Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and its Application
This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shif...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 1; pp. 18 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully. |
---|---|
AbstractList | This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully. This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully.This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully. |
Author | Wang, Yong Ma, Zhongwei |
Author_xml | – sequence: 1 givenname: Zhongwei surname: Ma fullname: Ma, Zhongwei email: mzw_cemo@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Yong orcidid: 0000-0001-7670-3958 surname: Wang fullname: Wang, Yong email: ywang@csu.edu.cn organization: School of Automation, Central South University, Changsha, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34033555$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJyWMyP6AUiiGbbDzV07KWyZAmhZQpdLLISpXla6rBYzmWHEh-feXMJIssoo3E4TsX3XNO0EHnO0DoC8ELQrD6vl7eXy4opmTBcKFKwj-hY0qKMqdUioO3dyGP0DyEDU6nTJIqD9ER45gxIcQx-vvnn2tifmkC1Nlv6Ewbn7LGD9nVo2_H6Hxnhqds6bsQB-O6BP0a2yRXG7DRPUK26qPbumczoZnp6szFkF30fevsi3aKPjemDTDf3zN09-NqvbzJb1fXP5cXt7llXMWckfRTxqCUVSENJ5VhktbSmLq2VVPUJQhFFVOUKGtYzS2VXFgugFeywaxgM3S-m9sP_mGEEPXWBQttazrwY9BUMEo5xkom9OwduvHjkFZPlBSSSIkFTdS3PTVWW6h1P7htykK_ZpcAuQPs4EMYoNHWxZedp6haTbCeitJTUXoqSu-LSk7yzvk6_CPP153HAcAbrzjHZaHYf_g1nWg |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TETCI_2023_3336918 crossref_primary_10_1016_j_chemolab_2023_104934 crossref_primary_10_1007_s00158_022_03301_1 crossref_primary_10_1007_s00158_024_03859_y crossref_primary_10_1016_j_matcom_2024_11_009 crossref_primary_10_1016_j_engappai_2024_108673 crossref_primary_10_1109_TAI_2024_3454025 crossref_primary_10_1016_j_swevo_2024_101714 crossref_primary_10_1109_TCYB_2025_3531449 crossref_primary_10_1016_j_ins_2022_08_020 crossref_primary_10_1016_j_ins_2024_121812 crossref_primary_10_1109_JAS_2023_123792 crossref_primary_10_1016_j_swevo_2025_101890 crossref_primary_10_1016_j_swevo_2023_101372 crossref_primary_10_1080_09544828_2025_2450763 crossref_primary_10_1109_TEVC_2023_3260306 crossref_primary_10_1007_s12293_024_00409_3 crossref_primary_10_1016_j_eswa_2023_121718 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1016_j_swevo_2024_101746 crossref_primary_10_3390_biomimetics8020136 crossref_primary_10_1109_TETCI_2024_3393368 crossref_primary_10_1016_j_swevo_2025_101845 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1016_j_swevo_2023_101402 crossref_primary_10_1016_j_swevo_2024_101784 crossref_primary_10_1007_s40747_024_01542_9 crossref_primary_10_1109_TITS_2024_3395993 crossref_primary_10_1109_TSMC_2023_3299570 crossref_primary_10_1016_j_eswa_2024_126229 crossref_primary_10_1016_j_ins_2023_119906 crossref_primary_10_1109_MCI_2023_3245719 crossref_primary_10_3390_math13050688 crossref_primary_10_1016_j_eswa_2025_126908 crossref_primary_10_1109_TEVC_2023_3270483 crossref_primary_10_1016_j_swevo_2024_101735 crossref_primary_10_1109_TETCI_2024_3359517 crossref_primary_10_1109_TEVC_2024_3366659 crossref_primary_10_1016_j_asoc_2024_111827 crossref_primary_10_1016_j_swevo_2024_101657 crossref_primary_10_1109_TETCI_2023_3313412 crossref_primary_10_1016_j_asoc_2024_111707 crossref_primary_10_1007_s11831_022_09859_9 crossref_primary_10_1016_j_eswa_2024_124441 crossref_primary_10_1109_TCYB_2023_3329947 crossref_primary_10_1016_j_eswa_2024_124712 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1109_TSMC_2023_3281550 crossref_primary_10_3390_s23062984 crossref_primary_10_1109_TEVC_2023_3313689 crossref_primary_10_1016_j_eij_2023_100422 crossref_primary_10_1109_TSMC_2023_3324797 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_1016_j_swevo_2024_101727 crossref_primary_10_1109_TVT_2024_3468638 crossref_primary_10_1016_j_swevo_2024_101685 crossref_primary_10_1002_tee_24200 crossref_primary_10_1007_s40747_024_01379_2 crossref_primary_10_1109_JAS_2023_123687 |
Cites_doi | 10.1109/4235.996017 10.1109/CEC.2017.7969433 10.1109/TEVC.2003.810761 10.1016/j.asoc.2012.07.027 10.1007/978-3-540-30217-9_84 10.1109/CEC.2006.1688315 10.1142/S021800141000797X 10.1109/TEVC.2007.892759 10.1016/j.swevo.2018.08.017 10.1109/TEVC.2019.2896967 10.1007/3-540-44719-9_20 10.1016/j.swevo.2011.03.001 10.1109/4235.797969 10.1016/j.asoc.2013.10.008 10.1109/TEVC.2020.2981949 10.1109/TCYB.2018.2881190 10.1007/s00500-012-0816-6 10.1109/TEVC.2019.2894743 10.1109/UKCI.2010.5625585 10.1109/TCYB.2015.2493239 10.1145/2598394.2610012 10.1016/j.swevo.2011.10.001 10.1007/s00500-019-03794-x 10.1109/AIMS.2013.16 10.1109/CEC.2008.4631171 10.1007/11903697_43 10.1109/TEVC.2008.2009032 10.1007/978-3-642-00619-7_7 10.1109/TCYB.2018.2819208 10.1109/TCYB.2018.2869674 10.1109/TMAG.2004.825006 10.1109/CEC.2016.7744320 10.1016/j.asoc.2018.10.027 10.1109/TEVC.2013.2281534 10.1109/4235.873238 10.1162/evco_a_00259 10.1016/j.swevo.2013.12.002 10.1109/CEC.2013.6557942 10.1109/TEVC.2007.902851 10.1109/TSMC.2017.2781460 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3069814 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Sciences (General) |
EISSN | 2168-2275 |
EndPage | 30 |
ExternalDocumentID | 34033555 10_1109_TCYB_2021_3069814 9440869 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976225; 61673397 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-3126733e87b67a41ba372d7aaddcbf6d8e592939219ca3d4c2745c45e4b7f0363 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 11:42:33 EDT 2025 Sun Jun 29 15:50:50 EDT 2025 Thu Apr 03 07:12:25 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Wed Aug 27 02:14:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-3126733e87b67a41ba372d7aaddcbf6d8e592939219ca3d4c2745c45e4b7f0363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7670-3958 |
PMID | 34033555 |
PQID | 2757177052 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9440869 proquest_journals_2757177052 crossref_citationtrail_10_1109_TCYB_2021_3069814 crossref_primary_10_1109_TCYB_2021_3069814 pubmed_primary_34033555 proquest_miscellaneous_2532240097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Jan. 2023-1-00 2023-Jan 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 scimemi (ref38) 2011 ref1 ref17 ref39 ref16 ref19 ref18 zuo (ref44) 2015; 16 tan (ref7) 2018 geng (ref31) 2006 takahama (ref25) 2006 fan (ref24) 2019; 74 deb (ref40) 1994; 9 ref23 ref45 ref26 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/4235.996017 – ident: ref5 doi: 10.1109/CEC.2017.7969433 – ident: ref39 doi: 10.1109/TEVC.2003.810761 – ident: ref32 doi: 10.1016/j.asoc.2012.07.027 – ident: ref16 doi: 10.1007/978-3-540-30217-9_84 – ident: ref18 doi: 10.1109/CEC.2006.1688315 – ident: ref22 doi: 10.1142/S021800141000797X – volume: 16 start-page: 1030 year: 2015 ident: ref44 article-title: Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm publication-title: IEEE Trans Intell Transp Syst – ident: ref15 doi: 10.1109/TEVC.2007.892759 – ident: ref29 doi: 10.1016/j.swevo.2018.08.017 – ident: ref37 doi: 10.1109/TEVC.2019.2896967 – ident: ref2 doi: 10.1007/3-540-44719-9_20 – ident: ref17 doi: 10.1016/j.swevo.2011.03.001 – ident: ref45 doi: 10.1109/4235.797969 – ident: ref19 doi: 10.1016/j.asoc.2013.10.008 – ident: ref42 doi: 10.1109/TEVC.2020.2981949 – ident: ref9 doi: 10.1109/TCYB.2018.2881190 – ident: ref26 doi: 10.1007/s00500-012-0816-6 – ident: ref11 doi: 10.1109/TEVC.2019.2894743 – ident: ref20 doi: 10.1109/UKCI.2010.5625585 – ident: ref41 doi: 10.1109/TCYB.2015.2493239 – ident: ref27 doi: 10.1145/2598394.2610012 – ident: ref10 doi: 10.1016/j.swevo.2011.10.001 – ident: ref28 doi: 10.1007/s00500-019-03794-x – year: 2011 ident: ref38 article-title: An hypervolume based constraint handling technique for multi-objective optimization problems publication-title: Proc 20th Congr Ital Assoc Theor Appl Mech – ident: ref21 doi: 10.1109/AIMS.2013.16 – ident: ref33 doi: 10.1109/CEC.2008.4631171 – start-page: 336 year: 2006 ident: ref31 article-title: Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization publication-title: Proc Int Conf Simul Evol Learn doi: 10.1007/11903697_43 – ident: ref12 doi: 10.1109/TEVC.2008.2009032 – ident: ref14 doi: 10.1007/978-3-642-00619-7_7 – ident: ref4 doi: 10.1109/TCYB.2018.2819208 – year: 2018 ident: ref7 article-title: Evolutionary multi-objective optimization for Web service location allocation problem publication-title: IEEE Trans Services Comput – volume: 9 start-page: 115 year: 1994 ident: ref40 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref8 doi: 10.1109/TCYB.2018.2869674 – ident: ref34 doi: 10.1109/TMAG.2004.825006 – ident: ref3 doi: 10.1109/CEC.2016.7744320 – volume: 74 start-page: 621 year: 2019 ident: ref24 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.10.027 – ident: ref1 doi: 10.1109/TEVC.2013.2281534 – ident: ref30 doi: 10.1109/4235.873238 – ident: ref43 doi: 10.1162/evco_a_00259 – ident: ref35 doi: 10.1016/j.swevo.2013.12.002 – ident: ref23 doi: 10.1109/CEC.2013.6557942 – start-page: 1 year: 2006 ident: ref25 article-title: Constrained optimization by the $\epsilon$ constrained differential evolution with gradient-based mutation and feasible elites publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref36 doi: 10.1109/TEVC.2007.902851 – ident: ref6 doi: 10.1109/TSMC.2017.2781460 |
SSID | ssj0000816898 |
Score | 2.6006122 |
Snippet | This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18 |
SubjectTerms | Constrained multiobjective optimization constraint-handling techniques (CHTs) Constraints Convergence Evolutionary algorithms evolutionary algorithms (EAs) Fans Feasibility Marine vehicles Multiple objective analysis Optimization Pareto optimization penalty shift Sociology Statistics |
Title | Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and its Application |
URI | https://ieeexplore.ieee.org/document/9440869 https://www.ncbi.nlm.nih.gov/pubmed/34033555 https://www.proquest.com/docview/2757177052 https://www.proquest.com/docview/2532240097 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy60vNq0tHIlDoDI4sR2HB8BgVAlHhIgwSnEji2gbbZis5Xor-_Y8aZq1VY9RIqUycOZ8fgbjz0fwGZhaekyjE40ddoHKCrVOeOptMLJTDcuD0WSTs-Kk2v-8UbczMHusBfGWhsWn9mRPw25_GZspn6qbE95euRCzcM8Bm79Xq1hPiUQSATq2xxPUkQVMiYxM6r2rg5vDzAYzLMRQmRVZp6Oh3HKcLQVv4xIgWLl72gzjDrHL-B09r39YpNPo2mnR-b7b6Uc_7dBL2Epwk-y39vLMszZdgWWYwefkK1YhXp7BRY9DO2rOK_C3eX9g-vSAxzyGnJh8RHdM0G4S46-RdOtn56JJ_8MlBMoFDb2jvVj70_JOXqmL3HLJ6nbhjx0E7L_M3m-BtfHR1eHJ2nkZkgN46pD140_mDFbSl3Imme6ZjJvZI3u0mhXNKUVCLwQfGXK1KzhBqNfYbiwXEvnk8frsNCOW_saCC-MUYa5glqBcrZ03KD7pi43eDiaAJ3ppzKxcLlvzOcqBDBUVV67ldduFbWbwM5wy9e-ase_hFe9ZgbBqJQENmZGUMV-PalyKTD-lVTkCXwYLmOP9GmWurXjKcoIFlbmKpnAq954hmfPbO7Nn9_5FhY9nX0_xbMBC93T1L5D0NPp98HafwA2s_qc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcqAXoC2PQAEjgQRI2Tp2HCcHDm1ptaUPkNhK7SmNHVuURxZ1s6Dlt_BX-G-MHW8QCLhV4hApUiZOnHye-cYezwA8ygzNbYLeiaJWOQeliBXjaSyNsDJRtWU-SdLBYTY8Sl8ei-MF-NbvhTHG-OAzM3Cnfi2_HuupmypbL1x55KwIIZR7ZvYFHbTJ890X-DcfM7azPdoaxqGGQKx5WrSoYlgmOTe5VJms0kRVXLJaVjistbJZnRuBBAFJQlLoitepRi9N6FSYVEnrFjmx3UtwGXmGYN3usH4Gx5es8MV2GZ7EyGNkWDZNaLE-2jrZRPeTJQMk5UWeuAJAPKUc7bv4xQb6oi5_57fezu1cg-_zL9SFt7wfTFs10F9_Sx75v37C63A1EGyy0Y2IZVgwzQosBxU2IU9Cnu2nK7DkiHaXp3oVTt-8PbNtvIlGvSavDTbRzggSerL9OQzO6nxGXHlTX1QDhfzW5bF611kM8gp178ewqZVUTU3O2gnZ-BkecAOOLqTbN2GxGTfmNpA007rQ3GbUCJQzuU01GihqmcbD0gjoHA-lDqnZXWc-lN5Fo0Xp0FQ6NJUBTRE862_51OUl-ZfwqkNCLxhAEMHaHHRl0FyTkkmBHr6kgkXwsL-MOsctJFWNGU9RRnAfe1zICG51YO3bnmP8zp-f-QCuDEcH--X-7uHeXVjCt-TdhNYaLLbnU3MPKV6r7vuRRuD0onH5A7QQV2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shift-Based+Penalty+for+Evolutionary+Constrained+Multiobjective+Optimization+and+its+Application&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ma%2C+Zhongwei&rft.au=Wang%2C+Yong&rft.date=2023-01-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1109%2FTCYB.2021.3069814&rft_id=info%3Apmid%2F34033555&rft.externalDocID=34033555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |