Navigation path extraction for garden mobile robot based on road median point

Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2025; no. 1; pp. 6 - 21
Main Author Li, Wei
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 27.02.2025
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use.
AbstractList Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use.
Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 x 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of "local + global" two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of "turning curves into straights", the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use.
Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use.
Abstract Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use.
ArticleNumber 6
Audience Academic
Author Li, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  email: liiiie@163.com
  organization: Zhejiang College of Security Technology
BookMark eNp9kUtvFDEQhC0UJJLAH-A0Us4T3H6NfYwiHpECXOBstV-DV7vjjT1B8O9xdhBwQj7YbtVXKnVdkLOlLJGQ10CvAbR604ArLkbK5EiBUTPqZ-QclJ5GBZqe_fN-QS5a21EqFaPsnHz8hN_zjGsuy3DE9dsQf6wV_emfSh1mrCEuw6G4vI9DLa6sg8MWw9AFtWAYDjFk7HDJy_qSPE-4b_HV7_uSfH339svth_H-8_u725v70XNh1pE5qqbohAwJnUIvXUpBUc2ZkzEx1BCUAuWhT6YpgBOeTo4GnsTUk0t-Se4231BwZ481H7D-tAWzPQ1KnS3WNft9tJgMn7Rw0isvNPVo0JjgpJSAhmnRva42r2MtD4-xrXZXHuvS41sOExitKaiuut5UM3bTvKTytKZ-Qjxk38tIfT_2RjMDWgDjHWAb4Gtprcb0JyZQ-9SZ3TqzvTN76szqDvENal28zLH-zfIf6hfeq5oj
Cites_doi 10.1007/978-3-031-04524-0_20
10.1016/j.compag.2023.107900
10.3390/s22228901
10.1109/JIOT.2020.2965115
10.1016/j.cam.2023.115107
10.1016/j.compag.2023.107811
10.1016/j.compag.2023.107701
10.1016/j.compag.2022.107584
10.1038/s41598-023-28760-4
10.1016/j.compag.2022.106999
10.1016/j.cie.2021.107263
10.3390/robotics9040077
10.1109/LRA.2021.3061404
10.1007/s11119-020-09773-9
10.1016/j.compag.2022.107085
10.1016/j.compag.2022.106964
10.1016/j.biosystemseng.2021.12.001
10.1016/j.compag.2020.105911
10.1007/s11119-019-09697-z
10.1108/EJM-08-2020-0586
10.1016/j.isprsjprs.2023.06.006
10.1186/s13634-020-00710-6
10.1038/s41438-020-00428-4
ContentType Journal Article
Copyright The Author(s) 2025 corrected publication 2025
COPYRIGHT 2025 Springer
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2025 corrected publication 2025
– notice: COPYRIGHT 2025 Springer
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13634-025-01209-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 21
ExternalDocumentID oai_doaj_org_article_af93784b5c6c480ca9a99db5551a9284
A829184123
10_1186_s13634_025_01209_8
GrantInformation_xml – fundername: Project of the Zhejiang Province Association for Higher Education
  grantid: KT2023008
– fundername: Wenzhou Science & Technology Bureau Project
  grantid: G2023079
– fundername: Zhejiang Provincial Philosophy and Social Sciences Planning Project
  grantid: 24SSHZ093YB
GroupedDBID .4S
.DC
0R~
29G
2WC
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
AASML
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
P62
PHGZT
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
SEG
SOJ
TUS
U2A
AAYXX
CITATION
OVT
PHGZM
PMFND
3V.
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c349t-2b067eb45dfab6ac5bffd60832b5ef2a81d6616c183277d1b4c07b0d3f4700553
IEDL.DBID DOA
ISSN 1687-6180
1687-6172
IngestDate Wed Aug 27 01:30:54 EDT 2025
Tue Jul 22 07:11:54 EDT 2025
Tue Jun 10 20:59:31 EDT 2025
Tue Jul 01 05:14:56 EDT 2025
Thu Apr 03 03:05:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Navigation path
Garden mobile robot
Autonomous navigation
Road median point
Edge detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-2b067eb45dfab6ac5bffd60832b5ef2a81d6616c183277d1b4c07b0d3f4700553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/af93784b5c6c480ca9a99db5551a9284
PQID 3171988016
PQPubID 237299
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_af93784b5c6c480ca9a99db5551a9284
proquest_journals_3171988016
gale_infotracacademiconefile_A829184123
crossref_primary_10_1186_s13634_025_01209_8
springer_journals_10_1186_s13634_025_01209_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-27
PublicationDateYYYYMMDD 2025-02-27
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-27
  day: 27
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2025
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References 1209_CR1
D Feng (1209_CR11) 2020; 7
F Tschopp (1209_CR19) 2021; 6
W Tang (1209_CR21) 2022; 197
Z Yang (1209_CR15) 2022; 197
L Emmi (1209_CR13) 2021; 22
J Long (1209_CR23) 2015; 39
Z Yao (1209_CR12) 2023; 27
J Chen (1209_CR17) 2021; 180
Q Yang (1209_CR27) 2023; 206
M Zhang (1209_CR10) 2021; 157
B Yang (1209_CR24) 2021; 8
T Hutsol (1209_CR8) 2023; 27
Y Bai (1209_CR26) 2023; 205
C Pu (1209_CR2) 2023; 202
J Yu (1209_CR14) 2023; 209
J Chen (1209_CR22) 2022; 105
J Li (1209_CR18) 2021; 2021
S Kanagasingham (1209_CR4) 2020; 21
LC Santos (1209_CR9) 2020; 9
T Wang (1209_CR16) 2022; 198
F Ding (1209_CR20) 2023; 426
A Kutyrev (1209_CR7) 2022; 22
A Khadatkar (1209_CR5) 2023; 13
F Schuberth (1209_CR25) 2023; 57
Y Li (1209_CR6) 2023; 210
BM Marrewijk (1209_CR3) 2022; 214
References_xml – ident: 1209_CR1
  doi: 10.1007/978-3-031-04524-0_20
– volume: 210
  start-page: 107900
  year: 2023
  ident: 1209_CR6
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107900
– volume: 22
  start-page: 1
  issue: 22
  year: 2022
  ident: 1209_CR7
  publication-title: Sensors
  doi: 10.3390/s22228901
– volume: 105
  start-page: 1
  issue: 2
  year: 2022
  ident: 1209_CR22
  publication-title: J. Intell. Robot. Syst.
– volume: 7
  start-page: 3133
  issue: 4
  year: 2020
  ident: 1209_CR11
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2965115
– volume: 426
  start-page: 115107
  year: 2023
  ident: 1209_CR20
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2023.115107
– volume: 39
  start-page: 640
  issue: 4
  year: 2015
  ident: 1209_CR23
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 209
  start-page: 107811
  year: 2023
  ident: 1209_CR14
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107811
– volume: 206
  start-page: 107701
  year: 2023
  ident: 1209_CR27
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107701
– volume: 205
  start-page: 107584
  year: 2023
  ident: 1209_CR26
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107584
– volume: 13
  start-page: 1
  issue: 1
  year: 2023
  ident: 1209_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28760-4
– volume: 197
  start-page: 106999
  year: 2022
  ident: 1209_CR21
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106999
– volume: 157
  start-page: 107263
  year: 2021
  ident: 1209_CR10
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107263
– volume: 9
  start-page: 1
  issue: 4
  year: 2020
  ident: 1209_CR9
  publication-title: Robotics
  doi: 10.3390/robotics9040077
– volume: 6
  start-page: 2745
  issue: 2
  year: 2021
  ident: 1209_CR19
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3061404
– volume: 22
  start-page: 524
  year: 2021
  ident: 1209_CR13
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09773-9
– volume: 198
  start-page: 107085
  year: 2022
  ident: 1209_CR16
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107085
– volume: 197
  start-page: 106964
  year: 2022
  ident: 1209_CR15
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106964
– volume: 214
  start-page: 11
  year: 2022
  ident: 1209_CR3
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.12.001
– volume: 180
  start-page: 1
  year: 2021
  ident: 1209_CR17
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105911
– volume: 27
  start-page: 1
  issue: 2
  year: 2023
  ident: 1209_CR12
  publication-title: iScience
– volume: 21
  start-page: 831
  issue: 4
  year: 2020
  ident: 1209_CR4
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09697-z
– volume: 27
  start-page: 113
  issue: 1
  year: 2023
  ident: 1209_CR8
  publication-title: Agric. Eng.
– volume: 57
  start-page: 1678
  issue: 6
  year: 2023
  ident: 1209_CR25
  publication-title: Eur. J. Mark.
  doi: 10.1108/EJM-08-2020-0586
– volume: 202
  start-page: 262
  year: 2023
  ident: 1209_CR2
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.06.006
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1209_CR18
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-020-00710-6
– volume: 8
  start-page: 1
  year: 2021
  ident: 1209_CR24
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-020-00428-4
SSID ssj0056202
Score 2.4089456
Snippet Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic...
Abstract Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 6
SubjectTerms Accuracy
Autonomous navigation
Edge detection
Electronics in navigation
Engineering
Garden mobile robot
Jamming
Machine learning
Navigation path
Navigation systems
Quantum Information Technology
Reliability
Road median point
Roads & highways
Robotics industry
Robots
Signal,Image and Speech Processing
Spintronics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB6V1wscEBQQKS3yoRIHsJrEjuOcUFu1qpD6VCEq9WZ5iSsOxG1eyu9n7DgUVME1i2XN9o2XbwbgoG10yxtbUTSHmvKWddSU1lKLy7C-LHvZ80hwvliL8yv-5bq5zhtum3ytcomJKVC7YOMe-SHiHK6PMZ6Kz7d3NHaNiqeruYXGE9jGECzlCraPT9eXX5dYjOA-3zoUMpHh6oU2I8XhpmKCcRrbuSYCKZV_QVOq4P84Tj86ME04dPYCnucEkhzNGn8JW_2wA8_-KCv4Ci7W-meqnBEGEjsOEwzA40xgIJijkhsdqQvkRzAYEsgYTJhIRDNH8IMxaEcSnwR_Dt-H6TVcnZ1-OzmnuW0CtYx3E60NIlBveOO8NkLbxnjvBKZatWl6X2vMUBGUhY3O3LauMtyWrSkd87yNJbnYG1gNYejfAnGtl9oyxox03FZcI7ThGNr6innrRAEfF4mp27k6hkqrCinULF-F8lVJvkoWcByF-vvLWNk6PQjjjcqOorTHhEly01hhuSyt7nTXOdNgZqc7xNICPkSVqOh_UXY60whwwrGSlTqSdYerVgTkAvYWransmBv1YEYFfFo0-fD635Pf_f9o7-BpnUwpkp32YDWN9_0-piuTeZ9t8heW0OUt
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgucABtTxElqXyoRIHsEjiR5xjW1FVlXZPrLQ3y494xYEEZVN-PzNOAlSrPXBNnMia8cz3jexvTMhlJW0lpC8YLIeSiYrXzOXeMw9lWJPnjW4ECpzXG3W3Ffc7uZtEYYf5tPu8JZkydQprrb4cCq64YHj9ahJ8Mv2UPJNYu-MWLWocxvwLgI5ndpanv3sEQalT_3E-PtoYTXhze0ZeTkSRXo2ePSdPmvYVefFP-8DXZL2xv1KHjK6leLMwhUTbj0IFClyU7i1KFOiPzkHo075z3UARtQKFAX1nA026Efi4-94Ob8j29uu3mzs2XY_APBf1wEoHSNM4IUO0TlkvXYxBAaUqnWxiaYGJAvgqj0FbVaFwwueVywOPosLWW_wtWbRd27wjNFRRW885dzoIXwgLEAb_sD4WPPqgMvJptpj5OXbBMKl60MqM9jVgX5Psa3RGrtGof0ZiB-v0oOv3ZgoIYyMQIy2c9MoLnXtb27oOTgKDszVgZkY-oksMxhnazk5yAZgwdqwyV7qsoToF4M3IavaamQLwYIAWFTXkpgLm_nn25N_Xpye__L_h78nzMi0tFDmtyGLoH5oPQFMGd5FW5W-iON6b
  priority: 102
  providerName: Springer Nature
Title Navigation path extraction for garden mobile robot based on road median point
URI https://link.springer.com/article/10.1186/s13634-025-01209-8
https://www.proquest.com/docview/3171988016
https://doaj.org/article/af93784b5c6c480ca9a99db5551a9284
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La-QwDDZ9XNpD6WvZ6QsfCj20pknsOM5xOnQ6FGYopQO9GT_iZQ-bLNNsf38lJ9MHZemlF0ESJwjJ0icRSyLktMhNIXKXMtgOGRMFL5lNnGMO0rAqSSpVCSxwns7kZC5uH_PHd6O-8ExY1x64E9ylCQCgStjcSSdU4kxpytLbHJDelOBb0fsC5i2Tqc4HA6jjuZ2uREbJy6eUSy4Yjm6NxaJMfYCh2K3_s0_-9HM0Ys54m2z1wSIddkzukJWq3iWb71oI7pHpzDzHLhlNTXG6MAVnu-iKFSjEo_SXwTIF-qexYP500dimpYhcnsKCRWM8jbUj8HLzu273yXx8_TCasH5EAnNclC3LLKBNZUXug7HSuNyG4CWEVZnNq5AZiEYBgKVDwy0Kn1rhksImngdRYPst_oOs1U1d_STUF0EZxzm3yguXCgMwBt8wLqQ8OC8H5HwpMf2364ShYwahpO7kq0G-OspXqwG5QqG-rsQu1vEG6Fb3utVf6XZAzlAlGm0NZWf6kgFgGLtW6aHKSshQAXwH5GipNd0b4ZOG0CgtwT-lwPvFUpNvj__P_MF3MH9INrK44bD86YistYt_1TEEMK09IasiuQGqxkDXr65nd_dwNcoEUjk6iXsZ6DwbvgA6gPAX
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdIKeADiANYTWLHcQ4Ilceypd09tVJvxo-k4kDSZgOIP8VvZMbZUFAFt14Tx7JmxvPNxP5mAJ6WhS1l4TOO5pBzWYqKu9R77jENq9O01rUkgvNiqeZH8uNxcbwBPycuDF2rnHxidNSh8_SPfAdxDvNj9Kfq9ekZp65RdLo6tdAYzWK__vEdU7bVq713qN9neT57f_h2ztddBbgXshp47tBB104WobFOWV-4pgkKI5HcFXWTWwzgELOUJ1svy5A56dPSpUE0sqSKVQLnvQJXpUAkJ2b67MPk-TGUGO84Kh2pd_lE0tFqZ5UJJSSn5rGRrsr1X0AY-wVcRIULx7MR9Wa34OY6XGW7o33dho26vQM3_ihieBcWS_st1unoWkb9jRm6-36kSzCMiNmJJaIE-9I5dECs71w3MMLOwHBA39nAInsFP-4-t8M9OLoUcd6HzbZr6wfAQtlo64UQTgfpM2kRSHEO65tMND6oBF5MEjOnYy0OE3MYrcwoX4PyNVG-RifwhoT6eyTV0Y4Puv7ErLelsQ2GZ1q6wisvdeptZasquALjSFshcifwnFRiaLeT7OyatIALprpZZlfnFebICP8JbE9aM2s3sDLnRpvAy0mT56__vfit_8_2BK7NDxcH5mBvuf8QrufRrIhmtQ2bQ_-1foSB0uAeR-tk8Omyt8MvxQsgvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VWwnBAvEUgQJegFiA1SR2EmeBUEt71VJ6VSEqdWf8iCsWJOXeAOLX-DpmnISCKth1m4cVjcdzzsQ-MwBPq8JUsnAZR3fIuaxEzW3qHHeYhjVp2qhGksD5cFHuHcu3J8XJGvyctDB0rHKKiTFQ-87RP_JNxDnMjxWdzQrjsYijnfnrsy-cOkjRTuvUTmNwkYPmx3dM31av9ndwrp_l-Xz3w5s9PnYY4E7Iuue5xWDdWFn4YGxpXGFD8CWyktwWTcgNkjnEr9KR31eVz6x0aWVTL4KsqHqVwHGvwHpFWdEM1rd3F0fvJxxAYjGceCxVFOLlk2RHlZurTJRCcmolG8WrXP0Fi7F7wEWMuLBZGzFwfhNujOSVbQ3edgvWmvY2XP-jpOEdOFyYb7FqR9cy6nbM0ILLQTzBkB-zU0OyCfa5sxiO2LKzXc8IST3DB5ad8SxqWfDl7lPb34XjSzHoPZi1XdvcB-aroIwTQljlpcukQVjFMYwLmQjOlwm8mCymz4bKHDpmNKrUg3012ldH-2qVwDYZ9feTVFU7XuiWp3pcpNoEJGtK2sKVTqrUmdrUtbcFskpTI44n8JymRNPaJ9uZUcKAH0xVtPSWymvMmJEMJLAxzZoeg8JKn7twAi-nmTy__e-Pf_D_0Z7AVVwK-t3-4uAhXMujV5HmagNm_fJr8whZU28fj-7J4ONlr4hfMxomUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigation+path+extraction+for+garden+mobile+robot+based+on+road+median+point&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Li%2C+Wei&rft.date=2025-02-27&rft.pub=Springer&rft.issn=1687-6180&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-025-01209-8&rft.externalDocID=A829184123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon