Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network

Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Mis...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 9; pp. 4371 - 4377
Main Authors Wei, Haining, Li, Zhongsen, Wang, Shuai, Li, Rui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.
AbstractList Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.
Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.
Author Li, Zhongsen
Wang, Shuai
Wei, Haining
Li, Rui
Author_xml – sequence: 1
  givenname: Haining
  orcidid: 0000-0002-9531-3987
  surname: Wei
  fullname: Wei, Haining
  email: weihn20@mails.tsinghua.edu.cn
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhongsen
  surname: Li
  fullname: Li, Zhongsen
  email: lizhongs21@mails.tsinghua.edu.cn
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Shuai
  orcidid: 0000-0001-8897-9476
  surname: Wang
  fullname: Wang, Shuai
  email: s-wang20@mails.tsinghua.edu.cn
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  email: leerui@tsinghua.edu.cn
  organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35030086$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpAyAkFIlNNxn8FydettPSDmpBqujacuwbySWxB9sp4u1xNDMsusAbX1vfObo65y068sEDQu8JXhGC5eevl7ebFcWUrhjhjGD-Cp1QIrqaUtwdHWYi-TE6S-kJl9OVLyneoGPWYFae4gTZR28hJj1tR7DV_TxmV6-Dz1GnXN0_bKoHMMGnHGeTXfDVpU6FK8NVmPsR6qswaeerG_AQdXbPUF3Y58UwOj1W3yD_DvHnO_R60GOCs_19ih6_XP9Y39Z3328264u72jAuc00Fp7wVVGhiO6yhbQwZeCf6xlDe961tbCNhGIilvbSWWN1AYVumJSeSGHaKzne-2xh-zZCymlwyMI7aQ5iTooIuITCBC_rpBfoU5ujLdoq2hOKGC8kK9XFPzf0EVm2jm3T8ow75FaDdASaGlCIMyrisl6RKgm5UBKulLLWUpZay1L6soiQvlAfz_2k-7DQOAP7xUnS0YZL9BZhQnfs
CODEN IJBHA9
CitedBy_id crossref_primary_10_1007_s13534_024_00425_9
crossref_primary_10_1016_j_bspc_2024_107364
crossref_primary_10_1109_ACCESS_2024_3408840
crossref_primary_10_1109_TIP_2024_3445729
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1016_j_mrl_2024_200175
crossref_primary_10_1109_JBHI_2023_3348328
crossref_primary_10_1109_TCC_2024_3476418
crossref_primary_10_1016_j_knosys_2024_111866
crossref_primary_10_1109_JBHI_2024_3357784
crossref_primary_10_1109_JBHI_2023_3244669
crossref_primary_10_1109_TMI_2023_3240862
crossref_primary_10_1109_JBHI_2023_3311189
crossref_primary_10_3390_s24030753
crossref_primary_10_1109_TCI_2025_3531729
crossref_primary_10_1088_1361_6560_ad3889
crossref_primary_10_3233_XST_230012
crossref_primary_10_1109_JBHI_2024_3360128
crossref_primary_10_1007_s12204_024_2701_8
crossref_primary_10_1016_j_neuroimage_2024_120921
Cites_doi 10.1088/1361-6560/aac71a
10.1109/TMI.2010.2090538
10.1109/TPAMI.2018.2883941
10.1109/TMI.2019.2901750
10.1038/nature25988
10.1002/mrm.22428
10.1109/TIT.2006.871582
10.1002/mrm.27201
10.1007/978-3-030-00931-1_52
10.1007/978-3-030-32778-1_3
10.1109/TMI.2020.2987026
10.12659/pjr.892628
10.1016/j.media.2020.101747
10.1002/mrm.21391
10.1002/mp.12155
10.1109/CVPR.2017.632
10.1109/TBME.2018.2883958
10.1109/ISBI.2016.7493320
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1007/978-3-319-68127-6_2
10.1109/TMI.2018.2858752
10.1109/TMI.2018.2820120
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3143104
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4377
ExternalDocumentID 35030086
10_1109_JBHI_2022_3143104
9682539
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Beijing Municipality
  grantid: L192013
  funderid: 10.13039/501100004826
– fundername: National Natural Science Foundation of China
  grantid: 81971604
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-264247626a1d80ae75c1f486b5c24bb7d5d59eff1d2b9dd1da5e6a173a94191c3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 01:26:08 EDT 2025
Mon Jun 30 06:32:59 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
Tue Jul 01 03:00:01 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Wed Aug 27 02:14:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-264247626a1d80ae75c1f486b5c24bb7d5d59eff1d2b9dd1da5e6a173a94191c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9531-3987
0000-0001-8897-9476
PMID 35030086
PQID 2712054693
PQPubID 85417
PageCount 7
ParticipantIDs crossref_primary_10_1109_JBHI_2022_3143104
proquest_journals_2712054693
pubmed_primary_35030086
crossref_citationtrail_10_1109_JBHI_2022_3143104
proquest_miscellaneous_2620081360
ieee_primary_9682539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Kuestner (ref22) 2016
References_xml – ident: ref21
  doi: 10.1088/1361-6560/aac71a
– ident: ref6
  doi: 10.1109/TMI.2010.2090538
– ident: ref10
  doi: 10.1109/TPAMI.2018.2883941
– ident: ref18
  doi: 10.1109/TMI.2019.2901750
– ident: ref9
  doi: 10.1038/nature25988
– ident: ref4
  doi: 10.1002/mrm.22428
– ident: ref5
  doi: 10.1109/TIT.2006.871582
– ident: ref8
  doi: 10.1002/mrm.27201
– year: 2016
  ident: ref22
  article-title: Cs_Lab: Initial release
  publication-title: Zenodo
– ident: ref15
  doi: 10.1007/978-3-030-00931-1_52
– ident: ref17
  doi: 10.1007/978-3-030-32778-1_3
– ident: ref19
  doi: 10.1109/TMI.2020.2987026
– ident: ref1
  doi: 10.12659/pjr.892628
– ident: ref13
  doi: 10.1016/j.media.2020.101747
– ident: ref2
  doi: 10.1002/mrm.21391
– ident: ref16
  doi: 10.1002/mp.12155
– ident: ref23
  doi: 10.1109/CVPR.2017.632
– ident: ref20
  doi: 10.1109/TBME.2018.2883958
– ident: ref7
  doi: 10.1109/ISBI.2016.7493320
– ident: ref3
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: ref14
  doi: 10.1007/978-3-319-68127-6_2
– ident: ref11
  doi: 10.1109/TMI.2018.2858752
– ident: ref12
  doi: 10.1109/TMI.2018.2820120
SSID ssj0000816896
Score 2.5032575
Snippet Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4371
SubjectTerms Biomedical imaging
cross-domain deep learning
Deep learning
Domains
Generative adversarial network
Generative adversarial networks
Generators
High acceleration
Image acquisition
Image contrast
Image processing
Image quality
Image reconstruction
image synthesis
Magnetic resonance imaging
Medical imaging
multi-contrast MRI
Neuroimaging
Redundancy
Synthesis
Training
Title Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/9682539
https://www.ncbi.nlm.nih.gov/pubmed/35030086
https://www.proquest.com/docview/2712054693
https://www.proquest.com/docview/2620081360
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB9RLC6WP8KiM1FPVLI5jO_ERaNGCtByqInGLHD-kCpqturuX_npmnGyoUFv1ZimTxNGMMzP2zPcBvJfc1laUMXcxVrmsXcjRDVPHsncB3a9TCdRndq2nN_LqVt1uwMexFyaEkIrPwoSG6Szfz92KtspOjMZ8pjSbsImJW9-rNe6nJAKJRMclcJDjQpTDIWbBzcnV2fQSk0EhMEdFl8mJjqdUaOCcmqh_80iJYuXv0WbyOhcvYLaeb19scjdZLduJ-_UEyvF_P2gHng_hJzvt7WUXNkL3ErZnwwH7HvjEg7SwhBnsWerOzQnA6qddLNnsyyWjdPURdJadoRP0DAcYiLf3If80_26_dawHs6Y_KUuMzwtLds6u-5rzV3Bz8fnr-TQfiBhyV0qzpCo4IfGvqW3ha25DpVwRZa1b5YRs28orr0yIsfCiNd4X3qqAslVpjcR80JWvYaubd-EtMM8rgVK2Ehgr-qhNK3S0Kpo6OmNVlQFfK6NxA0o5kWXcNylb4aYhVTakymZQZQYfxlt-9BAd_xLeIzWMgoMGMjhca7wZFvGiEVVBs9SmzOB4vIzLj85UbBfmK5TRVEBSlJpn8Ka3lPHZawPb__M7D-AZzawvWDuELVRdOMIIZ9m-S6b9AHma8-w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXqUQKK2ROKFm6zixEx8pUO2WZg-olXqLHD-kqiWL2N0Lv54ZJxsQooibpUwSRzPOzNgz3wfwtuCmMiIPqQ2hTIvK-hTdMHUsO-vR_VoZQX3quZpeFKeX8nILDsdeGO99LD7zExrGs3y3sGvaKjvSCvOZXN-Bu-j3pei7tcYdlUghEQm5BA5SXIrFcIyZcX10ejydYTooBGap6DQ5EfLkEk2cUxv1bz4pkqzcHm9Gv3PyCOrNjPtyk-vJetVO7I8_wBz_95Mew8MhAGXve4t5Alu-ewr36uGIfQdcZEJaGkINdiz256YEYfXdLFes_jJjlLD-gp1lx-gGHcMBhuLtjU8_Lr6aq471cNb0L2WR83lpyNLZvK86fwYXJ5_OP0zTgYohtXmhV1QHJwr8byqTuYobX0qbhaJSrbSiaNvSSSe1DyFzotXOZc5Ij7JlbnSBGaHNd2G7W3T-BTDHS4FSphQYLbqgdCtUMDLoKlhtZJkA3yijsQNOOdFl3DQxX-G6IVU2pMpmUGUC78ZbvvUgHf8S3iE1jIKDBhLY22i8GZbxshFlRrNUOk_gzXgZFyCdqpjOL9Yoo6iEJMsVT-B5bynjszcG9vLv7zyA-9Pz-qw5m80_v4IHNMu-fG0PtlGN_jXGO6t2P5r5T10G9zY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undersampled+Multi-Contrast+MRI+Reconstruction+Based+on+Double-Domain+Generative+Adversarial+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wei%2C+Haining&rft.au=Li%2C+Zhongsen&rft.au=Wang%2C+Shuai&rft.au=Li%2C+Rui&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=26&rft.issue=9&rft.spage=4371&rft.epage=4377&rft_id=info:doi/10.1109%2FJBHI.2022.3143104&rft_id=info%3Apmid%2F35030086&rft.externalDocID=9682539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon