Rethinking the Ranks of Visual Channels

Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 28; no. 1; pp. 707 - 717
Main Authors McColeman, Caitlyn M., Yang, Fumeng, Brady, Timothy F., Franconeri, Steven
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).
AbstractList Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).
Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).
Author Brady, Timothy F.
Franconeri, Steven
Yang, Fumeng
McColeman, Caitlyn M.
Author_xml – sequence: 1
  givenname: Caitlyn M.
  surname: McColeman
  fullname: McColeman, Caitlyn M.
  email: caitlyn.mccoleman@gmail.com
  organization: Northwestern University, USA
– sequence: 2
  givenname: Fumeng
  surname: Yang
  fullname: Yang, Fumeng
  email: fy@brown.edu
  organization: Brown University, USA
– sequence: 3
  givenname: Timothy F.
  surname: Brady
  fullname: Brady, Timothy F.
  email: timbrady@ucsd.edu
  organization: University of San Diego, USA
– sequence: 4
  givenname: Steven
  surname: Franconeri
  fullname: Franconeri, Steven
  email: franconeri@northwestern.edu
  organization: Northwestern University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34606455$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1rGzEQQEVJaD7aH1AKZaGH5LLuSKvPYzCNGzAEjOOr0EqztZK1Nl3tHvrvu8auDznkpDm8NyPeFTlLXUJCvlCYUQrmx3ozX8wYMDqrKOVS8w_kkhpOSxAgz6YZlCqZZPKCXOX8DEA51-Yjuai4BMmFuCQ3Kxy2Mb3E9LsYtlisXHrJRdcUm5hH1xbzrUsJ2_yJnDeuzfj5-F6Tp_uf6_mvcvm4eJjfLUtfcTOULOiaNVo3gfqq1oDCGaEdrZ0xTHreCGB14AEdCC8QlNPaBx1U8DQghOqa3B72vvbdnxHzYHcxe2xbl7Abs2VCmUqDqvSEfn-DPndjn6bfWSapoFIBg4n6dqTGeofBvvZx5_q_9n-CCaAHwPddzj02J4SC3We2-8x2n9keM0-OeuP4OLghdmnoXWzfNb8ezIiIp0tGCKWVrv4BQ9SHqw
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2022_3232591
crossref_primary_10_1016_j_cag_2024_103906
crossref_primary_10_1177_14738716251315912
crossref_primary_10_1039_D4NP00039K
crossref_primary_10_1109_TVCG_2022_3209377
crossref_primary_10_1007_s41060_022_00362_9
crossref_primary_10_1080_10447318_2022_2118009
crossref_primary_10_1109_TVCG_2022_3209467
crossref_primary_10_1109_TVCG_2022_3209348
crossref_primary_10_1177_14738716241259432
crossref_primary_10_1109_TVCG_2022_3226463
Cites_doi 10.4324/9780203774458
10.1037/0096-3445.137.1.163
10.1093/oxfordhb/9780195376746.013.0010
10.2307/2288400
10.1037/h0046162
10.1016/B978-0-12-481845-3.50016-3
10.2307/1420251
10.1145/3173574.3173718
10.1109/TVCG.2018.2865240
10.1109/TVCG.2015.2467671
10.1109/INFVIS.2005.1532136
10.1109/VIS47514.2020.00048
10.1109/TVCG.2018.2865264
10.1109/TVCG.2018.2810918
10.1145/2470654.2481410
10.1109/TVCG.2019.2934786
10.1145/3290605.3300462
10.1109/TVCG.2015.2467758
10.3758/s13414-019-01913-2
10.1609/aimag.v13i1.976
10.5281/zenodo.3879620
10.31234/osf.io/e3m5a
10.1177/1473871611416549
10.1109/TVCG.2019.2934801
10.1109/TVCG.2015.2467732
10.1167/16.5.11
10.1007/978-1-4614-7485-2_6
10.1201/9781315372495
10.1109/TVCG.2020.3030421
10.1201/b17511
10.1037/h0043158
10.18637/jss.v080.i01
10.1167/16.12.811
10.1017/S0140525X01003922
10.1109/BELIV.2018.8634103
10.1177/0956797610397956
10.1109/TVCG.2020.3030422
10.1145/2702123.2702590
10.1109/TVCG.2021.3098240
10.1111/rssa.12378
10.1145/1753326.1753357
10.3758/s13421-013-0333-6
10.26300/vyf3-qw80
10.1109/TVCG.2019.2917689
10.1111/j.1467-9280.1997.tb00694.x
10.1037/0033-295X.114.3.599
10.1109/TVCG.2014.2346320
10.1145/22949.22950
10.1145/3025453.3025592
10.1037/0033-295X.107.3.500
10.1037/h0070969
10.1109/TVCG.2010.132
10.5281/zenodo.1308151
10.1109/TVCG.2018.2829750
10.1016/j.cognition.2018.08.006
10.1085/jgp.7.2.235
10.2307/2346786
10.1109/TVCG.2020.3030429
10.1038/s41562-020-00938-0
10.1037/xlm0000075
10.1016/S0020-7373(86)80019-0
10.1109/TVCG.2018.2864884
10.1167/15.15.6
10.1167/9.10.7
10.1109/TVCG.2017.2744359
10.1177/0956797618822798
10.1038/nature06860
10.1145/2470654.2470723
10.1163/156856897X00357
10.1109/TVCG.2020.3030335
10.3758/s13423-018-1525-7
10.1111/cgf.13409
10.1145/3290605.3300576
10.1037/xlm0000031
10.1109/TVCG.2014.2346979
10.3758/s13414-017-1404-8
10.1109/TVCG.2020.3030345
10.1111/j.1467-8659.2009.01694.x
10.1098/rstb.2001.0957
10.1145/2556288.2557200
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2021.3114684
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 717
ExternalDocumentID 34606455
10_1109_TVCG_2021_3114684
9557878
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: BCS-1653457; IIS-1901485
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-2d8b2f88fd1c3b80e5a958a1ba9926c4f502bd4dea05c5e07a88cd8d7dc1de0d3
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 10:11:32 EDT 2025
Sun Jun 29 16:22:38 EDT 2025
Wed Feb 19 02:27:58 EST 2025
Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 02:12:12 EDT 2025
Wed Aug 27 02:14:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-2d8b2f88fd1c3b80e5a958a1ba9926c4f502bd4dea05c5e07a88cd8d7dc1de0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34606455
PQID 2615167020
PQPubID 75741
PageCount 11
ParticipantIDs proquest_miscellaneous_2579380738
pubmed_primary_34606455
crossref_citationtrail_10_1109_TVCG_2021_3114684
ieee_primary_9557878
proquest_journals_2615167020
crossref_primary_10_1109_TVCG_2021_3114684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
gabry (ref24) 2020
ref55
ref11
ref54
ref10
bertin (ref6) 1983; 1
ref17
ref16
ref19
ref18
tufte (ref79) 1990; 2
ref51
ref50
ref45
ref48
ref47
ref86
ref42
ref85
ref41
ref44
ref87
ref43
ref8
ref7
ref9
ref4
ref3
ref5
ref82
ref81
ref40
ref84
pinheiro (ref64) 2017
ref83
ref80
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
kleiner (ref46) 2007; 36
ref2
ref1
lambert (ref49) 2018
ref39
ref38
ref71
ref70
ref73
ref72
gabry (ref22) 2021
ref68
ref67
ref23
ref26
ref69
ref25
ref20
ref63
ref66
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref26
  doi: 10.4324/9780203774458
– year: 2020
  ident: ref24
  publication-title: CmdStanR the R interface to CmdStan
– ident: ref35
  doi: 10.1037/0096-3445.137.1.163
– ident: ref21
  doi: 10.1093/oxfordhb/9780195376746.013.0010
– ident: ref17
  doi: 10.2307/2288400
– year: 2017
  ident: ref64
  publication-title: Package 'nlme'
– ident: ref74
  doi: 10.1037/h0046162
– ident: ref51
  doi: 10.1016/B978-0-12-481845-3.50016-3
– volume: 1
  year: 1983
  ident: ref6
  publication-title: Semiology of Graphics Diagrams Networks Maps
– ident: ref25
  doi: 10.2307/1420251
– ident: ref20
  doi: 10.1145/3173574.3173718
– ident: ref55
  doi: 10.1109/TVCG.2018.2865240
– ident: ref43
  doi: 10.1109/TVCG.2015.2467671
– ident: ref2
  doi: 10.1109/INFVIS.2005.1532136
– ident: ref7
  doi: 10.1109/VIS47514.2020.00048
– ident: ref71
  doi: 10.1109/TVCG.2018.2865264
– ident: ref82
  doi: 10.1109/TVCG.2018.2810918
– ident: ref30
  doi: 10.1145/2470654.2481410
– ident: ref39
  doi: 10.1109/TVCG.2019.2934786
– ident: ref87
  doi: 10.1145/3290605.3300462
– ident: ref61
  doi: 10.1109/TVCG.2015.2467758
– ident: ref37
  doi: 10.3758/s13414-019-01913-2
– ident: ref48
  doi: 10.1609/aimag.v13i1.976
– ident: ref41
  doi: 10.5281/zenodo.3879620
– ident: ref16
  doi: 10.31234/osf.io/e3m5a
– ident: ref27
  doi: 10.1177/1473871611416549
– ident: ref57
  doi: 10.1109/TVCG.2019.2934801
– ident: ref8
  doi: 10.1109/TVCG.2015.2467732
– ident: ref76
  doi: 10.1167/16.5.11
– ident: ref67
  doi: 10.1007/978-1-4614-7485-2_6
– ident: ref53
  doi: 10.1201/9781315372495
– ident: ref70
  doi: 10.1109/TVCG.2020.3030421
– ident: ref56
  doi: 10.1201/b17511
– ident: ref54
  doi: 10.1037/h0043158
– ident: ref13
  doi: 10.18637/jss.v080.i01
– ident: ref68
  doi: 10.1167/16.12.811
– ident: ref19
  doi: 10.1017/S0140525X01003922
– ident: ref65
  doi: 10.1109/BELIV.2018.8634103
– ident: ref9
  doi: 10.1177/0956797610397956
– ident: ref14
  doi: 10.1109/TVCG.2020.3030422
– ident: ref62
  doi: 10.1145/2702123.2702590
– ident: ref66
  doi: 10.1109/TVCG.2021.3098240
– ident: ref23
  doi: 10.1111/rssa.12378
– ident: ref33
  doi: 10.1145/1753326.1753357
– ident: ref58
  doi: 10.3758/s13421-013-0333-6
– ident: ref36
  doi: 10.26300/vyf3-qw80
– ident: ref81
  doi: 10.1109/TVCG.2019.2917689
– ident: ref78
  doi: 10.1111/j.1467-9280.1997.tb00694.x
– ident: ref38
  doi: 10.1037/0033-295X.114.3.599
– volume: 36
  start-page: 1
  year: 2007
  ident: ref46
  article-title: What's new in psychtoolbox-3
  publication-title: Perception
– ident: ref77
  doi: 10.1109/TVCG.2014.2346320
– ident: ref50
  doi: 10.1145/22949.22950
– ident: ref45
  doi: 10.1145/3025453.3025592
– ident: ref34
  doi: 10.1037/0033-295X.107.3.500
– ident: ref28
  doi: 10.1037/h0070969
– ident: ref15
  doi: 10.1109/TVCG.2010.132
– volume: 2
  year: 1990
  ident: ref79
  publication-title: Envisioning Information
– ident: ref42
  doi: 10.5281/zenodo.1308151
– ident: ref72
  doi: 10.1109/TVCG.2018.2829750
– ident: ref83
  doi: 10.1016/j.cognition.2018.08.006
– ident: ref32
  doi: 10.1085/jgp.7.2.235
– ident: ref80
  doi: 10.2307/2346786
– ident: ref60
  doi: 10.1109/TVCG.2020.3030429
– year: 2021
  ident: ref22
  publication-title: bayesplot Plotting for bayesian models
– ident: ref73
  doi: 10.1038/s41562-020-00938-0
– ident: ref11
  doi: 10.1037/xlm0000075
– ident: ref18
  doi: 10.1016/S0020-7373(86)80019-0
– ident: ref59
  doi: 10.1109/TVCG.2018.2864884
– ident: ref10
  doi: 10.1167/15.15.6
– ident: ref5
  doi: 10.1167/9.10.7
– ident: ref75
  doi: 10.1109/TVCG.2017.2744359
– ident: ref84
  doi: 10.1177/0956797618822798
– ident: ref86
  doi: 10.1038/nature06860
– ident: ref63
  doi: 10.1145/2470654.2470723
– ident: ref12
  doi: 10.1163/156856897X00357
– ident: ref40
  doi: 10.1109/TVCG.2020.3030335
– ident: ref85
  doi: 10.3758/s13423-018-1525-7
– ident: ref44
  doi: 10.1111/cgf.13409
– ident: ref47
  doi: 10.1145/3290605.3300576
– ident: ref29
  doi: 10.1037/xlm0000031
– ident: ref31
  doi: 10.1109/TVCG.2014.2346979
– ident: ref4
  doi: 10.3758/s13414-017-1404-8
– year: 2018
  ident: ref49
  publication-title: A student's Guide to Bayesian Statistics
– ident: ref52
  doi: 10.1109/TVCG.2020.3030345
– ident: ref69
  doi: 10.1111/j.1467-8659.2009.01694.x
– ident: ref3
  doi: 10.1098/rstb.2001.0957
– ident: ref1
  doi: 10.1145/2556288.2557200
SSID ssj0014489
Score 2.4820035
Snippet Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 707
SubjectTerms and Plots
Bars
Channels
Charts
Computer memory
Correlation
Data visualization
DataType Agnostic
Diagrams
Displays
Error analysis
Human-Subjects Quantitative Studies
Measurement uncertainty
Memory management
Perception & Cognition
Ranking
Task analysis
Trends
Visualization
Title Rethinking the Ranks of Visual Channels
URI https://ieeexplore.ieee.org/document/9557878
https://www.ncbi.nlm.nih.gov/pubmed/34606455
https://www.proquest.com/docview/2615167020
https://www.proquest.com/docview/2579380738
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAJ_YwPgc3GCrSpEkTPdo0aZLHCXGckNgDAsRblQ9XQ4d6iGtf-OvntL1qTAztrVLjtImd-Oc4tgG-5uiUFVLGwuecDJTMxdpaHWtjeErq27C2FsHVz3x6yy_vxf0KnAyxMIjYXj7DcXhsffl-7ppwVHaqRZAvtQqrZLh1sVqDx4DMDN3dL5QxI5TeezDTRJ_e3J1dkCXIUjJQQ6RRqMWT8TxkahOv1FFbX-XfULNVOZMNuFr-bHfTZDZuajt2L3_lcfzf0WzCxx57Rj86YdmCFay24cMfGQl34Ns11r-6cgoRQcPo2lSzRTQvo7uHRUO0IRihInW6C7eT85uzadzXUohdxnUdM68sK5UqfeoyqxIURgtlUmu0ZrnjpUiY9dyjSYQTmEijlPPKS-9Sj4nPPsFaNa9wHyLmCfMoaaUsGScSgxkanafILaEtkY0gWU5p4fpE46HexWPRGhyJLgJDisCQomfICL4PJE9dlo33Gu-EyRwa9vM4gsMl34p-HS4KFgBbLgkTj-B4eE0rKLhFTIXzhtoI2qMUbXXUxV7H76HvpZh8fvubB7DOQjhEeyRzCGv1c4NfCKTU9qiVzt8BmN41
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAp0S4EggZCQsk0cO7YPHFChbOnjUG2r3lI_JqJqla3YRBX8Fv4K_41xko0AAbdK3CLFdiLP5_E3Hs8MwIscnbJCylj4nJOBkrlYW6tjbQxPafs2rK1FsLefTw75x2NxvATfhlgYRGwvn-E4PLa-fD9zTTgq29Ai4Ev1Vyh38MslGWjzN9vvSJovGdt6P92cxH0NgdhlXNcx88qyUqnSpy6zKkFhtFAmtUZrljteioRZzz2aRDiBiTRKOa-89C71mPiMxr0G14lnCNZFhw0-CjJsdHejUcaM7ILeZ5omemN6tPmBbE-WkkkcYptC9Z-M5yE3nPhlA2wruvyd3Lab3NYd-L6Ynu5uy9m4qe3Yff0tc-T_On934XbPrqO33XK4B0tY3YdbP-VcXIFXB1h_6gpGRER-owNTnc2jWRkdnc4b6hvCLSoiDA_g8Er-9CEsV7MKVyFinlidklbKknHqYjBDo_MUuSU-KbIRJAsRFq5PpR4qepwXrUmV6CIAoAgAKHoAjOD10OWiyyPyr8YrQXhDw15uI1hf4KToNc28YIGS5pJY_wieD69JRwTHj6lw1lAbQVpYkTKnIR51-BrGXsBy7c_ffAY3JtO93WJ3e3_nMdxkIfijPYBah-X6c4NPiJLV9mm7MiI4uWoo_QAMwT7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+the+Ranks+of+Visual+Channels&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=McColeman%2C+Caitlyn+M&rft.au=Yang%2C+Fumeng&rft.au=Brady%2C+Timothy+F&rft.au=Franconeri%2C+Steven&rft.date=2022-01-01&rft.eissn=1941-0506&rft.volume=28&rft.issue=1&rft.spage=707&rft_id=info:doi/10.1109%2FTVCG.2021.3114684&rft_id=info%3Apmid%2F34606455&rft.externalDocID=34606455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon