Adaptive cache pre-forwarding policy for distributed deep learning
With the rapid growth of deep learning algorithms, several high-accuracy models have been developed and applied to many real-world domains. Deep learning is parallel and suitable for distributed computing, which can significantly improve the system throughput. However, there is a bottleneck for cros...
Saved in:
Published in | Computers & electrical engineering Vol. 82; pp. 106558 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid growth of deep learning algorithms, several high-accuracy models have been developed and applied to many real-world domains. Deep learning is parallel and suitable for distributed computing, which can significantly improve the system throughput. However, there is a bottleneck for cross-machine training, that is, network latency. Nodes frequently need to wait for synchronization, and the content of each synchronization may range from several megabytes to hundred megabytes. Thus, network communication takes considerable time in the training process, which reduces system performance. Therefore, many computing architectures have been proposed. This paper proposes a type of distributed computing system for deep learning. Our design aims to reduce synchronization times and network blocking times by using a new cache mechanism, called cache pre-forwarding. The design concept of cache pre-forwarding aims to exploit reinforcement learning to train a pre-forwarding policy to increase the cache hit rate. Because of the features of reinforcement learning, our policy is adaptive and applicable to different computing environments. Finally, we experimentally demonstrate that our system is feasible. |
---|---|
AbstractList | With the rapid growth of deep learning algorithms, several high-accuracy models have been developed and applied to many real-world domains. Deep learning is parallel and suitable for distributed computing, which can significantly improve the system throughput. However, there is a bottleneck for cross-machine training, that is, network latency. Nodes frequently need to wait for synchronization, and the content of each synchronization may range from several megabytes to hundred megabytes. Thus, network communication takes considerable time in the training process, which reduces system performance. Therefore, many computing architectures have been proposed. This paper proposes a type of distributed computing system for deep learning. Our design aims to reduce synchronization times and network blocking times by using a new cache mechanism, called cache pre-forwarding. The design concept of cache pre-forwarding aims to exploit reinforcement learning to train a pre-forwarding policy to increase the cache hit rate. Because of the features of reinforcement learning, our policy is adaptive and applicable to different computing environments. Finally, we experimentally demonstrate that our system is feasible. |
ArticleNumber | 106558 |
Author | Horng, Gwo-Jiun Lin, Che-Hsuan Cheng, Sheng-Tzong Hsu, Chih-Wei |
Author_xml | – sequence: 1 givenname: Sheng-Tzong surname: Cheng fullname: Cheng, Sheng-Tzong organization: Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan – sequence: 2 givenname: Chih-Wei surname: Hsu fullname: Hsu, Chih-Wei email: awei.hsu@seed.net.tw organization: Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan – sequence: 3 givenname: Gwo-Jiun surname: Horng fullname: Horng, Gwo-Jiun email: grojium@gmail.com organization: Department of Computer Science and Information Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan – sequence: 4 givenname: Che-Hsuan surname: Lin fullname: Lin, Che-Hsuan organization: Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan |
BookMark | eNqNkMtOwzAQRS0EEm3hH4JYp_gRx84KlYqXVIkNrC3HnhRXqR0ct6h_T6qwQKy6Gs3o3jPSmaJzHzwgdEPwnGBS3m3mJmw7aMGAX88ppsd7ybk8QxMiRZVjwfk5mmBc8FxUuLxE077f4GEviZygh4XVXXJ7yIw2n5B1EfImxG8drfPrrAutM4dsuGTW9Sm6epfAZhagy1rQ0Q-hK3TR6LaH6985Qx9Pj-_Ll3z19vy6XKxyw4oq5VRgQxllpKzrQlJqq1IIYTnWjDYVFwKapsIF41LWFaNaamZJbUEKSQzDJZuh25HbxfC1gz6pTdhFP7xUtCjI0BMMD6lqTJkY-j5Co7rotjoeFMHqqExt1B9l6qhMjcqG7v2_rnFJJxd8itq1JxGWIwEGEXsHUfXGgTdgXQSTlA3uBMoPdtaQ2Q |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3234761 crossref_primary_10_1016_j_heliyon_2023_e23567 |
Cites_doi | 10.1038/nature16961 10.1145/1327452.1327492 10.1016/j.future.2018.09.032 10.1145/79173.79181 10.1007/BF00992696 10.1162/neco.2006.18.7.1527 10.1109/ACCESS.2019.2915020 10.1016/j.jss.2007.10.024 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.compeleceng.2020.106558 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0755 |
EndPage | 20 |
ExternalDocumentID | 10_1016_j_compeleceng_2020_106558 S0045790619313266 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c349t-270c232316bb4822d96777d50a32f9577eff9043588b932a8a3d1bde8781c3063 |
IEDL.DBID | .~1 |
ISSN | 0045-7906 |
IngestDate | Fri Jul 25 04:41:16 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Distributed computing Cache, Reinforcement learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-270c232316bb4822d96777d50a32f9577eff9043588b932a8a3d1bde8781c3063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2441588730 |
PQPubID | 2045266 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2441588730 crossref_primary_10_1016_j_compeleceng_2020_106558 crossref_citationtrail_10_1016_j_compeleceng_2020_106558 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2020_106558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & electrical engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Qiao, Li, Wu Z (bib0029) 2017; 12 Krizhevsky, Sutskever, Hinton (bib0011) 2012; 1 Dettmers, T., "8-bit approximations for parallelism in deep learning", arXiv Dean, Ghemawat (bib0005) 2008; 51 Chen, Lee, Xia, Sabrina Lin, Suzumura, Ching-Yung (bib0018) 2015 Hegde, Usmani (bib0019) June 2016 Cobb, Aarag (bib0024) 2008 Dean (bib0010) 2012; 1 Chilimbi, Suzue, Apacible, Kalyanaraman (bib0013) 2014; 14 Ho, Cipar, Cui, Kim, Lee, Phillip B, Gibson, Ganger, Xing (bib0012) 2013; 1 Vanhoucke, Senior, Mark (bib0008) 2011; 1 Lee, Kim, Vuduc (bib0009) 2012; 9 Wu, Lu, Patrick, Hung, Huang, Tong, Wang (bib0027) 2019; 92 Chen, Tang, Lu, Wu, Duan, Huang, Tang (bib0028) 2019; 7 Silver, Huang, Maddison, Guez, Sifre, Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel, Hassabis (bib0022) 2016; 529 Hinton, Osindero, Yee-Whye (bib0004) July 2006; 18 2015. Maldikar (bib0014) 2014 Cui, Zhang, Ganger, Gibbons, Xing (bib0021) 2016 Williams (bib0002) 1992; 8 Ooi, Tan, Wang (bib0030) 2015 Zhang, W., S. Gupta, X. Lian, Ji Liu, "Staleness-aware async-sgd for distributed deep learning", arXiv Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yuan, Zheng (bib0020) 2016; 16 Sutton, Barto (bib0003) 1998; 135 Tsai, Wang, Han (bib0025) 2018 Valiant (bib0001) Aug. 1990; 33 Shvachko, Kuang, Radia, Chansler (bib0007) 2010 Hardy, Merrer, Sericola (bib0026) 2017 Liao, Hung, Nguyen, Chou, Tu, Zhou (bib0006) 2009 Gupta, Zhang, Wang (bib0023) 2016 Li, Andersen, Park, Smola, Ahmed, Josifovski, Long, Shekita, Su (bib0015) 2014; 1 Wu (10.1016/j.compeleceng.2020.106558_bib0027) 2019; 92 Hardy (10.1016/j.compeleceng.2020.106558_bib0026) 2017 Vanhoucke (10.1016/j.compeleceng.2020.106558_bib0008) 2011; 1 Gupta (10.1016/j.compeleceng.2020.106558_bib0023) 2016 Ooi (10.1016/j.compeleceng.2020.106558_bib0030) 2015 Maldikar (10.1016/j.compeleceng.2020.106558_bib0014) 2014 Krizhevsky (10.1016/j.compeleceng.2020.106558_bib0011) 2012; 1 Shvachko (10.1016/j.compeleceng.2020.106558_bib0007) 2010 Chen (10.1016/j.compeleceng.2020.106558_bib0028) 2019; 7 Ho (10.1016/j.compeleceng.2020.106558_bib0012) 2013; 1 Qiao (10.1016/j.compeleceng.2020.106558_bib0029) 2017; 12 Williams (10.1016/j.compeleceng.2020.106558_bib0002) 1992; 8 Cui (10.1016/j.compeleceng.2020.106558_bib0021) 2016 Lee (10.1016/j.compeleceng.2020.106558_bib0009) 2012; 9 Li (10.1016/j.compeleceng.2020.106558_bib0015) 2014; 1 Tsai (10.1016/j.compeleceng.2020.106558_bib0025) 2018 Chilimbi (10.1016/j.compeleceng.2020.106558_bib0013) 2014; 14 Chen (10.1016/j.compeleceng.2020.106558_bib0018) 2015 Liao (10.1016/j.compeleceng.2020.106558_bib0006) 2009 Abadi (10.1016/j.compeleceng.2020.106558_bib0020) 2016; 16 Cobb (10.1016/j.compeleceng.2020.106558_bib0024) 2008 Hegde (10.1016/j.compeleceng.2020.106558_bib0019) 2016 Silver (10.1016/j.compeleceng.2020.106558_bib0022) 2016; 529 10.1016/j.compeleceng.2020.106558_bib0017 Valiant (10.1016/j.compeleceng.2020.106558_bib0001) 1990; 33 10.1016/j.compeleceng.2020.106558_bib0016 Dean (10.1016/j.compeleceng.2020.106558_bib0005) 2008; 51 Dean (10.1016/j.compeleceng.2020.106558_bib0010) 2012; 1 Sutton (10.1016/j.compeleceng.2020.106558_bib0003) 1998; 135 Hinton (10.1016/j.compeleceng.2020.106558_bib0004) 2006; 18 |
References_xml | – volume: 33 start-page: 103 year: Aug. 1990 end-page: 111 ident: bib0001 article-title: A bridging model for parallel computation publication-title: Commun ACM – volume: 1 start-page: 1223 year: 2012 end-page: 1231 ident: bib0010 article-title: Large scale distributed deep networks publication-title: NIPS'12 proceedings of the 25th international conference on neural information processing systems – volume: 1 year: 2011 ident: bib0008 article-title: Improving the speed of neural networks on CPUs publication-title: Proc. deep learning and unsupervised feature learning NIPS workshop – volume: 1 start-page: 1223 year: 2013 end-page: 1231 ident: bib0012 article-title: More effective distributed ml via a stale synchronous parallel parameter server publication-title: NIPS'13 proceedings of the 26th international conference on neural information processing systems – year: 2016 ident: bib0021 article-title: GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server publication-title: Proceedings of the eleventh european conference on computer systems – volume: 92 start-page: 17 year: 2019 end-page: 28 ident: bib0027 article-title: QaMeC: a QoS-driven IoVs application optimizing deployment scheme in multimedia edge clouds publication-title: Future Gener. Comput. Syst. – year: 2017 ident: bib0026 article-title: Distributed deep learning on edge-devices: Feasibility via adaptive compression publication-title: IEEE 16th International Symposium on Network Computing andApplications (NCA) – year: 2010 ident: bib0007 article-title: The hadoop distributed file system publication-title: 2010 IEEE 26th symposium on Mass storage systems and technologies (MSST) – volume: 9 year: 2012 ident: bib0009 article-title: When prefetching works, when it doesn't, and why publication-title: ACM Trans Arch Code Optim – volume: 18 start-page: 1527 year: July 2006 end-page: 1554 ident: bib0004 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput – reference: Dettmers, T., "8-bit approximations for parallelism in deep learning", arXiv: – start-page: 685 year: 2015 end-page: 688 ident: bib0030 article-title: SINGA: A Distributed Deep Learning Platform publication-title: MM '15: Proceedings of the 23rd ACM international conference on Multimedia – volume: 7 start-page: 59172 year: 2019 end-page: 59184 ident: bib0028 article-title: iDiSC: a new approach to iot-data-intensive service components deployment in edge-cloud-hybrid system publication-title: IEEE Access – year: 2014 ident: bib0014 article-title: Adaptive cache prefetching using machine learning and monitoring hardware performance counters – year: June 2016 ident: bib0019 article-title: Parallel and distributed deep learning – reference: Zhang, W., S. Gupta, X. Lian, Ji Liu, "Staleness-aware async-sgd for distributed deep learning", arXiv: – reference: , 2015. – volume: 12 start-page: 03030 year: 2017 ident: bib0029 article-title: DLTAP: a network-efficient scheduling method for distributed deep learning workload in containerized cluster environment publication-title: ITM Web of Conferences – year: 2009 ident: bib0006 article-title: Machine learning-based prefetch optimization for data center applications publication-title: Proceedings of the conference on high performance computing networking, storage and analysis – volume: 1 start-page: 583 year: 2014 end-page: 598 ident: bib0015 article-title: Scaling distributed machine learning with the parameter server publication-title: OSDI'14 Proceedings of the 11th USENIX conference on operating systems design and implementation – volume: 51 start-page: 107 year: 2008 end-page: 113 ident: bib0005 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun ACM – volume: 8 start-page: 229 year: 1992 end-page: 256 ident: bib0002 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach Learn – volume: 135 year: 1998 ident: bib0003 publication-title: Introduction to reinforcement learning – year: 2015 ident: bib0018 article-title: Efficient multi-training framework of image deep learning on GPU cluster publication-title: 2015 IEEE international symposium multimedia (ISM) – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: bib0022 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature – start-page: 1539 year: 2008 end-page: 1558 ident: bib0024 article-title: Web proxy cache replacement scheme based on back-propagation neural network publication-title: J. Syst. Softw. – year: 2018 ident: bib0025 article-title: Mobile social media networks caching with convolutional neural network publication-title: IEEE wireless communications and networking conference workshops – volume: 1 start-page: 1097 year: 2012 end-page: 1105 ident: bib0011 article-title: Imagenet classification with deep convolutional neural networks publication-title: NIPS'12 proceedings of the 25th international conference on neural information processing systems – volume: 14 year: 2014 ident: bib0013 article-title: Project Adam: building an efficient and scalable deep learning training system publication-title: 11th USENIX symposium on operating systems design and implementation – volume: 16 year: 2016 ident: bib0020 publication-title: TensorFlow: a system for large-scale machine learning – year: 2016 ident: bib0023 article-title: Model accuracy and runtime tradeoff in distributed deep learning: a systematic study publication-title: Data mining (ICDM), 2016 IEEE 16th international conference on – year: 2015 ident: 10.1016/j.compeleceng.2020.106558_bib0018 article-title: Efficient multi-training framework of image deep learning on GPU cluster – volume: 1 start-page: 1097 year: 2012 ident: 10.1016/j.compeleceng.2020.106558_bib0011 article-title: Imagenet classification with deep convolutional neural networks – volume: 14 year: 2014 ident: 10.1016/j.compeleceng.2020.106558_bib0013 article-title: Project Adam: building an efficient and scalable deep learning training system – volume: 1 start-page: 1223 year: 2012 ident: 10.1016/j.compeleceng.2020.106558_bib0010 article-title: Large scale distributed deep networks – year: 2016 ident: 10.1016/j.compeleceng.2020.106558_bib0019 – volume: 9 issue: 1 year: 2012 ident: 10.1016/j.compeleceng.2020.106558_bib0009 article-title: When prefetching works, when it doesn't, and why publication-title: ACM Trans Arch Code Optim – year: 2010 ident: 10.1016/j.compeleceng.2020.106558_bib0007 article-title: The hadoop distributed file system – volume: 529 start-page: 484 year: 2016 ident: 10.1016/j.compeleceng.2020.106558_bib0022 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 1 start-page: 1223 year: 2013 ident: 10.1016/j.compeleceng.2020.106558_bib0012 article-title: More effective distributed ml via a stale synchronous parallel parameter server – year: 2017 ident: 10.1016/j.compeleceng.2020.106558_bib0026 article-title: Distributed deep learning on edge-devices: Feasibility via adaptive compression – volume: 135 year: 1998 ident: 10.1016/j.compeleceng.2020.106558_bib0003 – year: 2016 ident: 10.1016/j.compeleceng.2020.106558_bib0021 article-title: GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server – ident: 10.1016/j.compeleceng.2020.106558_bib0016 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 10.1016/j.compeleceng.2020.106558_bib0005 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun ACM doi: 10.1145/1327452.1327492 – start-page: 685 year: 2015 ident: 10.1016/j.compeleceng.2020.106558_bib0030 article-title: SINGA: A Distributed Deep Learning Platform – volume: 92 start-page: 17 year: 2019 ident: 10.1016/j.compeleceng.2020.106558_bib0027 article-title: QaMeC: a QoS-driven IoVs application optimizing deployment scheme in multimedia edge clouds publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.09.032 – year: 2014 ident: 10.1016/j.compeleceng.2020.106558_bib0014 – volume: 33 start-page: 103 issue: 8 year: 1990 ident: 10.1016/j.compeleceng.2020.106558_bib0001 article-title: A bridging model for parallel computation publication-title: Commun ACM doi: 10.1145/79173.79181 – year: 2009 ident: 10.1016/j.compeleceng.2020.106558_bib0006 article-title: Machine learning-based prefetch optimization for data center applications – volume: 12 start-page: 03030 year: 2017 ident: 10.1016/j.compeleceng.2020.106558_bib0029 article-title: DLTAP: a network-efficient scheduling method for distributed deep learning workload in containerized cluster environment – volume: 8 start-page: 229 issue: 3–4 year: 1992 ident: 10.1016/j.compeleceng.2020.106558_bib0002 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach Learn doi: 10.1007/BF00992696 – volume: 16 year: 2016 ident: 10.1016/j.compeleceng.2020.106558_bib0020 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.compeleceng.2020.106558_bib0004 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – year: 2016 ident: 10.1016/j.compeleceng.2020.106558_bib0023 article-title: Model accuracy and runtime tradeoff in distributed deep learning: a systematic study – volume: 1 year: 2011 ident: 10.1016/j.compeleceng.2020.106558_bib0008 article-title: Improving the speed of neural networks on CPUs – year: 2018 ident: 10.1016/j.compeleceng.2020.106558_bib0025 article-title: Mobile social media networks caching with convolutional neural network – ident: 10.1016/j.compeleceng.2020.106558_bib0017 – volume: 7 start-page: 59172 year: 2019 ident: 10.1016/j.compeleceng.2020.106558_bib0028 article-title: iDiSC: a new approach to iot-data-intensive service components deployment in edge-cloud-hybrid system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915020 – volume: 1 start-page: 583 year: 2014 ident: 10.1016/j.compeleceng.2020.106558_bib0015 article-title: Scaling distributed machine learning with the parameter server – start-page: 1539 year: 2008 ident: 10.1016/j.compeleceng.2020.106558_bib0024 article-title: Web proxy cache replacement scheme based on back-propagation neural network publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2007.10.024 |
SSID | ssj0004618 |
Score | 2.2078147 |
Snippet | With the rapid growth of deep learning algorithms, several high-accuracy models have been developed and applied to many real-world domains. Deep learning is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106558 |
SubjectTerms | Algorithms Cache, Reinforcement learning Computer networks Deep learning Distributed computing Distributed processing Machine learning Model accuracy Network latency Synchronism Training |
Title | Adaptive cache pre-forwarding policy for distributed deep learning |
URI | https://dx.doi.org/10.1016/j.compeleceng.2020.106558 https://www.proquest.com/docview/2441588730 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MRqLSt4jc1jk90FL7VYqmJPFnpbkn2UisSg9epvdyYPreKh4DEbNoTJ5ptv4JtvCLmAlMkCp4XnuMs8yHgWcNBwD61FfK2l5SkWig-TZDxld7N41iLDphcGZZU19leYXqJ1vdKvo9kvFgvs8WUxl5CPJNoPJmi7zRjHU375Eaz0RgYVGjO0ZvSTTXL-rfFC2TaOm7H5HErFENeTGKe__52jfqF1mYJGu2Sn5o50UL3eHmnZfJ9srzgKHpDrgUkLRDCq0amZosgDaClKY-E-LUoXYAor1KBjLg67soYaawtaz4-YH5Lp6OZxOPbqMQmejphcYkeZBl4UBUmWMcj3RiaccxP7aRQ6GXNunZM-0CIhMmBrqUgjE2TGCi4CDRVDdETa-Utujwk1RmgNFUeQGsck0C_jdKi1CwxPkkyyDhFNYJSuPcRxlMWzasRiT2olpgpjqqqYdkj4tbWojDTW2XTVRF_9OBUKAH-d7d3mi6n613xTIVaQAK2Rf_K_p5-SLbyqBGld0l6-vtszYCjLrFcewR7ZGNzejyefdcLl9A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60go-D-MRH1RW8RvPY7GbBi4qlvnqq0NuS7KMoUoPWq7_dmSbRKh4Erxs2hMnuNzPwzfcBHGHK5JE3WeClLwLMeA5x0MqApEVCY5STOTWKdz3RvefXg3QwAxfNLAzRKmvsrzB9gtb1ykkdzZPy4YFmfHkqFeYjRfKDQszCHMfrSzYGx-_R1HBkVMExJ23GUMzD4RfJi3jb5DfjRkPsFWNaFynZv_-epH7A9SQHdVZguS4e2Vn1fasw40ZrsDQlKbgO52c2LwnCmCGpZkYsD6xLiRuLz1k5kQFmuMIsSeaS25WzzDpXstpAYrgB953L_kU3qH0SApNwNaaRMoOFURKJouCY8K0SUkqbhnkSe5VK6bxXIdZFWVZguZZneWKjwrpMZpHBliHZhNboeeS2gFmbGYMtR5RbzxXWX9ab2BgfWSlEofg2ZE1gtKlFxMnL4kk3bLFHPRVTTTHVVUy3If7cWlZKGn_ZdNpEX387FhoR_y_b280f0_XdfNUxtZCIrUm487-3H8BCt393q2-veje7sEhPKnZaG1rjlze3h-XKuNifHMcPyKzngg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+cache+pre-forwarding+policy+for+distributed+deep+learning&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Cheng%2C+Sheng-Tzong&rft.au=Hsu%2C+Chih-Wei&rft.au=Horng%2C+Gwo-Jiun&rft.au=Lin%2C+Che-Hsuan&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=82&rft_id=info:doi/10.1016%2Fj.compeleceng.2020.106558&rft.externalDocID=S0045790619313266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |