Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network
Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Mis...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 9; pp. 4371 - 4377 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts. |
---|---|
AbstractList | Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts. Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts.Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long acquisition time, which makes it inhibitive for daily clinical practice. Subsampling k-space is one of the main methods to speed up scan time. Missing k-space samples will lead to inevitable serious artifacts and noise. Considering the assumption that different contrast modalities share some mutual information, it may be possible to exploit this redundancy to accelerate multi-contrast imaging acquisition. Recently, generative adversarial network shows superior performance in image reconstruction and synthesis. Some studies based on k-space reconstruction also exhibit superior performance over conventional state-of-art method. In this study, we propose a cross-domain two-stage generative adversarial network for multi-contrast images reconstruction based on prior full-sampled contrast and undersampled information. The new approach integrates reconstruction and synthesis, which estimates and completes the missing k-space and then refines in image space. It takes one fully-sampled contrast modality data and highly undersampled data from several other modalities as input, and outputs high quality images for each contrast simultaneously. The network is trained and tested on a public brain dataset from healthy subjects. Quantitative comparisons against baseline clearly indicate that the proposed method can effectively reconstruct undersampled images. Even under high acceleration, the network still can recover texture details and reduce artifacts. |
Author | Li, Zhongsen Wang, Shuai Wei, Haining Li, Rui |
Author_xml | – sequence: 1 givenname: Haining orcidid: 0000-0002-9531-3987 surname: Wei fullname: Wei, Haining email: weihn20@mails.tsinghua.edu.cn organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China – sequence: 2 givenname: Zhongsen surname: Li fullname: Li, Zhongsen email: lizhongs21@mails.tsinghua.edu.cn organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China – sequence: 3 givenname: Shuai orcidid: 0000-0001-8897-9476 surname: Wang fullname: Wang, Shuai email: s-wang20@mails.tsinghua.edu.cn organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China – sequence: 4 givenname: Rui surname: Li fullname: Li, Rui email: leerui@tsinghua.edu.cn organization: Center for Biomedical Imaging Research, Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35030086$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1UREvpAyAkFIlNNxn8FydettPSDmpBqujacuwbySWxB9sp4u1xNDMsusAbX1vfObo65y068sEDQu8JXhGC5eevl7ebFcWUrhjhjGD-Cp1QIrqaUtwdHWYi-TE6S-kJl9OVLyneoGPWYFae4gTZR28hJj1tR7DV_TxmV6-Dz1GnXN0_bKoHMMGnHGeTXfDVpU6FK8NVmPsR6qswaeerG_AQdXbPUF3Y58UwOj1W3yD_DvHnO_R60GOCs_19ih6_XP9Y39Z3328264u72jAuc00Fp7wVVGhiO6yhbQwZeCf6xlDe961tbCNhGIilvbSWWN1AYVumJSeSGHaKzne-2xh-zZCymlwyMI7aQ5iTooIuITCBC_rpBfoU5ujLdoq2hOKGC8kK9XFPzf0EVm2jm3T8ow75FaDdASaGlCIMyrisl6RKgm5UBKulLLWUpZay1L6soiQvlAfz_2k-7DQOAP7xUnS0YZL9BZhQnfs |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1016_j_bspc_2024_107364 crossref_primary_10_1109_ACCESS_2024_3408840 crossref_primary_10_1109_TIP_2024_3445729 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1016_j_mrl_2024_200175 crossref_primary_10_1109_JBHI_2023_3348328 crossref_primary_10_1109_TCC_2024_3476418 crossref_primary_10_1016_j_knosys_2024_111866 crossref_primary_10_1109_JBHI_2024_3357784 crossref_primary_10_1109_JBHI_2023_3244669 crossref_primary_10_1109_TMI_2023_3240862 crossref_primary_10_1109_JBHI_2023_3311189 crossref_primary_10_3390_s24030753 crossref_primary_10_1109_TCI_2025_3531729 crossref_primary_10_1088_1361_6560_ad3889 crossref_primary_10_3233_XST_230012 crossref_primary_10_1109_JBHI_2024_3360128 crossref_primary_10_1007_s12204_024_2701_8 crossref_primary_10_1016_j_neuroimage_2024_120921 |
Cites_doi | 10.1088/1361-6560/aac71a 10.1109/TMI.2010.2090538 10.1109/TPAMI.2018.2883941 10.1109/TMI.2019.2901750 10.1038/nature25988 10.1002/mrm.22428 10.1109/TIT.2006.871582 10.1002/mrm.27201 10.1007/978-3-030-00931-1_52 10.1007/978-3-030-32778-1_3 10.1109/TMI.2020.2987026 10.12659/pjr.892628 10.1016/j.media.2020.101747 10.1002/mrm.21391 10.1002/mp.12155 10.1109/CVPR.2017.632 10.1109/TBME.2018.2883958 10.1109/ISBI.2016.7493320 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1007/978-3-319-68127-6_2 10.1109/TMI.2018.2858752 10.1109/TMI.2018.2820120 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2022.3143104 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 4377 |
ExternalDocumentID | 35030086 10_1109_JBHI_2022_3143104 9682539 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Beijing Municipality grantid: L192013 funderid: 10.13039/501100004826 – fundername: National Natural Science Foundation of China grantid: 81971604 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c349t-264247626a1d80ae75c1f486b5c24bb7d5d59eff1d2b9dd1da5e6a173a94191c3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 01:26:08 EDT 2025 Mon Jun 30 06:32:59 EDT 2025 Mon Jul 21 06:02:02 EDT 2025 Tue Jul 01 03:00:01 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Wed Aug 27 02:14:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-264247626a1d80ae75c1f486b5c24bb7d5d59eff1d2b9dd1da5e6a173a94191c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9531-3987 0000-0001-8897-9476 |
PMID | 35030086 |
PQID | 2712054693 |
PQPubID | 85417 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1109_JBHI_2022_3143104 proquest_journals_2712054693 pubmed_primary_35030086 crossref_citationtrail_10_1109_JBHI_2022_3143104 proquest_miscellaneous_2620081360 ieee_primary_9682539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref23 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Kuestner (ref22) 2016 |
References_xml | – ident: ref21 doi: 10.1088/1361-6560/aac71a – ident: ref6 doi: 10.1109/TMI.2010.2090538 – ident: ref10 doi: 10.1109/TPAMI.2018.2883941 – ident: ref18 doi: 10.1109/TMI.2019.2901750 – ident: ref9 doi: 10.1038/nature25988 – ident: ref4 doi: 10.1002/mrm.22428 – ident: ref5 doi: 10.1109/TIT.2006.871582 – ident: ref8 doi: 10.1002/mrm.27201 – year: 2016 ident: ref22 article-title: Cs_Lab: Initial release publication-title: Zenodo – ident: ref15 doi: 10.1007/978-3-030-00931-1_52 – ident: ref17 doi: 10.1007/978-3-030-32778-1_3 – ident: ref19 doi: 10.1109/TMI.2020.2987026 – ident: ref1 doi: 10.12659/pjr.892628 – ident: ref13 doi: 10.1016/j.media.2020.101747 – ident: ref2 doi: 10.1002/mrm.21391 – ident: ref16 doi: 10.1002/mp.12155 – ident: ref23 doi: 10.1109/CVPR.2017.632 – ident: ref20 doi: 10.1109/TBME.2018.2883958 – ident: ref7 doi: 10.1109/ISBI.2016.7493320 – ident: ref3 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: ref14 doi: 10.1007/978-3-319-68127-6_2 – ident: ref11 doi: 10.1109/TMI.2018.2858752 – ident: ref12 doi: 10.1109/TMI.2018.2820120 |
SSID | ssj0000816896 |
Score | 2.5032575 |
Snippet | Multi-contrast magnetic resonance imaging can provide comprehensive information for clinical diagnosis. However, multi-contrast imaging suffers from long... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4371 |
SubjectTerms | Biomedical imaging cross-domain deep learning Deep learning Domains Generative adversarial network Generative adversarial networks Generators High acceleration Image acquisition Image contrast Image processing Image quality Image reconstruction image synthesis Magnetic resonance imaging Medical imaging multi-contrast MRI Neuroimaging Redundancy Synthesis Training |
Title | Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network |
URI | https://ieeexplore.ieee.org/document/9682539 https://www.ncbi.nlm.nih.gov/pubmed/35030086 https://www.proquest.com/docview/2712054693 https://www.proquest.com/docview/2620081360 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB9RLC6WP8KiM1FPVLI5jO_ERaNGCtByqInGLHD-kCpqturuX_npmnGyoUFv1ZimTxNGMMzP2zPcBvJfc1laUMXcxVrmsXcjRDVPHsncB3a9TCdRndq2nN_LqVt1uwMexFyaEkIrPwoSG6Szfz92KtspOjMZ8pjSbsImJW9-rNe6nJAKJRMclcJDjQpTDIWbBzcnV2fQSk0EhMEdFl8mJjqdUaOCcmqh_80iJYuXv0WbyOhcvYLaeb19scjdZLduJ-_UEyvF_P2gHng_hJzvt7WUXNkL3ErZnwwH7HvjEg7SwhBnsWerOzQnA6qddLNnsyyWjdPURdJadoRP0DAcYiLf3If80_26_dawHs6Y_KUuMzwtLds6u-5rzV3Bz8fnr-TQfiBhyV0qzpCo4IfGvqW3ha25DpVwRZa1b5YRs28orr0yIsfCiNd4X3qqAslVpjcR80JWvYaubd-EtMM8rgVK2Ehgr-qhNK3S0Kpo6OmNVlQFfK6NxA0o5kWXcNylb4aYhVTakymZQZQYfxlt-9BAd_xLeIzWMgoMGMjhca7wZFvGiEVVBs9SmzOB4vIzLj85UbBfmK5TRVEBSlJpn8Ka3lPHZawPb__M7D-AZzawvWDuELVRdOMIIZ9m-S6b9AHma8-w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXqUQKK2ROKFm6zixEx8pUO2WZg-olXqLHD-kqiWL2N0Lv54ZJxsQooibpUwSRzPOzNgz3wfwtuCmMiIPqQ2hTIvK-hTdMHUsO-vR_VoZQX3quZpeFKeX8nILDsdeGO99LD7zExrGs3y3sGvaKjvSCvOZXN-Bu-j3pei7tcYdlUghEQm5BA5SXIrFcIyZcX10ejydYTooBGap6DQ5EfLkEk2cUxv1bz4pkqzcHm9Gv3PyCOrNjPtyk-vJetVO7I8_wBz_95Mew8MhAGXve4t5Alu-ewr36uGIfQdcZEJaGkINdiz256YEYfXdLFes_jJjlLD-gp1lx-gGHcMBhuLtjU8_Lr6aq471cNb0L2WR83lpyNLZvK86fwYXJ5_OP0zTgYohtXmhV1QHJwr8byqTuYobX0qbhaJSrbSiaNvSSSe1DyFzotXOZc5Ij7JlbnSBGaHNd2G7W3T-BTDHS4FSphQYLbqgdCtUMDLoKlhtZJkA3yijsQNOOdFl3DQxX-G6IVU2pMpmUGUC78ZbvvUgHf8S3iE1jIKDBhLY22i8GZbxshFlRrNUOk_gzXgZFyCdqpjOL9Yoo6iEJMsVT-B5bynjszcG9vLv7zyA-9Pz-qw5m80_v4IHNMu-fG0PtlGN_jXGO6t2P5r5T10G9zY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undersampled+Multi-Contrast+MRI+Reconstruction+Based+on+Double-Domain+Generative+Adversarial+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wei%2C+Haining&rft.au=Li%2C+Zhongsen&rft.au=Wang%2C+Shuai&rft.au=Li%2C+Rui&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=26&rft.issue=9&rft.spage=4371&rft.epage=4377&rft_id=info:doi/10.1109%2FJBHI.2022.3143104&rft_id=info%3Apmid%2F35030086&rft.externalDocID=9682539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |