, which can efficiently explore the correlation and diversity among all of the representations in a synchronous optimization process, is designed to fuse generated representations. Experiments on two benchmark datasets show that this framework can improve the performance of subject-independent emotion recognition compared to single-modal classifiers or other fusion methods. Data visualization also demonstrates that the final fusion representation exhibits higher class-separability power for emotion recognition.These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction. However, due to the complexity of emotions and individual differences in physiological responses, how to design reliable and effective models has become an important issue. In this article, we propose a regularized deep fusion framework for emotion recognition based on multimodal physiological signals. After extracting the effective features from different types of physiological signals, we construct ensemble dense embeddings of multimodal features using kernel matrices, and then utilize a deep network architecture to learn task-specific representations for each kind of physiological signal from these ensemble dense embeddings. Finally, a global fusion layer with a regularization term, which can efficiently explore the correlation and diversity among all of the representations in a synchronous optimization process, is designed to fuse generated representations. Experiments on two benchmark datasets show that this framework can improve the performance of subject-independent emotion recognition compared to single-modal classifiers or other fusion methods. Data visualization also demonstrates that the final fusion representation exhibits higher class-separability power for emotion recognition. |
Author | Shen, Jian Gao, Jin Zhang, Xiaowei Hu, Bin Liu, Jinyong Li, Shaojie Zhang, Tong Hou, Kechen |
Author_xml | – sequence: 1 givenname: Xiaowei orcidid: 0000-0001-8562-416X surname: Zhang fullname: Zhang, Xiaowei email: zhangxw@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 2 givenname: Jinyong orcidid: 0000-0003-0051-5779 surname: Liu fullname: Liu, Jinyong email: liujy2016@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 3 givenname: Jian orcidid: 0000-0001-6099-3209 surname: Shen fullname: Shen, Jian email: shenj17@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 4 givenname: Shaojie orcidid: 0000-0003-2432-0482 surname: Li fullname: Li, Shaojie email: lishj2019@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 5 givenname: Kechen surname: Hou fullname: Hou, Kechen email: houkch16@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 6 givenname: Bin orcidid: 0000-0002-1324-3285 surname: Hu fullname: Hu, Bin email: hub17@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 7 givenname: Jin surname: Gao fullname: Gao, Jin email: gaoj2018@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China – sequence: 8 givenname: Tong orcidid: 0000-0002-7025-6365 surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: School of Electronics and Information, South China University of Technology, Guangzhou, China – sequence: 9 givenname: Bin orcidid: 0000-0003-3514-5413 surname: Hu fullname: Hu, Bin email: bh@lzu.edu.cn organization: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32413939$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URP_QD4CQUCQuXHaxx3EcH-nSBUQrELQHTlbWmaQujr3YyaH99DjstocesA-esX7vSTPvmBz44JGQV4wuGaPq_dXq19kSKNAlqFoKKZ6RI2BVvQCQ4uCxruQhOU3pluZT5y9VvyCHHErGFVdH5Pf5EEYbfPEDTei9_VevYxiKy8mNdght44rvN3fJBhd6a3L30_a-cam4Ttb3RZOV_eSaaO-xLT4ibov1lGaX0BVfMXp0xWVjbqzHl-R5l4V4un9PyPX6_Gr1eXHx7dOX1YeLheGlGhe8BNaxlrO2AkpRSoqwkabiqEqsoOIbVtONAiZAGWFEK6q2M0xJBMSSKn5C3u18tzH8mTCNerDJoHONxzAlDSXNtxaKZ_TtE_Q2THEeT4OQUFUlgzpTb_bUtBmw1dtohybe6Yc1ZkDuABNDShE7bezYzLscY2OdZlTPmek5Mz1npveZZSV7onww_5_m9U5jEfGRV3lyBsD_AvL-n_I |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1088_1361_6579_ad5bbc crossref_primary_10_1109_JSTARS_2021_3123087 crossref_primary_10_1088_2057_1976_ad31f9 crossref_primary_10_1631_FITEE_2100489 crossref_primary_10_1186_s40708_022_00162_8 crossref_primary_10_1109_TAFFC_2023_3318321 crossref_primary_10_1109_LSENS_2025_3526907 crossref_primary_10_1007_s11042_023_17489_x crossref_primary_10_1080_10255842_2025_2456996 crossref_primary_10_3389_fnins_2022_911767 crossref_primary_10_1016_j_patrec_2024_12_006 crossref_primary_10_1109_JBHI_2023_3265805 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1109_TAFFC_2023_3290177 crossref_primary_10_1109_TAFFC_2024_3409357 crossref_primary_10_1109_TCYB_2023_3320107 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_1007_s40436_024_00519_8 crossref_primary_10_1109_TAFFC_2022_3158843 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_1109_TAFFC_2023_3263907 crossref_primary_10_1109_JBHI_2024_3504604 crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_1109_TCSS_2022_3152091 crossref_primary_10_1109_JBHI_2024_3416944 crossref_primary_10_1109_TAFFC_2024_3414330 crossref_primary_10_3390_diagnostics13122097 crossref_primary_10_3390_e23101298 crossref_primary_10_1016_j_inffus_2025_103058 crossref_primary_10_1109_TIM_2024_3375980 crossref_primary_10_3389_fcomp_2023_1264713 crossref_primary_10_1109_TCSS_2022_3157522 crossref_primary_10_1108_ACI_03_2022_0080 crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_1109_TCDS_2023_3270170 crossref_primary_10_1145_3666002 crossref_primary_10_1109_TNSRE_2022_3221962 crossref_primary_10_3389_fnins_2022_965871 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_JSEN_2021_3121293 crossref_primary_10_1109_TCE_2024_3370310 crossref_primary_10_1016_j_bspc_2024_106812 crossref_primary_10_1109_TCSS_2024_3412074 crossref_primary_10_1109_TCYB_2022_3197127 crossref_primary_10_3390_app12104998 crossref_primary_10_1109_TCSS_2023_3303331 crossref_primary_10_1109_TCSS_2024_3406988 crossref_primary_10_1016_j_bspc_2021_102960 crossref_primary_10_1016_j_bspc_2023_104989 crossref_primary_10_1007_s11571_024_10123_y crossref_primary_10_3390_s23187853 crossref_primary_10_3390_bioengineering9110688 crossref_primary_10_1109_LRA_2021_3067867 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_7717_peerj_cs_1472 crossref_primary_10_1016_j_jneumeth_2023_109909 crossref_primary_10_1109_TCYB_2021_3085489 crossref_primary_10_3390_s23063250 crossref_primary_10_1007_s11042_024_19171_2 crossref_primary_10_1016_j_eswa_2023_120948 crossref_primary_10_1016_j_inffus_2023_101847 crossref_primary_10_1002_widm_1563 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1016_j_patrec_2022_11_001 crossref_primary_10_1109_ACCESS_2024_3375393 crossref_primary_10_1016_j_metrad_2025_100135 crossref_primary_10_1016_j_eswa_2023_122454 crossref_primary_10_1109_TAFFC_2022_3210958 crossref_primary_10_3390_diagnostics13050977 crossref_primary_10_1038_s41598_024_62990_4 crossref_primary_10_1109_TAI_2024_3445325 crossref_primary_10_1109_ACCESS_2022_3224725 crossref_primary_10_1038_s41598_024_72507_8 crossref_primary_10_3389_fnins_2022_1000716 crossref_primary_10_1016_j_bspc_2024_107324 crossref_primary_10_1109_ACCESS_2024_3350745 crossref_primary_10_2478_amns_2023_2_00533 crossref_primary_10_7717_peerj_cs_1977 crossref_primary_10_1109_ACCESS_2024_3506157 crossref_primary_10_1109_TIM_2023_3338676 crossref_primary_10_1007_s11063_023_11250_z crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_1007_s11227_022_04665_3 crossref_primary_10_1016_j_eswa_2023_121692 crossref_primary_10_1109_TAFFC_2021_3137857 crossref_primary_10_1016_j_patcog_2023_109794 crossref_primary_10_1109_TAFFC_2024_3385651 crossref_primary_10_1109_TAFFC_2022_3158234 crossref_primary_10_1016_j_knosys_2022_109038 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1007_s11042_023_18021_x crossref_primary_10_1109_TCYB_2022_3204343 crossref_primary_10_1016_j_compbiomed_2023_106860 crossref_primary_10_3390_app13042573 crossref_primary_10_1109_TAFFC_2022_3171782 crossref_primary_10_1016_j_buildenv_2024_111396 crossref_primary_10_1109_TCYB_2021_3090811 |
Cites_doi | 10.1109/TPAMI.2017.2670560 10.1016/S0028-3932(99)00017-2 10.1109/TSMCA.2012.2220542 10.1109/CVPRW.2009.5204298 10.1201/9780203749289 10.1109/TAFFC.2019.2954118 10.1109/TCYB.2018.2797176 10.1090/S0002-9947-1950-0051437-7 10.1109/TMM.2012.2188783 10.1109/TAFFC.2017.2781732 10.1109/TAFFC.2015.2392932 10.1109/CVPR.2014.223 10.1109/TSMCA.2012.2216869 10.1007/s12369-019-00524-z 10.2307/2279372 10.1109/CVPR.2010.5540120 10.1109/TAFFC.2017.2695999 10.1109/TAFFC.2014.2339834 10.3389/fict.2017.00001 10.1504/IJDMB.2017.086097 10.1109/ICASSP.2015.7178347 10.1109/TPAMI.2017.2772235 10.1109/TAFFC.2019.2934412 10.1016/j.neucom.2014.11.078 10.1109/T-AFFC.2011.15 10.1109/ICASSP.2017.7952681 10.1109/CGIV.2007.33 10.1016/j.neucom.2014.02.057 10.1109/TNNLS.2018.2804895 10.1109/TAFFC.2017.2712143 10.1109/TAFFC.2018.2840973 10.1109/TCYB.2019.2904052 10.1109/ICBBE.2008.670 10.1007/s12193-015-0195-2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.2987575 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4399 |
ExternalDocumentID | 32413939 10_1109_TCYB_2020_2987575 9093122 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program) grantid: 2014CB744600 funderid: 10.13039/501100012166 – fundername: Program of Beijing Municipal Science and Technology Commission grantid: Z171100000117005 funderid: 10.13039/501100009592 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706200 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61632014; 61402211 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-3421f1d31d6200e770e2b7c63e94e6263b180b921529c5c5d56dfc197e2ee4093 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 14:20:47 EDT 2025 Mon Jun 30 04:53:10 EDT 2025 Thu Jan 02 22:58:48 EST 2025 Tue Aug 05 12:01:36 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Wed Aug 27 02:03:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-3421f1d31d6200e770e2b7c63e94e6263b180b921529c5c5d56dfc197e2ee4093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1324-3285 0000-0003-3514-5413 0000-0002-7025-6365 0000-0003-2432-0482 0000-0001-8562-416X 0000-0003-0051-5779 0000-0001-6099-3209 |
PMID | 32413939 |
PQID | 2572664128 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2020_2987575 proquest_journals_2572664128 crossref_citationtrail_10_1109_TCYB_2020_2987575 ieee_primary_9093122 proquest_miscellaneous_2404048593 pubmed_primary_32413939 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 kumar (ref28) 2009 ref33 ref32 ref10 kumar (ref27) 2012; 13 ref2 levy (ref26) 2014 ref17 ref38 ref16 ref19 ref18 qi (ref3) 2007 zhang (ref30) 2017 ptaszynski (ref1) 2009 rakotomamonjy (ref36) 2008; 9 ref45 ref23 ref25 ref20 ref42 ref41 ref22 meyer (ref24) 2002 ref44 ref21 ref43 ref29 ref7 demšar (ref39) 2006; 7 ref9 ref4 ref6 ref5 harper (ref11) 2019 ref40 pan (ref8) 2016 |
References_xml | – ident: ref31 doi: 10.1109/TPAMI.2017.2670560 – ident: ref6 doi: 10.1016/S0028-3932(99)00017-2 – volume: 9 start-page: 2491 year: 2008 ident: ref36 article-title: SimpleMKL publication-title: J Mach Learn Res – ident: ref5 doi: 10.1109/TSMCA.2012.2220542 – start-page: 2914 year: 2017 ident: ref30 article-title: Learning sparse task relations in multi-task learning publication-title: Proc 31st AAAI Conf Artif Intell – start-page: 1060 year: 2009 ident: ref28 article-title: Ensemble Nyström method publication-title: Proc Adv Neural Inf Process Syst – start-page: 2177 year: 2014 ident: ref26 article-title: Neural word embedding as implicit matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/CVPRW.2009.5204298 – ident: ref45 doi: 10.1201/9780203749289 – ident: ref41 doi: 10.1109/TAFFC.2019.2954118 – ident: ref18 doi: 10.1109/TCYB.2018.2797176 – ident: ref15 doi: 10.1090/S0002-9947-1950-0051437-7 – ident: ref17 doi: 10.1109/TMM.2012.2188783 – ident: ref10 doi: 10.1109/TAFFC.2017.2781732 – ident: ref14 doi: 10.1109/TAFFC.2015.2392932 – ident: ref20 doi: 10.1109/CVPR.2014.223 – ident: ref35 doi: 10.1109/TSMCA.2012.2216869 – ident: ref4 doi: 10.1007/s12369-019-00524-z – ident: ref38 doi: 10.2307/2279372 – ident: ref16 doi: 10.1109/CVPR.2010.5540120 – ident: ref7 doi: 10.1109/TAFFC.2017.2695999 – start-page: 305 year: 2002 ident: ref24 article-title: Continuous audio-visual digit recognition using decision fusion publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (CASSP) – start-page: 2063 year: 2016 ident: ref8 article-title: An EEG-based brain-computer interface for emotion recognition publication-title: Proc Int Joint Conf Neural Netw – volume: 7 start-page: 1 year: 2006 ident: ref39 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref44 doi: 10.1109/TAFFC.2014.2339834 – ident: ref34 doi: 10.3389/fict.2017.00001 – ident: ref12 doi: 10.1504/IJDMB.2017.086097 – volume: 13 start-page: 981 year: 2012 ident: ref27 article-title: Sampling methods for the Nyström method publication-title: J Mach Learn Res – ident: ref29 doi: 10.1109/ICASSP.2015.7178347 – ident: ref40 doi: 10.1109/TPAMI.2017.2772235 – year: 2019 ident: ref11 publication-title: A bayesian deep learning framework for end-to-end prediction of emotion from heartbeat – ident: ref2 doi: 10.1109/TAFFC.2019.2934412 – ident: ref37 doi: 10.1016/j.neucom.2014.11.078 – ident: ref13 doi: 10.1109/T-AFFC.2011.15 – ident: ref19 doi: 10.1109/ICASSP.2017.7952681 – ident: ref22 doi: 10.1109/CGIV.2007.33 – start-page: 1469 year: 2009 ident: ref1 article-title: Towards context aware emotional intelligence in machines: Computing contextual appropriateness of affective states publication-title: Proc Int Joint Conf Artif Intell – ident: ref42 doi: 10.1016/j.neucom.2014.02.057 – ident: ref25 doi: 10.1109/TNNLS.2018.2804895 – ident: ref32 doi: 10.1109/TAFFC.2017.2712143 – ident: ref33 doi: 10.1109/TAFFC.2018.2840973 – ident: ref43 doi: 10.1109/TCYB.2019.2904052 – ident: ref9 doi: 10.1109/ICBBE.2008.670 – ident: ref21 doi: 10.1007/s12193-015-0195-2 – start-page: 483 year: 2007 ident: ref3 article-title: Facial and speech recognition emotion in distance education system publication-title: The Int Conf on Intell Pervasive Comput |
SSID | ssj0000816898 |
Score | 2.5842524 |
Snippet | These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human-computer interaction.... These days, physiological signals have been studied more broadly for emotion recognition to realize emotional intelligence in human–computer interaction.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4386 |
SubjectTerms | Brain modeling Computer architecture Deep neural network Emotion recognition Emotions Feature extraction Fuses Kernel kernel machine Kernels multimodal fusion Optimization Physiological responses Physiology Regularization Representations Scientific visualization Task analysis |
Title | Emotion Recognition From Multimodal Physiological Signals Using a Regularized Deep Fusion of Kernel Machine |
URI | https://ieeexplore.ieee.org/document/9093122 https://www.ncbi.nlm.nih.gov/pubmed/32413939 https://www.proquest.com/docview/2572664128 https://www.proquest.com/docview/2404048593 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAtjwCBRmJAyCyjV_J-ghtVxVoOUArlVOU2JOqaptU282lv54Zx4kQKhU3S7GdRDOet-dj7J1wThnUc6ml8L2WlUvnqMZTnVdKGE9Ck0IDy-_50Yn-empON9in6S4MAITiM5jRMOTyfed6CpXtWXS_hUSB-wAdt-Gu1hRPCQASAfpW4iBFq6KISUyR2b3j_V9f0BmU2UxaauFOgDWKUkqWUML_0EgBYuXf1mbQOovHbDl-71BscjHr1_XM3f7VyvF_f-gJexTNT_554JcttgHtNtuKB_yGv49dqD_ssIvDAeCH_xhLjHC8WHVXPNzZveo87hPqR0fxyX-en1E3Zh7KEHiFKwnnfnV-C54fAFzzRU-xOd41_BusWrjky1DKCU_ZyeLweP8ojcgMqVParlOlpWiEV8LneMqgKDKQdeFyBVYD9bepxTyrLWHmWmec8Sb3jRO2AAmAHqV6xjbbroUXjJu6lmYunG8yr5EaVeVEo0TVNKYQts4Tlo3UKV1sW07oGZdlcF8yWxJtS6JtGWmbsI_TkuuhZ8d9k3eILtPESJKE7Y4sUMZTfVOieEN7RqNKT9jb6TGeR0qyVC10Pc7RKBY1dZFL2POBdaa9R457efc7X7GHkipmQgXbLttcr3p4jSbPun4TeP03Xlr35A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcoALtJRHaAEjcQBEtrFjJ-sjlK4W2u0BtlI5RYk9QVXbpNpuLv31zDhOhBAgbpZiO4nm6ZnxfIy9FtamGu1cbCh8r2Rp4yma8VhlZSq0I6VJoYHFSTY_VV_O9NkGez_ehQEAX3wGExr6XL5rbUehsn2Dx28hUeHeQbuvRX9ba4yoeAgJD34rcRCjX5GHNKZIzP7y4PtHPA7KZCINNXEnyJqUkkqGcMJ_sUkeZOXv_qa3O7MHbDF8cV9ucjHp1tXE3v7WzPF_f2mL3Q8OKP_Qc8w224DmIdsOIn7D34Q-1G932MVhD_HDvw5FRjierdor7m_tXrUO9_EVpIMC5d_Of1A_Zu4LEXiJKwnpfnV-C45_Arjms46ic7yt-RGsGrjkC1_MCY_Y6exweTCPAzZDbFNl1nGqpKiFS4XLUM4gzxOQVW6zFIwC6nBTiWlSGULNNVZb7XTmaitMDhIAz5TpY7bZtA08ZVxXldRTYV2dOIXUKEsr6lSUda1zYaosYslAncKGxuWEn3FZ-ANMYgqibUG0LQJtI_ZuXHLdd-341-Qdoss4MZAkYnsDCxRBrm8KVHDo0Sg06hF7NT5GiaQ0S9lA2-EchYpRUR-5iD3pWWfce-C4Z39-50t2d75cHBfHn0-Odtk9SfUzvp5tj22uVx08RwdoXb3wfP8Tck37LQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+From+Multimodal+Physiological+Signals+Using+a+Regularized+Deep+Fusion+of+Kernel+Machine&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhang%2C+Xiaowei&rft.au=Liu%2C+Jinyong&rft.au=Shen%2C+Jian&rft.au=Li%2C+Shaojie&rft.date=2021-09-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=9&rft.spage=4386&rft.epage=4399&rft_id=info:doi/10.1109%2FTCYB.2020.2987575&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_2987575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |