Rethinking the Ranks of Visual Channels
Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 28; no. 1; pp. 707 - 717 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands). |
---|---|
AbstractList | Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands). Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph (position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or 'wind map' (angle). With a Bayesian multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands). |
Author | Brady, Timothy F. Franconeri, Steven Yang, Fumeng McColeman, Caitlyn M. |
Author_xml | – sequence: 1 givenname: Caitlyn M. surname: McColeman fullname: McColeman, Caitlyn M. email: caitlyn.mccoleman@gmail.com organization: Northwestern University, USA – sequence: 2 givenname: Fumeng surname: Yang fullname: Yang, Fumeng email: fy@brown.edu organization: Brown University, USA – sequence: 3 givenname: Timothy F. surname: Brady fullname: Brady, Timothy F. email: timbrady@ucsd.edu organization: University of San Diego, USA – sequence: 4 givenname: Steven surname: Franconeri fullname: Franconeri, Steven email: franconeri@northwestern.edu organization: Northwestern University, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34606455$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1rGzEQQEVJaD7aH1AKZaGH5LLuSKvPYzCNGzAEjOOr0EqztZK1Nl3tHvrvu8auDznkpDm8NyPeFTlLXUJCvlCYUQrmx3ozX8wYMDqrKOVS8w_kkhpOSxAgz6YZlCqZZPKCXOX8DEA51-Yjuai4BMmFuCQ3Kxy2Mb3E9LsYtlisXHrJRdcUm5hH1xbzrUsJ2_yJnDeuzfj5-F6Tp_uf6_mvcvm4eJjfLUtfcTOULOiaNVo3gfqq1oDCGaEdrZ0xTHreCGB14AEdCC8QlNPaBx1U8DQghOqa3B72vvbdnxHzYHcxe2xbl7Abs2VCmUqDqvSEfn-DPndjn6bfWSapoFIBg4n6dqTGeofBvvZx5_q_9n-CCaAHwPddzj02J4SC3We2-8x2n9keM0-OeuP4OLghdmnoXWzfNb8ezIiIp0tGCKWVrv4BQ9SHqw |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1109_TVCG_2022_3232591 crossref_primary_10_1016_j_cag_2024_103906 crossref_primary_10_1177_14738716251315912 crossref_primary_10_1039_D4NP00039K crossref_primary_10_1109_TVCG_2022_3209377 crossref_primary_10_1007_s41060_022_00362_9 crossref_primary_10_1080_10447318_2022_2118009 crossref_primary_10_1109_TVCG_2022_3209467 crossref_primary_10_1109_TVCG_2022_3209348 crossref_primary_10_1177_14738716241259432 crossref_primary_10_1109_TVCG_2022_3226463 |
Cites_doi | 10.4324/9780203774458 10.1037/0096-3445.137.1.163 10.1093/oxfordhb/9780195376746.013.0010 10.2307/2288400 10.1037/h0046162 10.1016/B978-0-12-481845-3.50016-3 10.2307/1420251 10.1145/3173574.3173718 10.1109/TVCG.2018.2865240 10.1109/TVCG.2015.2467671 10.1109/INFVIS.2005.1532136 10.1109/VIS47514.2020.00048 10.1109/TVCG.2018.2865264 10.1109/TVCG.2018.2810918 10.1145/2470654.2481410 10.1109/TVCG.2019.2934786 10.1145/3290605.3300462 10.1109/TVCG.2015.2467758 10.3758/s13414-019-01913-2 10.1609/aimag.v13i1.976 10.5281/zenodo.3879620 10.31234/osf.io/e3m5a 10.1177/1473871611416549 10.1109/TVCG.2019.2934801 10.1109/TVCG.2015.2467732 10.1167/16.5.11 10.1007/978-1-4614-7485-2_6 10.1201/9781315372495 10.1109/TVCG.2020.3030421 10.1201/b17511 10.1037/h0043158 10.18637/jss.v080.i01 10.1167/16.12.811 10.1017/S0140525X01003922 10.1109/BELIV.2018.8634103 10.1177/0956797610397956 10.1109/TVCG.2020.3030422 10.1145/2702123.2702590 10.1109/TVCG.2021.3098240 10.1111/rssa.12378 10.1145/1753326.1753357 10.3758/s13421-013-0333-6 10.26300/vyf3-qw80 10.1109/TVCG.2019.2917689 10.1111/j.1467-9280.1997.tb00694.x 10.1037/0033-295X.114.3.599 10.1109/TVCG.2014.2346320 10.1145/22949.22950 10.1145/3025453.3025592 10.1037/0033-295X.107.3.500 10.1037/h0070969 10.1109/TVCG.2010.132 10.5281/zenodo.1308151 10.1109/TVCG.2018.2829750 10.1016/j.cognition.2018.08.006 10.1085/jgp.7.2.235 10.2307/2346786 10.1109/TVCG.2020.3030429 10.1038/s41562-020-00938-0 10.1037/xlm0000075 10.1016/S0020-7373(86)80019-0 10.1109/TVCG.2018.2864884 10.1167/15.15.6 10.1167/9.10.7 10.1109/TVCG.2017.2744359 10.1177/0956797618822798 10.1038/nature06860 10.1145/2470654.2470723 10.1163/156856897X00357 10.1109/TVCG.2020.3030335 10.3758/s13423-018-1525-7 10.1111/cgf.13409 10.1145/3290605.3300576 10.1037/xlm0000031 10.1109/TVCG.2014.2346979 10.3758/s13414-017-1404-8 10.1109/TVCG.2020.3030345 10.1111/j.1467-8659.2009.01694.x 10.1098/rstb.2001.0957 10.1145/2556288.2557200 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2021.3114684 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 717 |
ExternalDocumentID | 34606455 10_1109_TVCG_2021_3114684 9557878 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: BCS-1653457; IIS-1901485 funderid: 10.13039/100000001 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM PKN RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-2d8b2f88fd1c3b80e5a958a1ba9926c4f502bd4dea05c5e07a88cd8d7dc1de0d3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 10:11:32 EDT 2025 Sun Jun 29 16:22:38 EDT 2025 Wed Feb 19 02:27:58 EST 2025 Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 02:12:12 EDT 2025 Wed Aug 27 02:14:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-2d8b2f88fd1c3b80e5a958a1ba9926c4f502bd4dea05c5e07a88cd8d7dc1de0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34606455 |
PQID | 2615167020 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2579380738 pubmed_primary_34606455 crossref_citationtrail_10_1109_TVCG_2021_3114684 ieee_primary_9557878 proquest_journals_2615167020 crossref_primary_10_1109_TVCG_2021_3114684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 gabry (ref24) 2020 ref55 ref11 ref54 ref10 bertin (ref6) 1983; 1 ref17 ref16 ref19 ref18 tufte (ref79) 1990; 2 ref51 ref50 ref45 ref48 ref47 ref86 ref42 ref85 ref41 ref44 ref87 ref43 ref8 ref7 ref9 ref4 ref3 ref5 ref82 ref81 ref40 ref84 pinheiro (ref64) 2017 ref83 ref80 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 kleiner (ref46) 2007; 36 ref2 ref1 lambert (ref49) 2018 ref39 ref38 ref71 ref70 ref73 ref72 gabry (ref22) 2021 ref68 ref67 ref23 ref26 ref69 ref25 ref20 ref63 ref66 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref26 doi: 10.4324/9780203774458 – year: 2020 ident: ref24 publication-title: CmdStanR the R interface to CmdStan – ident: ref35 doi: 10.1037/0096-3445.137.1.163 – ident: ref21 doi: 10.1093/oxfordhb/9780195376746.013.0010 – ident: ref17 doi: 10.2307/2288400 – year: 2017 ident: ref64 publication-title: Package 'nlme' – ident: ref74 doi: 10.1037/h0046162 – ident: ref51 doi: 10.1016/B978-0-12-481845-3.50016-3 – volume: 1 year: 1983 ident: ref6 publication-title: Semiology of Graphics Diagrams Networks Maps – ident: ref25 doi: 10.2307/1420251 – ident: ref20 doi: 10.1145/3173574.3173718 – ident: ref55 doi: 10.1109/TVCG.2018.2865240 – ident: ref43 doi: 10.1109/TVCG.2015.2467671 – ident: ref2 doi: 10.1109/INFVIS.2005.1532136 – ident: ref7 doi: 10.1109/VIS47514.2020.00048 – ident: ref71 doi: 10.1109/TVCG.2018.2865264 – ident: ref82 doi: 10.1109/TVCG.2018.2810918 – ident: ref30 doi: 10.1145/2470654.2481410 – ident: ref39 doi: 10.1109/TVCG.2019.2934786 – ident: ref87 doi: 10.1145/3290605.3300462 – ident: ref61 doi: 10.1109/TVCG.2015.2467758 – ident: ref37 doi: 10.3758/s13414-019-01913-2 – ident: ref48 doi: 10.1609/aimag.v13i1.976 – ident: ref41 doi: 10.5281/zenodo.3879620 – ident: ref16 doi: 10.31234/osf.io/e3m5a – ident: ref27 doi: 10.1177/1473871611416549 – ident: ref57 doi: 10.1109/TVCG.2019.2934801 – ident: ref8 doi: 10.1109/TVCG.2015.2467732 – ident: ref76 doi: 10.1167/16.5.11 – ident: ref67 doi: 10.1007/978-1-4614-7485-2_6 – ident: ref53 doi: 10.1201/9781315372495 – ident: ref70 doi: 10.1109/TVCG.2020.3030421 – ident: ref56 doi: 10.1201/b17511 – ident: ref54 doi: 10.1037/h0043158 – ident: ref13 doi: 10.18637/jss.v080.i01 – ident: ref68 doi: 10.1167/16.12.811 – ident: ref19 doi: 10.1017/S0140525X01003922 – ident: ref65 doi: 10.1109/BELIV.2018.8634103 – ident: ref9 doi: 10.1177/0956797610397956 – ident: ref14 doi: 10.1109/TVCG.2020.3030422 – ident: ref62 doi: 10.1145/2702123.2702590 – ident: ref66 doi: 10.1109/TVCG.2021.3098240 – ident: ref23 doi: 10.1111/rssa.12378 – ident: ref33 doi: 10.1145/1753326.1753357 – ident: ref58 doi: 10.3758/s13421-013-0333-6 – ident: ref36 doi: 10.26300/vyf3-qw80 – ident: ref81 doi: 10.1109/TVCG.2019.2917689 – ident: ref78 doi: 10.1111/j.1467-9280.1997.tb00694.x – ident: ref38 doi: 10.1037/0033-295X.114.3.599 – volume: 36 start-page: 1 year: 2007 ident: ref46 article-title: What's new in psychtoolbox-3 publication-title: Perception – ident: ref77 doi: 10.1109/TVCG.2014.2346320 – ident: ref50 doi: 10.1145/22949.22950 – ident: ref45 doi: 10.1145/3025453.3025592 – ident: ref34 doi: 10.1037/0033-295X.107.3.500 – ident: ref28 doi: 10.1037/h0070969 – ident: ref15 doi: 10.1109/TVCG.2010.132 – volume: 2 year: 1990 ident: ref79 publication-title: Envisioning Information – ident: ref42 doi: 10.5281/zenodo.1308151 – ident: ref72 doi: 10.1109/TVCG.2018.2829750 – ident: ref83 doi: 10.1016/j.cognition.2018.08.006 – ident: ref32 doi: 10.1085/jgp.7.2.235 – ident: ref80 doi: 10.2307/2346786 – ident: ref60 doi: 10.1109/TVCG.2020.3030429 – year: 2021 ident: ref22 publication-title: bayesplot Plotting for bayesian models – ident: ref73 doi: 10.1038/s41562-020-00938-0 – ident: ref11 doi: 10.1037/xlm0000075 – ident: ref18 doi: 10.1016/S0020-7373(86)80019-0 – ident: ref59 doi: 10.1109/TVCG.2018.2864884 – ident: ref10 doi: 10.1167/15.15.6 – ident: ref5 doi: 10.1167/9.10.7 – ident: ref75 doi: 10.1109/TVCG.2017.2744359 – ident: ref84 doi: 10.1177/0956797618822798 – ident: ref86 doi: 10.1038/nature06860 – ident: ref63 doi: 10.1145/2470654.2470723 – ident: ref12 doi: 10.1163/156856897X00357 – ident: ref40 doi: 10.1109/TVCG.2020.3030335 – ident: ref85 doi: 10.3758/s13423-018-1525-7 – ident: ref44 doi: 10.1111/cgf.13409 – ident: ref47 doi: 10.1145/3290605.3300576 – ident: ref29 doi: 10.1037/xlm0000031 – ident: ref31 doi: 10.1109/TVCG.2014.2346979 – ident: ref4 doi: 10.3758/s13414-017-1404-8 – year: 2018 ident: ref49 publication-title: A student's Guide to Bayesian Statistics – ident: ref52 doi: 10.1109/TVCG.2020.3030345 – ident: ref69 doi: 10.1111/j.1467-8659.2009.01694.x – ident: ref3 doi: 10.1098/rstb.2001.0957 – ident: ref1 doi: 10.1145/2556288.2557200 |
SSID | ssj0014489 |
Score | 2.4820035 |
Snippet | Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these visual channels is based on how... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 707 |
SubjectTerms | and Plots Bars Channels Charts Computer memory Correlation Data visualization DataType Agnostic Diagrams Displays Error analysis Human-Subjects Quantitative Studies Measurement uncertainty Memory management Perception & Cognition Ranking Task analysis Trends Visualization |
Title | Rethinking the Ranks of Visual Channels |
URI | https://ieeexplore.ieee.org/document/9557878 https://www.ncbi.nlm.nih.gov/pubmed/34606455 https://www.proquest.com/docview/2615167020 https://www.proquest.com/docview/2579380738 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAJ_YwPgc3GCrSpEkTPdo0aZLHCXGckNgDAsRblQ9XQ4d6iGtf-OvntL1qTAztrVLjtImd-Oc4tgG-5uiUFVLGwuecDJTMxdpaHWtjeErq27C2FsHVz3x6yy_vxf0KnAyxMIjYXj7DcXhsffl-7ppwVHaqRZAvtQqrZLh1sVqDx4DMDN3dL5QxI5TeezDTRJ_e3J1dkCXIUjJQQ6RRqMWT8TxkahOv1FFbX-XfULNVOZMNuFr-bHfTZDZuajt2L3_lcfzf0WzCxx57Rj86YdmCFay24cMfGQl34Ns11r-6cgoRQcPo2lSzRTQvo7uHRUO0IRihInW6C7eT85uzadzXUohdxnUdM68sK5UqfeoyqxIURgtlUmu0ZrnjpUiY9dyjSYQTmEijlPPKS-9Sj4nPPsFaNa9wHyLmCfMoaaUsGScSgxkanafILaEtkY0gWU5p4fpE46HexWPRGhyJLgJDisCQomfICL4PJE9dlo33Gu-EyRwa9vM4gsMl34p-HS4KFgBbLgkTj-B4eE0rKLhFTIXzhtoI2qMUbXXUxV7H76HvpZh8fvubB7DOQjhEeyRzCGv1c4NfCKTU9qiVzt8BmN41 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAp0S4EggZCQsk0cO7YPHFChbOnjUG2r3lI_JqJqla3YRBX8Fv4K_41xko0AAbdK3CLFdiLP5_E3Hs8MwIscnbJCylj4nJOBkrlYW6tjbQxPafs2rK1FsLefTw75x2NxvATfhlgYRGwvn-E4PLa-fD9zTTgq29Ai4Ev1Vyh38MslGWjzN9vvSJovGdt6P92cxH0NgdhlXNcx88qyUqnSpy6zKkFhtFAmtUZrljteioRZzz2aRDiBiTRKOa-89C71mPiMxr0G14lnCNZFhw0-CjJsdHejUcaM7ILeZ5omemN6tPmBbE-WkkkcYptC9Z-M5yE3nPhlA2wruvyd3Lab3NYd-L6Ynu5uy9m4qe3Yff0tc-T_On934XbPrqO33XK4B0tY3YdbP-VcXIFXB1h_6gpGRER-owNTnc2jWRkdnc4b6hvCLSoiDA_g8Er-9CEsV7MKVyFinlidklbKknHqYjBDo_MUuSU-KbIRJAsRFq5PpR4qepwXrUmV6CIAoAgAKHoAjOD10OWiyyPyr8YrQXhDw15uI1hf4KToNc28YIGS5pJY_wieD69JRwTHj6lw1lAbQVpYkTKnIR51-BrGXsBy7c_ffAY3JtO93WJ3e3_nMdxkIfijPYBah-X6c4NPiJLV9mm7MiI4uWoo_QAMwT7Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+the+Ranks+of+Visual+Channels&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=McColeman%2C+Caitlyn+M&rft.au=Yang%2C+Fumeng&rft.au=Brady%2C+Timothy+F&rft.au=Franconeri%2C+Steven&rft.date=2022-01-01&rft.eissn=1941-0506&rft.volume=28&rft.issue=1&rft.spage=707&rft_id=info:doi/10.1109%2FTVCG.2021.3114684&rft_id=info%3Apmid%2F34606455&rft.externalDocID=34606455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |