Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and its Application

This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shif...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 1; pp. 18 - 30
Main Authors Ma, Zhongwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully.
AbstractList This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully.
This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully.This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization problems. In ShiP, infeasible solutions are first shifted according to the distributions of their neighboring feasible solutions. The degree of shift is adaptively controlled by the proportion of feasible solutions in the current parent and offspring populations. Then, the shifted infeasible solutions are penalized based on their constraint violations. This two-step process can encourage infeasible solutions to approach/enter the feasible region from diverse directions in the early stage of evolution, and guide diverse feasible solutions toward the Pareto optimal solutions in the later stage of evolution. Moreover, ShiP can achieve an adaptive transition from both diversity and feasibility in the early stage of evolution to both diversity and convergence in the later stage of evolution. ShiP is flexible and can be embedded into three well-known multiobjective optimization frameworks. Experiments on benchmark test problems demonstrate that ShiP is highly competitive with other representative CHTs. Further, based on ShiP, we propose an archive-assisted constrained multiobjective evolutionary algorithm (CMOEA), called ShiP+, which outperforms two other state-of-the-art CMOEAs. Finally, ShiP is applied to the vehicle scheduling of the urban bus line successfully.
Author Wang, Yong
Ma, Zhongwei
Author_xml – sequence: 1
  givenname: Zhongwei
  surname: Ma
  fullname: Ma, Zhongwei
  email: mzw_cemo@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-7670-3958
  surname: Wang
  fullname: Wang, Yong
  email: ywang@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34033555$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJyWMyP6AUiiGbbDzV07KWyZAmhZQpdLLISpXla6rBYzmWHEh-feXMJIssoo3E4TsX3XNO0EHnO0DoC8ELQrD6vl7eXy4opmTBcKFKwj-hY0qKMqdUioO3dyGP0DyEDU6nTJIqD9ER45gxIcQx-vvnn2tifmkC1Nlv6Ewbn7LGD9nVo2_H6Hxnhqds6bsQB-O6BP0a2yRXG7DRPUK26qPbumczoZnp6szFkF30fevsi3aKPjemDTDf3zN09-NqvbzJb1fXP5cXt7llXMWckfRTxqCUVSENJ5VhktbSmLq2VVPUJQhFFVOUKGtYzS2VXFgugFeywaxgM3S-m9sP_mGEEPXWBQttazrwY9BUMEo5xkom9OwduvHjkFZPlBSSSIkFTdS3PTVWW6h1P7htykK_ZpcAuQPs4EMYoNHWxZedp6haTbCeitJTUXoqSu-LSk7yzvk6_CPP153HAcAbrzjHZaHYf_g1nWg
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TETCI_2023_3336918
crossref_primary_10_1016_j_chemolab_2023_104934
crossref_primary_10_1007_s00158_022_03301_1
crossref_primary_10_1007_s00158_024_03859_y
crossref_primary_10_1016_j_matcom_2024_11_009
crossref_primary_10_1016_j_engappai_2024_108673
crossref_primary_10_1109_TAI_2024_3454025
crossref_primary_10_1016_j_swevo_2024_101714
crossref_primary_10_1109_TCYB_2025_3531449
crossref_primary_10_1016_j_ins_2022_08_020
crossref_primary_10_1016_j_ins_2024_121812
crossref_primary_10_1109_JAS_2023_123792
crossref_primary_10_1016_j_swevo_2025_101890
crossref_primary_10_1016_j_swevo_2023_101372
crossref_primary_10_1080_09544828_2025_2450763
crossref_primary_10_1109_TEVC_2023_3260306
crossref_primary_10_1007_s12293_024_00409_3
crossref_primary_10_1016_j_eswa_2023_121718
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1016_j_swevo_2024_101746
crossref_primary_10_3390_biomimetics8020136
crossref_primary_10_1109_TETCI_2024_3393368
crossref_primary_10_1016_j_swevo_2025_101845
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_swevo_2023_101402
crossref_primary_10_1016_j_swevo_2024_101784
crossref_primary_10_1007_s40747_024_01542_9
crossref_primary_10_1109_TITS_2024_3395993
crossref_primary_10_1109_TSMC_2023_3299570
crossref_primary_10_1016_j_eswa_2024_126229
crossref_primary_10_1016_j_ins_2023_119906
crossref_primary_10_1109_MCI_2023_3245719
crossref_primary_10_3390_math13050688
crossref_primary_10_1016_j_eswa_2025_126908
crossref_primary_10_1109_TEVC_2023_3270483
crossref_primary_10_1016_j_swevo_2024_101735
crossref_primary_10_1109_TETCI_2024_3359517
crossref_primary_10_1109_TEVC_2024_3366659
crossref_primary_10_1016_j_asoc_2024_111827
crossref_primary_10_1016_j_swevo_2024_101657
crossref_primary_10_1109_TETCI_2023_3313412
crossref_primary_10_1016_j_asoc_2024_111707
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1016_j_eswa_2024_124441
crossref_primary_10_1109_TCYB_2023_3329947
crossref_primary_10_1016_j_eswa_2024_124712
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1109_TSMC_2023_3281550
crossref_primary_10_3390_s23062984
crossref_primary_10_1109_TEVC_2023_3313689
crossref_primary_10_1016_j_eij_2023_100422
crossref_primary_10_1109_TSMC_2023_3324797
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1016_j_swevo_2024_101727
crossref_primary_10_1109_TVT_2024_3468638
crossref_primary_10_1016_j_swevo_2024_101685
crossref_primary_10_1002_tee_24200
crossref_primary_10_1007_s40747_024_01379_2
crossref_primary_10_1109_JAS_2023_123687
Cites_doi 10.1109/4235.996017
10.1109/CEC.2017.7969433
10.1109/TEVC.2003.810761
10.1016/j.asoc.2012.07.027
10.1007/978-3-540-30217-9_84
10.1109/CEC.2006.1688315
10.1142/S021800141000797X
10.1109/TEVC.2007.892759
10.1016/j.swevo.2018.08.017
10.1109/TEVC.2019.2896967
10.1007/3-540-44719-9_20
10.1016/j.swevo.2011.03.001
10.1109/4235.797969
10.1016/j.asoc.2013.10.008
10.1109/TEVC.2020.2981949
10.1109/TCYB.2018.2881190
10.1007/s00500-012-0816-6
10.1109/TEVC.2019.2894743
10.1109/UKCI.2010.5625585
10.1109/TCYB.2015.2493239
10.1145/2598394.2610012
10.1016/j.swevo.2011.10.001
10.1007/s00500-019-03794-x
10.1109/AIMS.2013.16
10.1109/CEC.2008.4631171
10.1007/11903697_43
10.1109/TEVC.2008.2009032
10.1007/978-3-642-00619-7_7
10.1109/TCYB.2018.2819208
10.1109/TCYB.2018.2869674
10.1109/TMAG.2004.825006
10.1109/CEC.2016.7744320
10.1016/j.asoc.2018.10.027
10.1109/TEVC.2013.2281534
10.1109/4235.873238
10.1162/evco_a_00259
10.1016/j.swevo.2013.12.002
10.1109/CEC.2013.6557942
10.1109/TEVC.2007.902851
10.1109/TSMC.2017.2781460
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3069814
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 30
ExternalDocumentID 34033555
10_1109_TCYB_2021_3069814
9440869
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976225; 61673397
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-3126733e87b67a41ba372d7aaddcbf6d8e592939219ca3d4c2745c45e4b7f0363
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 11:42:33 EDT 2025
Sun Jun 29 15:50:50 EDT 2025
Thu Apr 03 07:12:25 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Wed Aug 27 02:14:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3126733e87b67a41ba372d7aaddcbf6d8e592939219ca3d4c2745c45e4b7f0363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7670-3958
PMID 34033555
PQID 2757177052
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9440869
proquest_journals_2757177052
crossref_citationtrail_10_1109_TCYB_2021_3069814
crossref_primary_10_1109_TCYB_2021_3069814
pubmed_primary_34033555
proquest_miscellaneous_2532240097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
2023-Jan
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
scimemi (ref38) 2011
ref1
ref17
ref39
ref16
ref19
ref18
zuo (ref44) 2015; 16
tan (ref7) 2018
geng (ref31) 2006
takahama (ref25) 2006
fan (ref24) 2019; 74
deb (ref40) 1994; 9
ref23
ref45
ref26
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/4235.996017
– ident: ref5
  doi: 10.1109/CEC.2017.7969433
– ident: ref39
  doi: 10.1109/TEVC.2003.810761
– ident: ref32
  doi: 10.1016/j.asoc.2012.07.027
– ident: ref16
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref18
  doi: 10.1109/CEC.2006.1688315
– ident: ref22
  doi: 10.1142/S021800141000797X
– volume: 16
  start-page: 1030
  year: 2015
  ident: ref44
  article-title: Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref15
  doi: 10.1109/TEVC.2007.892759
– ident: ref29
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref37
  doi: 10.1109/TEVC.2019.2896967
– ident: ref2
  doi: 10.1007/3-540-44719-9_20
– ident: ref17
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref45
  doi: 10.1109/4235.797969
– ident: ref19
  doi: 10.1016/j.asoc.2013.10.008
– ident: ref42
  doi: 10.1109/TEVC.2020.2981949
– ident: ref9
  doi: 10.1109/TCYB.2018.2881190
– ident: ref26
  doi: 10.1007/s00500-012-0816-6
– ident: ref11
  doi: 10.1109/TEVC.2019.2894743
– ident: ref20
  doi: 10.1109/UKCI.2010.5625585
– ident: ref41
  doi: 10.1109/TCYB.2015.2493239
– ident: ref27
  doi: 10.1145/2598394.2610012
– ident: ref10
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref28
  doi: 10.1007/s00500-019-03794-x
– year: 2011
  ident: ref38
  article-title: An hypervolume based constraint handling technique for multi-objective optimization problems
  publication-title: Proc 20th Congr Ital Assoc Theor Appl Mech
– ident: ref21
  doi: 10.1109/AIMS.2013.16
– ident: ref33
  doi: 10.1109/CEC.2008.4631171
– start-page: 336
  year: 2006
  ident: ref31
  article-title: Infeasible elitists and stochastic ranking selection in constrained evolutionary multi-objective optimization
  publication-title: Proc Int Conf Simul Evol Learn
  doi: 10.1007/11903697_43
– ident: ref12
  doi: 10.1109/TEVC.2008.2009032
– ident: ref14
  doi: 10.1007/978-3-642-00619-7_7
– ident: ref4
  doi: 10.1109/TCYB.2018.2819208
– year: 2018
  ident: ref7
  article-title: Evolutionary multi-objective optimization for Web service location allocation problem
  publication-title: IEEE Trans Services Comput
– volume: 9
  start-page: 115
  year: 1994
  ident: ref40
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref8
  doi: 10.1109/TCYB.2018.2869674
– ident: ref34
  doi: 10.1109/TMAG.2004.825006
– ident: ref3
  doi: 10.1109/CEC.2016.7744320
– volume: 74
  start-page: 621
  year: 2019
  ident: ref24
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.027
– ident: ref1
  doi: 10.1109/TEVC.2013.2281534
– ident: ref30
  doi: 10.1109/4235.873238
– ident: ref43
  doi: 10.1162/evco_a_00259
– ident: ref35
  doi: 10.1016/j.swevo.2013.12.002
– ident: ref23
  doi: 10.1109/CEC.2013.6557942
– start-page: 1
  year: 2006
  ident: ref25
  article-title: Constrained optimization by the $\epsilon$ constrained differential evolution with gradient-based mutation and feasible elites
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref36
  doi: 10.1109/TEVC.2007.902851
– ident: ref6
  doi: 10.1109/TSMC.2017.2781460
SSID ssj0000816898
Score 2.6006122
Snippet This article presents a new constraint-handling technique (CHT), called shift-based penalty (ShiP), for solving constrained multiobjective optimization...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Constrained multiobjective optimization
constraint-handling techniques (CHTs)
Constraints
Convergence
Evolutionary algorithms
evolutionary algorithms (EAs)
Fans
Feasibility
Marine vehicles
Multiple objective analysis
Optimization
Pareto optimization
penalty
shift
Sociology
Statistics
Title Shift-Based Penalty for Evolutionary Constrained Multiobjective Optimization and its Application
URI https://ieeexplore.ieee.org/document/9440869
https://www.ncbi.nlm.nih.gov/pubmed/34033555
https://www.proquest.com/docview/2757177052
https://www.proquest.com/docview/2532240097
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJy60vNq0tHIlDoDI4sR2HB8BgVAlHhIgwSnEji2gbbZis5Xor-_Y8aZq1VY9RIqUycOZ8fgbjz0fwGZhaekyjE40ddoHKCrVOeOptMLJTDcuD0WSTs-Kk2v-8UbczMHusBfGWhsWn9mRPw25_GZspn6qbE95euRCzcM8Bm79Xq1hPiUQSATq2xxPUkQVMiYxM6r2rg5vDzAYzLMRQmRVZp6Oh3HKcLQVv4xIgWLl72gzjDrHL-B09r39YpNPo2mnR-b7b6Uc_7dBL2Epwk-y39vLMszZdgWWYwefkK1YhXp7BRY9DO2rOK_C3eX9g-vSAxzyGnJh8RHdM0G4S46-RdOtn56JJ_8MlBMoFDb2jvVj70_JOXqmL3HLJ6nbhjx0E7L_M3m-BtfHR1eHJ2nkZkgN46pD140_mDFbSl3Imme6ZjJvZI3u0mhXNKUVCLwQfGXK1KzhBqNfYbiwXEvnk8frsNCOW_saCC-MUYa5glqBcrZ03KD7pi43eDiaAJ3ppzKxcLlvzOcqBDBUVV67ldduFbWbwM5wy9e-ase_hFe9ZgbBqJQENmZGUMV-PalyKTD-lVTkCXwYLmOP9GmWurXjKcoIFlbmKpnAq954hmfPbO7Nn9_5FhY9nX0_xbMBC93T1L5D0NPp98HafwA2s_qc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcqAXoC2PQAEjgQRI2Tp2HCcHDm1ptaUPkNhK7SmNHVuURxZ1s6Dlt_BX-G-MHW8QCLhV4hApUiZOnHye-cYezwA8ygzNbYLeiaJWOQeliBXjaSyNsDJRtWU-SdLBYTY8Sl8ei-MF-NbvhTHG-OAzM3Cnfi2_HuupmypbL1x55KwIIZR7ZvYFHbTJ890X-DcfM7azPdoaxqGGQKx5WrSoYlgmOTe5VJms0kRVXLJaVjistbJZnRuBBAFJQlLoitepRi9N6FSYVEnrFjmx3UtwGXmGYN3usH4Gx5es8MV2GZ7EyGNkWDZNaLE-2jrZRPeTJQMk5UWeuAJAPKUc7bv4xQb6oi5_57fezu1cg-_zL9SFt7wfTFs10F9_Sx75v37C63A1EGyy0Y2IZVgwzQosBxU2IU9Cnu2nK7DkiHaXp3oVTt-8PbNtvIlGvSavDTbRzggSerL9OQzO6nxGXHlTX1QDhfzW5bF611kM8gp178ewqZVUTU3O2gnZ-BkecAOOLqTbN2GxGTfmNpA007rQ3GbUCJQzuU01GihqmcbD0gjoHA-lDqnZXWc-lN5Fo0Xp0FQ6NJUBTRE862_51OUl-ZfwqkNCLxhAEMHaHHRl0FyTkkmBHr6kgkXwsL-MOsctJFWNGU9RRnAfe1zICG51YO3bnmP8zp-f-QCuDEcH--X-7uHeXVjCt-TdhNYaLLbnU3MPKV6r7vuRRuD0onH5A7QQV2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shift-Based+Penalty+for+Evolutionary+Constrained+Multiobjective+Optimization+and+its+Application&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ma%2C+Zhongwei&rft.au=Wang%2C+Yong&rft.date=2023-01-01&rft.eissn=2168-2275&rft.volume=53&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1109%2FTCYB.2021.3069814&rft_id=info%3Apmid%2F34033555&rft.externalDocID=34033555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon