Hub recognition for brain functional networks by using multiple-feature combination

Hubs in complex networks can greatly influence the integration of network functions, and recognition of hubs helps to better understand the interaction between pairs of network nodes. This paper proposes a new hub recognition method with multiple-feature combination for the brain functional networks...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 69; pp. 740 - 752
Main Authors Jiao, Zhuqing, Xia, Zhengwang, Cai, Min, Zou, Ling, Xiang, Jianbo, Wang, Shuihua
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.07.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hubs in complex networks can greatly influence the integration of network functions, and recognition of hubs helps to better understand the interaction between pairs of network nodes. This paper proposes a new hub recognition method with multiple-feature combination for the brain functional networks constructed by resting-state functional Magnetic Resonance Imaging (fMRI). Three single-feature methods, including degree centrality, betweenness centrality and closeness centrality, are used to calculate hubs of the brain functional network separately. For reordering the nodes, a composite equation is constructed based on the three recognition parameters. Network vulnerability and average shortest path length are used to evaluate the importance of the hubs recognized by above four methods. Experimental result demonstrates that, the hubs recognized by multiple-feature combination have more significant differences from ordinary nodes than those by single-feature methods, and they have an important impact on the global efficiency of brain functional networks.
AbstractList Hubs in complex networks can greatly influence the integration of network functions, and recognition of hubs helps to better understand the interaction between pairs of network nodes. This paper proposes a new hub recognition method with multiple-feature combination for the brain functional networks constructed by resting-state functional Magnetic Resonance Imaging (fMRI). Three single-feature methods, including degree centrality, betweenness centrality and closeness centrality, are used to calculate hubs of the brain functional network separately. For reordering the nodes, a composite equation is constructed based on the three recognition parameters. Network vulnerability and average shortest path length are used to evaluate the importance of the hubs recognized by above four methods. Experimental result demonstrates that, the hubs recognized by multiple-feature combination have more significant differences from ordinary nodes than those by single-feature methods, and they have an important impact on the global efficiency of brain functional networks.
Author Cai, Min
Xia, Zhengwang
Xiang, Jianbo
Jiao, Zhuqing
Wang, Shuihua
Zou, Ling
Author_xml – sequence: 1
  givenname: Zhuqing
  orcidid: 0000-0002-6547-8449
  surname: Jiao
  fullname: Jiao, Zhuqing
  email: jzq@cczu.edu.cn
  organization: School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 2
  givenname: Zhengwang
  surname: Xia
  fullname: Xia, Zhengwang
  organization: School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 3
  givenname: Min
  surname: Cai
  fullname: Cai, Min
  organization: School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 4
  givenname: Ling
  surname: Zou
  fullname: Zou, Ling
  email: zouling@cczu.edu.cn
  organization: School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 5
  givenname: Jianbo
  surname: Xiang
  fullname: Xiang, Jianbo
  email: hx_bob@163.com
  organization: Department of Medical Imaging, Changzhou No.2 People's Hospital Affiliated with Nanjing Medical University, Changzhou 213003, China
– sequence: 6
  givenname: Shuihua
  surname: Wang
  fullname: Wang, Shuihua
  email: shuihuawang@ieee.org
  organization: Department of Informatics, University of Leicester, Leicester LE1 7RH, UK
BookMark eNqNUE1LxDAUDLKC6-p_qHhufWnTNj3Koq6w4EE9hzR9WbJ2k5q0yv57U9aDR-HB-2BmmDeXZGGdRUJuKGQUaHW3z5Q7DNijQrvLcqA8AxoLzsiS8rpJoS7LBVkCsDKtG6guyGUIe4h7RfmSvG6mNvGo3M6a0TibaOeT1ksTp8mq-ST7xOL47fxHSNpjMgVjd8lh6kcz9JhqlOPkMYk2WmPlTLgi51r2Aa9_-4q8Pz68rTfp9uXpeX2_TVXBmjHNNdU5yxWXvMRS1zLPoehUzmraFYwDApNYMNlppQqUmgFgIwtGW1ZixbBYkduT7uDd54RhFHs3-eg3iByahpXAOYuo5oRS3oXgUYvBm4P0R0FBzBmKvfiToZgzFEBjQeSuT1yMb3wZ9CIog1ZhZ2Jmo-ic-YfKD2Mog8E
CitedBy_id crossref_primary_10_1007_s11042_018_7125_8
crossref_primary_10_1007_s12652_019_01535_4
crossref_primary_10_3389_fcell_2020_610569
crossref_primary_10_1016_j_neucom_2020_07_144
crossref_primary_10_1109_TPAMI_2021_3081744
crossref_primary_10_1016_j_media_2021_102162
crossref_primary_10_1016_j_bbr_2022_114121
crossref_primary_10_1016_j_media_2024_103133
Cites_doi 10.1016/j.neuroimage.2009.10.003
10.1209/0295-5075/108/68009
10.1504/IJSNET.2017.084674
10.1166/jmihi.2017.2029
10.1007/s41109-016-0007-y
10.3233/JAD-150988
10.1016/S0378-4371(02)01545-5
10.1103/PhysRevE.91.012801
10.2741/4562
10.1016/j.neuron.2013.07.035
10.3233/JIFS-169214
10.1080/0952813X.2015.1132274
10.1016/j.conb.2016.05.003
10.1371/journal.pone.0001049
10.1007/s11424-015-4145-6
10.1007/s11227-013-1010-z
10.1016/j.tics.2013.09.012
10.1038/nrn2575
10.1109/TKDE.2016.2563425
10.1002/hbm.23240
10.1007/s00138-013-0514-0
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jul 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2018.01.010
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 752
ExternalDocumentID 10_1016_j_compeleceng_2018_01_010
S0045790617325405
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-2f1f242c8a85e5f7a2203dc2471d3480e04ae34adfcc3eaf400e9a341b45e64e3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Thu Oct 10 15:18:56 EDT 2024
Thu Sep 26 18:58:06 EDT 2024
Fri Feb 23 02:26:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Functional Magnetic Resonance Imaging (fMRI)
Hub recognition
Multiple-feature combination
Brain functional networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-2f1f242c8a85e5f7a2203dc2471d3480e04ae34adfcc3eaf400e9a341b45e64e3
ORCID 0000-0002-6547-8449
PQID 2099450884
PQPubID 2045266
PageCount 13
ParticipantIDs proquest_journals_2099450884
crossref_primary_10_1016_j_compeleceng_2018_01_010
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2018_01_010
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Zhang, Gao, Wee, Li, Shen (bib0018) 2016; 37
Zhang, Yang, Dong, Wang, Phillips (bib0007) 2017; 29
Rubinov, Sporns (bib0010) 2010; 52
Li, Zhan, Li, Liu, Shi (bib0014) 2016; 28
Burghouts, Schutte, Bouma (bib0020) 2014; 25
Jiao, Ma, Wang, Zou, Xiang (bib0009) 2017; 22
Bullmore, Sporns (bib0021) 2009; 10
Freeman (bib0023) 2009
Gattal, Chibani, Djeddi (bib0019) 2014
Li, Li (bib0001) 2016; 29
Sporns, Honey, Kötter (bib0015) 2007; 2
Li, Xiang (bib0003) 2017; 32
Geetharamani, Sivaselvi (bib0016) 2014; 7
Misic, Sporns (bib0006) 2016; 40
Lord, Stevner, Deco, Kringelbach (bib0012) 2017; 375
Li, Daniels (bib0022) 2015; 91
Jiao, Wang, Ma, Zou, Xiang, Wang (bib0008) 2017; 7
Taya, de Souza, Thakor, Bezerianos (bib0011) 2016; 1
Li, Wang, Chen (bib0002) 2015; 108
Jiao, Ma, Rong, Wang, Zou (bib0024) 2017; 24
Crucitti, Latora, Marchiori, Rapisarda (bib0025) 2003; 320
Zhang, Wang, Phillips, Yang, Yuan (bib0004) 2016; 50
Jiao, Zou, Cao, Qian, Ma (bib0005) 2014; 67
Van den Heuvel, Sporns (bib0013) 2013; 17
Power, Schlaggar, Lessov-Schlaggar, Petersen (bib0017) 2013; 79
Crucitti (10.1016/j.compeleceng.2018.01.010_bib0025) 2003; 320
Gattal (10.1016/j.compeleceng.2018.01.010_bib0019) 2014
Li (10.1016/j.compeleceng.2018.01.010_bib0022) 2015; 91
Jiao (10.1016/j.compeleceng.2018.01.010_bib0008) 2017; 7
Taya (10.1016/j.compeleceng.2018.01.010_bib0011) 2016; 1
Geetharamani (10.1016/j.compeleceng.2018.01.010_bib0016) 2014; 7
Chen (10.1016/j.compeleceng.2018.01.010_bib0018) 2016; 37
Jiao (10.1016/j.compeleceng.2018.01.010_bib0024) 2017; 24
Power (10.1016/j.compeleceng.2018.01.010_bib0017) 2013; 79
Li (10.1016/j.compeleceng.2018.01.010_bib0003) 2017; 32
Bullmore (10.1016/j.compeleceng.2018.01.010_bib0021) 2009; 10
Li (10.1016/j.compeleceng.2018.01.010_bib0014) 2016; 28
Li (10.1016/j.compeleceng.2018.01.010_bib0001) 2016; 29
Zhang (10.1016/j.compeleceng.2018.01.010_bib0004) 2016; 50
Jiao (10.1016/j.compeleceng.2018.01.010_bib0005) 2014; 67
Li (10.1016/j.compeleceng.2018.01.010_bib0002) 2015; 108
Zhang (10.1016/j.compeleceng.2018.01.010_bib0007) 2017; 29
Misic (10.1016/j.compeleceng.2018.01.010_bib0006) 2016; 40
Sporns (10.1016/j.compeleceng.2018.01.010_bib0015) 2007; 2
Burghouts (10.1016/j.compeleceng.2018.01.010_bib0020) 2014; 25
Freeman (10.1016/j.compeleceng.2018.01.010_bib0023) 2009
Lord (10.1016/j.compeleceng.2018.01.010_bib0012) 2017; 375
Rubinov (10.1016/j.compeleceng.2018.01.010_bib0010) 2010; 52
Van den Heuvel (10.1016/j.compeleceng.2018.01.010_bib0013) 2013; 17
Jiao (10.1016/j.compeleceng.2018.01.010_bib0009) 2017; 22
References_xml – volume: 2
  start-page: 1049
  year: 2007
  end-page: 1062
  ident: bib0015
  article-title: Identification and classification of hubs in brain networks
  publication-title: PLoS One
  contributor:
    fullname: Kötter
– volume: 320
  start-page: 622
  year: 2003
  end-page: 642
  ident: bib0025
  article-title: Efficiency of scale-free networks: error and attack tolerance
  publication-title: Phys A Stat Mech Appl
  contributor:
    fullname: Rapisarda
– volume: 32
  start-page: 4503
  year: 2017
  end-page: 4511
  ident: bib0003
  article-title: Explore of the fuzzy community structure integrating the directed line graph and likelihood optimization
  publication-title: J Intell Fuzzy Syst
  contributor:
    fullname: Xiang
– volume: 7
  start-page: 407
  year: 2017
  end-page: 415
  ident: bib0008
  article-title: Effective connectivity in the default network using Granger causal analysis
  publication-title: J Med Imaging Health Inf
  contributor:
    fullname: Wang
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib0010
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
  contributor:
    fullname: Sporns
– volume: 67
  start-page: 809
  year: 2014
  end-page: 819
  ident: bib0005
  article-title: Effective connectivity analysis of fMRI data based on network Motifs
  publication-title: J Supercomputing
  contributor:
    fullname: Ma
– volume: 50
  start-page: 1163
  year: 2016
  end-page: 1179
  ident: bib0004
  article-title: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer's disease
  publication-title: J Alzheimer's Dis
  contributor:
    fullname: Yuan
– volume: 375
  year: 2017
  ident: bib0012
  article-title: Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders
  publication-title: Philos Trans
  contributor:
    fullname: Kringelbach
– volume: 108
  start-page: 68009
  year: 2015
  ident: bib0002
  article-title: Measuring robustness of community structure in complex networks
  publication-title: Europhys Lett
  contributor:
    fullname: Chen
– volume: 1
  start-page: 8
  year: 2016
  ident: bib0011
  article-title: Comparison method for community detection on brain networks from neuroimaging data
  publication-title: Appl Netw Sci
  contributor:
    fullname: Bezerianos
– volume: 37
  start-page: 3282
  year: 2016
  end-page: 3296
  ident: bib0018
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum Brain Mapp
  contributor:
    fullname: Shen
– volume: 24
  start-page: 90
  year: 2017
  end-page: 97
  ident: bib0024
  article-title: Adaptive synchronization in small-world networks with Lorenz chaotic oscillators
  publication-title: Int J Sens Netw
  contributor:
    fullname: Zou
– volume: 91
  year: 2015
  ident: bib0022
  article-title: Social significance of community structure: statistical view
  publication-title: Phys Rev E
  contributor:
    fullname: Daniels
– volume: 79
  start-page: 798
  year: 2013
  end-page: 813
  ident: bib0017
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  contributor:
    fullname: Petersen
– volume: 29
  start-page: 1071
  year: 2016
  end-page: 1088
  ident: bib0001
  article-title: Scalably revealing the dynamics of soft community structure in complex networks
  publication-title: J Syst Sci Complexity
  contributor:
    fullname: Li
– volume: 25
  start-page: 85
  year: 2014
  end-page: 98
  ident: bib0020
  article-title: Selection of negative samples and two-stage combination of multiple features for action detection in thousands of videos
  publication-title: Mach Vision Appl
  contributor:
    fullname: Bouma
– volume: 40
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0006
  article-title: From regions to connections and networks: new bridges between brain and behavior
  publication-title: Curr Opin Neurobiol
  contributor:
    fullname: Sporns
– start-page: 2981
  year: 2009
  end-page: 2998
  ident: bib0023
  article-title: Social network visualization methods of computational complexity
  contributor:
    fullname: Freeman
– volume: 17
  start-page: 683
  year: 2013
  end-page: 696
  ident: bib0013
  article-title: Network hubs in the human brain
  publication-title: Trends Cognit Sci
  contributor:
    fullname: Sporns
– volume: 29
  start-page: 299
  year: 2017
  end-page: 312
  ident: bib0007
  article-title: Pathological brain detection in MRI scanning via Hu moment invariants and machine learning
  publication-title: J Exp Theor Artif Intell
  contributor:
    fullname: Phillips
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: bib0021
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  contributor:
    fullname: Sporns
– volume: 7
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib0016
  article-title: Human brain hubs (provincial and connector) identification using centrality measures
  publication-title: International conference on recent trends in information technology
  contributor:
    fullname: Sivaselvi
– volume: 22
  start-page: 1634
  year: 2017
  end-page: 1643
  ident: bib0009
  article-title: Directed connectivity of brain default networks using GCA and motif
  publication-title: Front Biosci
  contributor:
    fullname: Xiang
– volume: 28
  start-page: 2349
  year: 2016
  end-page: 2362
  ident: bib0014
  article-title: Fast and accurate mining the community structure: integrating center locating and membership optimization
  publication-title: IEEE Trans Knowl Data Eng
  contributor:
    fullname: Shi
– start-page: 446
  year: 2014
  end-page: 451
  ident: bib0019
  article-title: Improving isolated digit recognition using a combination of multiple features
  publication-title: International conference on frontiers in handwriting recognition
  contributor:
    fullname: Djeddi
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.compeleceng.2018.01.010_bib0010
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
  contributor:
    fullname: Rubinov
– volume: 108
  start-page: 68009
  issue: 6
  year: 2015
  ident: 10.1016/j.compeleceng.2018.01.010_bib0002
  article-title: Measuring robustness of community structure in complex networks
  publication-title: Europhys Lett
  doi: 10.1209/0295-5075/108/68009
  contributor:
    fullname: Li
– start-page: 446
  year: 2014
  ident: 10.1016/j.compeleceng.2018.01.010_bib0019
  article-title: Improving isolated digit recognition using a combination of multiple features
  contributor:
    fullname: Gattal
– start-page: 2981
  year: 2009
  ident: 10.1016/j.compeleceng.2018.01.010_bib0023
  contributor:
    fullname: Freeman
– volume: 24
  start-page: 90
  issue: 2
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0024
  article-title: Adaptive synchronization in small-world networks with Lorenz chaotic oscillators
  publication-title: Int J Sens Netw
  doi: 10.1504/IJSNET.2017.084674
  contributor:
    fullname: Jiao
– volume: 7
  start-page: 407
  issue: 2
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0008
  article-title: Effective connectivity in the default network using Granger causal analysis
  publication-title: J Med Imaging Health Inf
  doi: 10.1166/jmihi.2017.2029
  contributor:
    fullname: Jiao
– volume: 1
  start-page: 8
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0011
  article-title: Comparison method for community detection on brain networks from neuroimaging data
  publication-title: Appl Netw Sci
  doi: 10.1007/s41109-016-0007-y
  contributor:
    fullname: Taya
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.compeleceng.2018.01.010_bib0016
  article-title: Human brain hubs (provincial and connector) identification using centrality measures
  contributor:
    fullname: Geetharamani
– volume: 50
  start-page: 1163
  issue: 4
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0004
  article-title: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer's disease
  publication-title: J Alzheimer's Dis
  doi: 10.3233/JAD-150988
  contributor:
    fullname: Zhang
– volume: 320
  start-page: 622
  issue: C
  year: 2003
  ident: 10.1016/j.compeleceng.2018.01.010_bib0025
  article-title: Efficiency of scale-free networks: error and attack tolerance
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/S0378-4371(02)01545-5
  contributor:
    fullname: Crucitti
– volume: 91
  issue: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2018.01.010_bib0022
  article-title: Social significance of community structure: statistical view
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.91.012801
  contributor:
    fullname: Li
– volume: 22
  start-page: 1634
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0009
  article-title: Directed connectivity of brain default networks using GCA and motif
  publication-title: Front Biosci
  doi: 10.2741/4562
  contributor:
    fullname: Jiao
– volume: 79
  start-page: 798
  issue: 4
  year: 2013
  ident: 10.1016/j.compeleceng.2018.01.010_bib0017
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
  contributor:
    fullname: Power
– volume: 32
  start-page: 4503
  issue: 6
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0003
  article-title: Explore of the fuzzy community structure integrating the directed line graph and likelihood optimization
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-169214
  contributor:
    fullname: Li
– volume: 29
  start-page: 299
  issue: 2
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0007
  article-title: Pathological brain detection in MRI scanning via Hu moment invariants and machine learning
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2015.1132274
  contributor:
    fullname: Zhang
– volume: 40
  start-page: 1
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0006
  article-title: From regions to connections and networks: new bridges between brain and behavior
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2016.05.003
  contributor:
    fullname: Misic
– volume: 2
  start-page: 1049
  issue: 10
  year: 2007
  ident: 10.1016/j.compeleceng.2018.01.010_bib0015
  article-title: Identification and classification of hubs in brain networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001049
  contributor:
    fullname: Sporns
– volume: 375
  issue: 2096
  year: 2017
  ident: 10.1016/j.compeleceng.2018.01.010_bib0012
  article-title: Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders
  publication-title: Philos Trans
  contributor:
    fullname: Lord
– volume: 29
  start-page: 1071
  issue: 4
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0001
  article-title: Scalably revealing the dynamics of soft community structure in complex networks
  publication-title: J Syst Sci Complexity
  doi: 10.1007/s11424-015-4145-6
  contributor:
    fullname: Li
– volume: 67
  start-page: 809
  issue: 3
  year: 2014
  ident: 10.1016/j.compeleceng.2018.01.010_bib0005
  article-title: Effective connectivity analysis of fMRI data based on network Motifs
  publication-title: J Supercomputing
  doi: 10.1007/s11227-013-1010-z
  contributor:
    fullname: Jiao
– volume: 17
  start-page: 683
  issue: 12
  year: 2013
  ident: 10.1016/j.compeleceng.2018.01.010_bib0013
  article-title: Network hubs in the human brain
  publication-title: Trends Cognit Sci
  doi: 10.1016/j.tics.2013.09.012
  contributor:
    fullname: Van den Heuvel
– volume: 10
  start-page: 186
  issue: 3
  year: 2009
  ident: 10.1016/j.compeleceng.2018.01.010_bib0021
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
  contributor:
    fullname: Bullmore
– volume: 28
  start-page: 2349
  issue: 9
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0014
  article-title: Fast and accurate mining the community structure: integrating center locating and membership optimization
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2563425
  contributor:
    fullname: Li
– volume: 37
  start-page: 3282
  issue: 9
  year: 2016
  ident: 10.1016/j.compeleceng.2018.01.010_bib0018
  article-title: High-order resting-state functional connectivity network for MCI classification
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23240
  contributor:
    fullname: Chen
– volume: 25
  start-page: 85
  issue: 1
  year: 2014
  ident: 10.1016/j.compeleceng.2018.01.010_bib0020
  article-title: Selection of negative samples and two-stage combination of multiple features for action detection in thousands of videos
  publication-title: Mach Vision Appl
  doi: 10.1007/s00138-013-0514-0
  contributor:
    fullname: Burghouts
SSID ssj0004618
Score 2.2521553
Snippet Hubs in complex networks can greatly influence the integration of network functions, and recognition of hubs helps to better understand the interaction between...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 740
SubjectTerms Brain
Brain functional networks
Brain research
Data acquisition systems
Design of experiments
Feature recognition
Functional Magnetic Resonance Imaging (fMRI)
Hub recognition
Hubs
Magnetic resonance imaging
Mathematical analysis
Multiple-feature combination
Network hubs
Networks
Neural networks
NMR
Nodes
Nuclear magnetic resonance
Shortest-path problems
Title Hub recognition for brain functional networks by using multiple-feature combination
URI https://dx.doi.org/10.1016/j.compeleceng.2018.01.010
https://www.proquest.com/docview/2099450884
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KBdGD-InVWlbwGrvNTpoEvJRiqYq9aKG3ZTfZLfWQFtsevPjbncmHVvEgCLkkkLDM7MybCe_NMnYVpd1YR77EtkSkHoRB6unQBF4IgRMy0mEiSI38OOoOx3A_CSY11q-0MESrLHN_kdPzbF0-aZfWbC9mM9L4QhDGBMHSp7qDFOwIf7inr987G9rITpGNgUYziu42u_zieBFtm46bsdmUWF5RPsGTxLS_Y9SPbJ1D0GCf7ZW1I-8VyztgNZsdst2NiYJH7Gm4NvyTFDTPONak3NAxEJwQrPjxx7OC-73k5o0T8X3KK16h52w-6ZPjmrFnzt12zMaD2-f-0CvPTfASCfHK813HIfImkY4CG7hQ-76QaeIjDqUSImEFaCtBpy5JpNUOw9jGGuHMQGC7YOUJq2fzzJ4yLp0NE3DCYJcDqREGsGTTECOm-Rj5usH8ylJqUYzHUBVv7EVtmFeReZXo4CUa7Kayqfrma4Vp_C-vNys_qDLglooUwEDFJpz97-vnbIfuCkZuk9VXr2t7gXXHyrTyjdViW727h-HoA4hF2aI
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5WF3wcxCe-jeC1mG2m2xa8iCjVXfeigreQtImshyq6Hvz3zvShq3gQhJ5aWsJMZr5vyjcTgKOk6KcmCRWVJbIIMI6KwMQ2CmKMvFSJiXPJ3cjXo352h1f30X0HztpeGJZVNrm_zulVtm7uHDfWPH4ej7nHF6M4ZQhWIfOOGegSG0gpOrunl4NsNNUe2asTMvJ0Rtmfg8MvmRcrt_nEGVc-sNArqYZ4cj_t7zD1I2FXKHSxDEsNfRSn9QpXoOPKVVicGiq4BjfZmxWfuqCnUhAtFZZPghAMYvW_P1HW8u9XYd8Fa98fRCstDLyrhn0KWjOVzZXn1uHu4vz2LAuaoxOCXGE6CULf8wS-eWKSyEU-NmEoVZGHBEWFwkQ6icYpNIXPc-WMp0h2qSFEsxi5Pjq1AbPlU-k2QSjv4hy9tFToYGGlRWJtBlOCtZCC32xB2FpKP9cTMnQrHXvUU-bVbF4te3TJLThpbaq_uVtTJv_L67utH3QTc6-am4CR-SZu_-_rBzCf3V4P9fByNNiBBX5SC3R3YXby8ub2iIZM7H6zzT4ACyfcVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hub+recognition+for+brain+functional+networks+by+using+multiple-feature+combination&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Jiao%2C+Zhuqing&rft.au=Xia%2C+Zhengwang&rft.au=Cai%2C+Min&rft.au=Zou%2C+Ling&rft.date=2018-07-01&rft.issn=0045-7906&rft.volume=69&rft.spage=740&rft.epage=752&rft_id=info:doi/10.1016%2Fj.compeleceng.2018.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2018_01_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon