Navigation path extraction for garden mobile robot based on road median point
Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which...
Saved in:
Published in | EURASIP journal on advances in signal processing Vol. 2025; no. 1; pp. 6 - 21 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
27.02.2025
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use. |
---|---|
AbstractList | Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use. Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 x 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of "local + global" two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of "turning curves into straights", the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use. Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use. Abstract Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic interference and difficulty in eliminating error interference have limited the large-scale industrialized implementation of garden mobile robots, which are directly related to the accuracy, reliability and safety of the navigation system. In order to cope with these challenges, this paper proposes a navigation path extraction method for garden mobile robots based on road median points. After semantic level perception of the scene in this paper, the 1920 × 360 pixel region at the bottom of the image is taken as region of interest. Then, an edge detection method is proposed as a basis to locate the road median point, and discrete navigation point prediction by machine learning. The anti-interference detection strategy of “local + global” two-stage joint elimination of interference points is adopted to avoid the accuracy of the fitted path due to severe interference. Combined with the idea of “turning curves into straights”, the navigation paths are fitted. The experimental results show that the proposed navigation path extraction method has stronger adaptive ability, higher anti-jamming ability and accuracy, which makes the method more attractive for practical use. |
ArticleNumber | 6 |
Audience | Academic |
Author | Li, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei email: liiiie@163.com organization: Zhejiang College of Security Technology |
BookMark | eNp9kUtvFDEQhC0UJJLAH-A0Us4T3H6NfYwiHpECXOBstV-DV7vjjT1B8O9xdhBwQj7YbtVXKnVdkLOlLJGQ10CvAbR604ArLkbK5EiBUTPqZ-QclJ5GBZqe_fN-QS5a21EqFaPsnHz8hN_zjGsuy3DE9dsQf6wV_emfSh1mrCEuw6G4vI9DLa6sg8MWw9AFtWAYDjFk7HDJy_qSPE-4b_HV7_uSfH339svth_H-8_u725v70XNh1pE5qqbohAwJnUIvXUpBUc2ZkzEx1BCUAuWhT6YpgBOeTo4GnsTUk0t-Se4231BwZ481H7D-tAWzPQ1KnS3WNft9tJgMn7Rw0isvNPVo0JjgpJSAhmnRva42r2MtD4-xrXZXHuvS41sOExitKaiuut5UM3bTvKTytKZ-Qjxk38tIfT_2RjMDWgDjHWAb4Gtprcb0JyZQ-9SZ3TqzvTN76szqDvENal28zLH-zfIf6hfeq5oj |
Cites_doi | 10.1007/978-3-031-04524-0_20 10.1016/j.compag.2023.107900 10.3390/s22228901 10.1109/JIOT.2020.2965115 10.1016/j.cam.2023.115107 10.1016/j.compag.2023.107811 10.1016/j.compag.2023.107701 10.1016/j.compag.2022.107584 10.1038/s41598-023-28760-4 10.1016/j.compag.2022.106999 10.1016/j.cie.2021.107263 10.3390/robotics9040077 10.1109/LRA.2021.3061404 10.1007/s11119-020-09773-9 10.1016/j.compag.2022.107085 10.1016/j.compag.2022.106964 10.1016/j.biosystemseng.2021.12.001 10.1016/j.compag.2020.105911 10.1007/s11119-019-09697-z 10.1108/EJM-08-2020-0586 10.1016/j.isprsjprs.2023.06.006 10.1186/s13634-020-00710-6 10.1038/s41438-020-00428-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 corrected publication 2025 COPYRIGHT 2025 Springer Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2025 corrected publication 2025 – notice: COPYRIGHT 2025 Springer – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s13634-025-01209-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-6180 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_af93784b5c6c480ca9a99db5551a9284 A829184123 10_1186_s13634_025_01209_8 |
GrantInformation_xml | – fundername: Project of the Zhejiang Province Association for Higher Education grantid: KT2023008 – fundername: Wenzhou Science & Technology Bureau Project grantid: G2023079 – fundername: Zhejiang Provincial Philosophy and Social Sciences Planning Project grantid: 24SSHZ093YB |
GroupedDBID | .4S .DC 0R~ 29G 2WC 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC AASML ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 P62 PHGZT PIMPY PQQKQ PROAC Q2X RHU RHW RNS SEG SOJ TUS U2A AAYXX CITATION OVT PHGZM PMFND 3V. 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c349t-2b067eb45dfab6ac5bffd60832b5ef2a81d6616c183277d1b4c07b0d3f4700553 |
IEDL.DBID | DOA |
ISSN | 1687-6180 1687-6172 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Tue Jul 22 07:11:54 EDT 2025 Tue Jun 10 20:59:31 EDT 2025 Tue Jul 01 05:14:56 EDT 2025 Thu Apr 03 03:05:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Navigation path Garden mobile robot Autonomous navigation Road median point Edge detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-2b067eb45dfab6ac5bffd60832b5ef2a81d6616c183277d1b4c07b0d3f4700553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/af93784b5c6c480ca9a99db5551a9284 |
PQID | 3171988016 |
PQPubID | 237299 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af93784b5c6c480ca9a99db5551a9284 proquest_journals_3171988016 gale_infotracacademiconefile_A829184123 crossref_primary_10_1186_s13634_025_01209_8 springer_journals_10_1186_s13634_025_01209_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-27 |
PublicationDateYYYYMMDD | 2025-02-27 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on advances in signal processing |
PublicationTitleAbbrev | EURASIP J. Adv. Signal Process |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | 1209_CR1 D Feng (1209_CR11) 2020; 7 F Tschopp (1209_CR19) 2021; 6 W Tang (1209_CR21) 2022; 197 Z Yang (1209_CR15) 2022; 197 L Emmi (1209_CR13) 2021; 22 J Long (1209_CR23) 2015; 39 Z Yao (1209_CR12) 2023; 27 J Chen (1209_CR17) 2021; 180 Q Yang (1209_CR27) 2023; 206 M Zhang (1209_CR10) 2021; 157 B Yang (1209_CR24) 2021; 8 T Hutsol (1209_CR8) 2023; 27 Y Bai (1209_CR26) 2023; 205 C Pu (1209_CR2) 2023; 202 J Yu (1209_CR14) 2023; 209 J Chen (1209_CR22) 2022; 105 J Li (1209_CR18) 2021; 2021 S Kanagasingham (1209_CR4) 2020; 21 LC Santos (1209_CR9) 2020; 9 T Wang (1209_CR16) 2022; 198 F Ding (1209_CR20) 2023; 426 A Kutyrev (1209_CR7) 2022; 22 A Khadatkar (1209_CR5) 2023; 13 F Schuberth (1209_CR25) 2023; 57 Y Li (1209_CR6) 2023; 210 BM Marrewijk (1209_CR3) 2022; 214 |
References_xml | – ident: 1209_CR1 doi: 10.1007/978-3-031-04524-0_20 – volume: 210 start-page: 107900 year: 2023 ident: 1209_CR6 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107900 – volume: 22 start-page: 1 issue: 22 year: 2022 ident: 1209_CR7 publication-title: Sensors doi: 10.3390/s22228901 – volume: 105 start-page: 1 issue: 2 year: 2022 ident: 1209_CR22 publication-title: J. Intell. Robot. Syst. – volume: 7 start-page: 3133 issue: 4 year: 2020 ident: 1209_CR11 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2965115 – volume: 426 start-page: 115107 year: 2023 ident: 1209_CR20 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2023.115107 – volume: 39 start-page: 640 issue: 4 year: 2015 ident: 1209_CR23 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 209 start-page: 107811 year: 2023 ident: 1209_CR14 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107811 – volume: 206 start-page: 107701 year: 2023 ident: 1209_CR27 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107701 – volume: 205 start-page: 107584 year: 2023 ident: 1209_CR26 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107584 – volume: 13 start-page: 1 issue: 1 year: 2023 ident: 1209_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-023-28760-4 – volume: 197 start-page: 106999 year: 2022 ident: 1209_CR21 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106999 – volume: 157 start-page: 107263 year: 2021 ident: 1209_CR10 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107263 – volume: 9 start-page: 1 issue: 4 year: 2020 ident: 1209_CR9 publication-title: Robotics doi: 10.3390/robotics9040077 – volume: 6 start-page: 2745 issue: 2 year: 2021 ident: 1209_CR19 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3061404 – volume: 22 start-page: 524 year: 2021 ident: 1209_CR13 publication-title: Precis. Agric. doi: 10.1007/s11119-020-09773-9 – volume: 198 start-page: 107085 year: 2022 ident: 1209_CR16 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107085 – volume: 197 start-page: 106964 year: 2022 ident: 1209_CR15 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106964 – volume: 214 start-page: 11 year: 2022 ident: 1209_CR3 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.12.001 – volume: 180 start-page: 1 year: 2021 ident: 1209_CR17 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105911 – volume: 27 start-page: 1 issue: 2 year: 2023 ident: 1209_CR12 publication-title: iScience – volume: 21 start-page: 831 issue: 4 year: 2020 ident: 1209_CR4 publication-title: Precis. Agric. doi: 10.1007/s11119-019-09697-z – volume: 27 start-page: 113 issue: 1 year: 2023 ident: 1209_CR8 publication-title: Agric. Eng. – volume: 57 start-page: 1678 issue: 6 year: 2023 ident: 1209_CR25 publication-title: Eur. J. Mark. doi: 10.1108/EJM-08-2020-0586 – volume: 202 start-page: 262 year: 2023 ident: 1209_CR2 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.06.006 – volume: 2021 start-page: 1 year: 2021 ident: 1209_CR18 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-020-00710-6 – volume: 8 start-page: 1 year: 2021 ident: 1209_CR24 publication-title: Hortic. Res. doi: 10.1038/s41438-020-00428-4 |
SSID | ssj0056202 |
Score | 2.4089456 |
Snippet | Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic... Abstract Extracting navigation paths is the key to autonomous navigation of garden mobile robots. Bottlenecks such as lack of reliability under high dynamic... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 6 |
SubjectTerms | Accuracy Autonomous navigation Edge detection Electronics in navigation Engineering Garden mobile robot Jamming Machine learning Navigation path Navigation systems Quantum Information Technology Reliability Road median point Roads & highways Robotics industry Robots Signal,Image and Speech Processing Spintronics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB6V1wscEBQQKS3yoRIHsJrEjuOcUFu1qpD6VCEq9WZ5iSsOxG1eyu9n7DgUVME1i2XN9o2XbwbgoG10yxtbUTSHmvKWddSU1lKLy7C-LHvZ80hwvliL8yv-5bq5zhtum3ytcomJKVC7YOMe-SHiHK6PMZ6Kz7d3NHaNiqeruYXGE9jGECzlCraPT9eXX5dYjOA-3zoUMpHh6oU2I8XhpmKCcRrbuSYCKZV_QVOq4P84Tj86ME04dPYCnucEkhzNGn8JW_2wA8_-KCv4Ci7W-meqnBEGEjsOEwzA40xgIJijkhsdqQvkRzAYEsgYTJhIRDNH8IMxaEcSnwR_Dt-H6TVcnZ1-OzmnuW0CtYx3E60NIlBveOO8NkLbxnjvBKZatWl6X2vMUBGUhY3O3LauMtyWrSkd87yNJbnYG1gNYejfAnGtl9oyxox03FZcI7ThGNr6innrRAEfF4mp27k6hkqrCinULF-F8lVJvkoWcByF-vvLWNk6PQjjjcqOorTHhEly01hhuSyt7nTXOdNgZqc7xNICPkSVqOh_UXY60whwwrGSlTqSdYerVgTkAvYWransmBv1YEYFfFo0-fD635Pf_f9o7-BpnUwpkp32YDWN9_0-piuTeZ9t8heW0OUt priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgucABtTxElqXyoRIHsEjiR5xjW1FVlXZPrLQ3y494xYEEZVN-PzNOAlSrPXBNnMia8cz3jexvTMhlJW0lpC8YLIeSiYrXzOXeMw9lWJPnjW4ECpzXG3W3Ffc7uZtEYYf5tPu8JZkydQprrb4cCq64YHj9ahJ8Mv2UPJNYu-MWLWocxvwLgI5ndpanv3sEQalT_3E-PtoYTXhze0ZeTkSRXo2ePSdPmvYVefFP-8DXZL2xv1KHjK6leLMwhUTbj0IFClyU7i1KFOiPzkHo075z3UARtQKFAX1nA026Efi4-94Ob8j29uu3mzs2XY_APBf1wEoHSNM4IUO0TlkvXYxBAaUqnWxiaYGJAvgqj0FbVaFwwueVywOPosLWW_wtWbRd27wjNFRRW885dzoIXwgLEAb_sD4WPPqgMvJptpj5OXbBMKl60MqM9jVgX5Psa3RGrtGof0ZiB-v0oOv3ZgoIYyMQIy2c9MoLnXtb27oOTgKDszVgZkY-oksMxhnazk5yAZgwdqwyV7qsoToF4M3IavaamQLwYIAWFTXkpgLm_nn25N_Xpye__L_h78nzMi0tFDmtyGLoH5oPQFMGd5FW5W-iON6b priority: 102 providerName: Springer Nature |
Title | Navigation path extraction for garden mobile robot based on road median point |
URI | https://link.springer.com/article/10.1186/s13634-025-01209-8 https://www.proquest.com/docview/3171988016 https://doaj.org/article/af93784b5c6c480ca9a99db5551a9284 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La-QwDDZ9XNpD6WvZ6QsfCj20pknsOM5xOnQ6FGYopQO9GT_iZQ-bLNNsf38lJ9MHZemlF0ESJwjJ0icRSyLktMhNIXKXMtgOGRMFL5lNnGMO0rAqSSpVCSxwns7kZC5uH_PHd6O-8ExY1x64E9ylCQCgStjcSSdU4kxpytLbHJDelOBb0fsC5i2Tqc4HA6jjuZ2uREbJy6eUSy4Yjm6NxaJMfYCh2K3_s0_-9HM0Ys54m2z1wSIddkzukJWq3iWb71oI7pHpzDzHLhlNTXG6MAVnu-iKFSjEo_SXwTIF-qexYP500dimpYhcnsKCRWM8jbUj8HLzu273yXx8_TCasH5EAnNclC3LLKBNZUXug7HSuNyG4CWEVZnNq5AZiEYBgKVDwy0Kn1rhksImngdRYPst_oOs1U1d_STUF0EZxzm3yguXCgMwBt8wLqQ8OC8H5HwpMf2364ShYwahpO7kq0G-OspXqwG5QqG-rsQu1vEG6Fb3utVf6XZAzlAlGm0NZWf6kgFgGLtW6aHKSshQAXwH5GipNd0b4ZOG0CgtwT-lwPvFUpNvj__P_MF3MH9INrK44bD86YistYt_1TEEMK09IasiuQGqxkDXr65nd_dwNcoEUjk6iXsZ6DwbvgA6gPAX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdIKeADiANYTWLHcQ4Ilceypd09tVJvxo-k4kDSZgOIP8VvZMbZUFAFt14Tx7JmxvPNxP5mAJ6WhS1l4TOO5pBzWYqKu9R77jENq9O01rUkgvNiqeZH8uNxcbwBPycuDF2rnHxidNSh8_SPfAdxDvNj9Kfq9ekZp65RdLo6tdAYzWK__vEdU7bVq713qN9neT57f_h2ztddBbgXshp47tBB104WobFOWV-4pgkKI5HcFXWTWwzgELOUJ1svy5A56dPSpUE0sqSKVQLnvQJXpUAkJ2b67MPk-TGUGO84Kh2pd_lE0tFqZ5UJJSSn5rGRrsr1X0AY-wVcRIULx7MR9Wa34OY6XGW7o33dho26vQM3_ihieBcWS_st1unoWkb9jRm6-36kSzCMiNmJJaIE-9I5dECs71w3MMLOwHBA39nAInsFP-4-t8M9OLoUcd6HzbZr6wfAQtlo64UQTgfpM2kRSHEO65tMND6oBF5MEjOnYy0OE3MYrcwoX4PyNVG-RifwhoT6eyTV0Y4Puv7ErLelsQ2GZ1q6wisvdeptZasquALjSFshcifwnFRiaLeT7OyatIALprpZZlfnFebICP8JbE9aM2s3sDLnRpvAy0mT56__vfit_8_2BK7NDxcH5mBvuf8QrufRrIhmtQ2bQ_-1foSB0uAeR-tk8Omyt8MvxQsgvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VWwnBAvEUgQJegFiA1SR2EmeBUEt71VJ6VSEqdWf8iCsWJOXeAOLX-DpmnISCKth1m4cVjcdzzsQ-MwBPq8JUsnAZR3fIuaxEzW3qHHeYhjVp2qhGksD5cFHuHcu3J8XJGvyctDB0rHKKiTFQ-87RP_JNxDnMjxWdzQrjsYijnfnrsy-cOkjRTuvUTmNwkYPmx3dM31av9ndwrp_l-Xz3w5s9PnYY4E7Iuue5xWDdWFn4YGxpXGFD8CWyktwWTcgNkjnEr9KR31eVz6x0aWVTL4KsqHqVwHGvwHpFWdEM1rd3F0fvJxxAYjGceCxVFOLlk2RHlZurTJRCcmolG8WrXP0Fi7F7wEWMuLBZGzFwfhNujOSVbQ3edgvWmvY2XP-jpOEdOFyYb7FqR9cy6nbM0ILLQTzBkB-zU0OyCfa5sxiO2LKzXc8IST3DB5ad8SxqWfDl7lPb34XjSzHoPZi1XdvcB-aroIwTQljlpcukQVjFMYwLmQjOlwm8mCymz4bKHDpmNKrUg3012ldH-2qVwDYZ9feTVFU7XuiWp3pcpNoEJGtK2sKVTqrUmdrUtbcFskpTI44n8JymRNPaJ9uZUcKAH0xVtPSWymvMmJEMJLAxzZoeg8JKn7twAi-nmTy__e-Pf_D_0Z7AVVwK-t3-4uAhXMujV5HmagNm_fJr8whZU28fj-7J4ONlr4hfMxomUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigation+path+extraction+for+garden+mobile+robot+based+on+road+median+point&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Li%2C+Wei&rft.date=2025-02-27&rft.pub=Springer&rft.issn=1687-6180&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-025-01209-8&rft.externalDocID=A829184123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |