LPAQR-Net: Efficient Vertebra Segmentation From Biplanar Whole-Spine Radiographs

Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and s...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 7; pp. 2710 - 2721
Main Authors Zhang, Liping, Shi, Lin, Cheng, Jack Chun-Yiu, Chu, Winnie Chiu-Wing, Yu, Simon Chun-Ho
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.
AbstractList Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.
Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.
Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and resultant sagittal deformities. However, vertebra segmentation is challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation from biplanar whole-spine radiographs. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints, (2) a series of global attention refinement (GAR) to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. A multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on frontal and lateral radiographs of 332 AIS patients show our method achieves significant reductions in inference time and computational demands and excellent performances compared to the state-of- the-art. Meanwhile, results on the public AASCE2019 dataset demonstrate the great generalization ability of our model. It is the first attempt to explore lightweight networks for vertebra segmentation from biplanar whole-spine radiographs. Our model simulates radiologists gathering nearby contexts for accurate vertebra localization to improve the segmentation of blurred vertebrae. Significant: The method provides efficient and accurate vertebra segmentation from frontal and lateral whole-spine radiographs in which can help clinicians with a fast and reproducible evaluation of spinal deformity.
Author Chu, Winnie Chiu-Wing
Cheng, Jack Chun-Yiu
Shi, Lin
Zhang, Liping
Yu, Simon Chun-Ho
Author_xml – sequence: 1
  givenname: Liping
  orcidid: 0000-0003-1962-0106
  surname: Zhang
  fullname: Zhang, Liping
  email: lpzhang@link.cuhk.edu.hk
  organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0003-2318-4669
  surname: Shi
  fullname: Shi, Lin
  email: shilin@cuhk.edu.hk
  organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Jack Chun-Yiu
  orcidid: 0000-0001-8153-364X
  surname: Cheng
  fullname: Cheng, Jack Chun-Yiu
  email: jackcheng@ort.cuhk.edu.hk
  organization: Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Winnie Chiu-Wing
  orcidid: 0000-0003-4962-4132
  surname: Chu
  fullname: Chu, Winnie Chiu-Wing
  email: winniechu@cuhk.edu.hk
  organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Simon Chun-Ho
  orcidid: 0000-0002-8715-5026
  surname: Yu
  fullname: Yu, Simon Chun-Ho
  email: simonyu@cuhk.edu.hk
  organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33556029$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu2zAQRYkiQZIm-YCiQCCgm27k8iGKYnaxkVdhNA836ZKgqGHCQBJVUl7k70PDdhdedDYzGJw7uJj7Ge31vgeEvhA8IQTLHz-nN7cTiimZMMxFWYhP6IiSssopxdXediayOESnMb7hVFVayfIAHTLGeYmpPEL38_uLh8f8F4zn2aW1zjjox-wZwgh10NkCXrq00KPzfXYVfJdN3dDqXofsz6tvIV8MrofsUTfOvwQ9vMYTtG91G-F004_R09Xl79lNPr-7vp1dzHPDCjkmY4TZqsJW2kZQw7lm2nBLpNSaSmwqY5vScNbUZU1AWm0JIcKwSjR1XWjDjtH39d0h-L9LiKPqXDTQJnPgl1HRohKiEIKJhH7bQd_8MvTJnaKcc0FLWdBEnW2oZd1Bo4bgOh3e1fZXCRBrwAQfYwCrjFt_ZgzatYpgtQpGrYJRq2DUJpikJDvK7fH_ab6uNQ4A_vGScUxKwj4A0jqWpA
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102385
crossref_primary_10_3390_diagnostics14171859
crossref_primary_10_1016_j_procs_2025_02_180
crossref_primary_10_1109_ACCESS_2024_3353794
crossref_primary_10_1016_j_optlastec_2023_109632
crossref_primary_10_1109_TMI_2022_3224459
crossref_primary_10_1016_j_health_2023_100251
crossref_primary_10_1109_JBHI_2023_3258361
crossref_primary_10_3390_rs15061540
crossref_primary_10_1002_ima_22896
crossref_primary_10_3390_electronics11152388
crossref_primary_10_1016_j_media_2023_102906
crossref_primary_10_1007_s00586_022_07155_5
crossref_primary_10_1007_s43390_024_00990_0
crossref_primary_10_1177_10538127241289351
crossref_primary_10_1186_s13018_024_05383_7
crossref_primary_10_1007_s12559_023_10131_w
crossref_primary_10_1080_17434440_2024_2384541
crossref_primary_10_1007_s10278_023_00830_z
Cites_doi 10.1007/s00264-012-1512-y
10.1097/01.rli.0000244343.27431.26
10.1007/s11832-016-0713-0
10.1109/CVPRW.2017.156
10.1109/TPAMI.2017.2699184
10.1097/00007632-200204010-00013
10.1016/j.media.2019.02.005
10.1155/2011/640208
10.1109/CVPR.2017.243
10.1109/TMI.2018.2845918
10.1109/TPAMI.2016.2644615
10.1007/s00586-019-05944-z
10.1109/CVPR.2016.396
10.1117/12.481400
10.1109/3DV.2016.79
10.1016/j.neuroimage.2009.03.068
10.1109/CVPR.2017.660
10.1109/JBHI.2020.2986926
10.1016/S0140-6736(08)60658-3
10.1016/j.media.2019.01.012
10.1007/s00198-015-3190-2
10.1148/radiology.211.2.r99ma40571
10.1016/0031-3203(81)90009-1
10.1007/s13244-014-0354-0
10.1097/BRS.0b013e3181bb49f3
10.1007/978-3-319-46493-0_38
10.1016/j.cmpb.2018.01.006
10.1109/CVPR.2018.00745
10.1109/CVPR.2016.308
10.1145/3292425.3293463
10.1097/00007632-199401001-00020
10.1109/34.927467
10.2106/00004623-197557070-00016
10.1109/ICCV.2015.123
10.1109/CVPR.2018.00474
10.1007/s00198-009-1169-6
10.1007/978-3-319-66182-7_15
10.1109/IAI.2002.999922
10.1109/CVPR.2015.7298965
10.1016/S0165-1684(98)00139-X
10.1109/CVPR.2015.7298594
10.1145/2647868.2654889
10.1006/cviu.1995.1004
10.1016/j.otsr.2016.01.021
10.1007/978-3-7908-2604-3_16
10.1097/BRS.0b013e3181b3f31f
10.1109/CVPR.2018.00199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2021.3057647
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2721
ExternalDocumentID 33556029
10_1109_JBHI_2021_3057647
9350161
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Innovation and Technology Commission
  grantid: GHP-025-17SZ; GHP-028-14SZ
  funderid: 10.13039/501100003452
– fundername: Hong Kong Special Administrative Region, China
  grantid: CUHK14204117; CUHK14206716
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-2113f880f9fd72c55a3ac5f199aa290c8cfd6c53db6b1e9faf1117c387dbb4ac3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 12:41:38 EDT 2025
Sun Jun 29 12:15:41 EDT 2025
Thu Apr 03 07:04:20 EDT 2025
Tue Jul 01 02:59:59 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Aug 27 02:40:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-2113f880f9fd72c55a3ac5f199aa290c8cfd6c53db6b1e9faf1117c387dbb4ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1962-0106
0000-0001-8153-364X
0000-0002-8715-5026
0000-0003-2318-4669
0000-0003-4962-4132
PMID 33556029
PQID 2555726942
PQPubID 85417
PageCount 12
ParticipantIDs pubmed_primary_33556029
proquest_journals_2555726942
proquest_miscellaneous_2487747737
ieee_primary_9350161
crossref_citationtrail_10_1109_JBHI_2021_3057647
crossref_primary_10_1109_JBHI_2021_3057647
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
paszke (ref50) 2016
ref58
ref52
ref55
ref11
ref54
ref10
ref17
ref19
ref18
ronneberger (ref32) 2015
ref46
ref48
ref47
ref42
ref41
ref43
zhang (ref49) 2020
ref8
ref7
lessmann (ref37) 2018; 10574
ref9
ref4
ref6
ref5
li (ref44) 2018
ref40
howard (ref51) 2017
ioffe (ref59) 2015
ref34
yu (ref45) 2020
ref31
ref33
janssens (ref36) 0
lee (ref61) 2015
ref2
ref39
stokes (ref1) 0; 19
cawley (ref62) 2010; 11
çiçek (ref35) 2016
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
cheng (ref3) 2015; 1
ma (ref53) 2018
mahmoudi (ref14) 2007
ref28
ref27
ref29
cobb (ref15) 1948; 5
lu (ref38) 2018
chen (ref30) 2017
ref60
o’brien (ref16) 2008
References_xml – ident: ref9
  doi: 10.1007/s00264-012-1512-y
– ident: ref21
  doi: 10.1097/01.rli.0000244343.27431.26
– year: 2020
  ident: ref45
  article-title: BiSeNet V2: Bilateral network with guided aggregation for real-time semantic segmentation
– ident: ref8
  doi: 10.1007/s11832-016-0713-0
– ident: ref31
  doi: 10.1109/CVPRW.2017.156
– ident: ref28
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref5
  doi: 10.1097/00007632-200204010-00013
– ident: ref39
  doi: 10.1016/j.media.2019.02.005
– ident: ref18
  doi: 10.1155/2011/640208
– ident: ref57
  doi: 10.1109/CVPR.2017.243
– year: 2017
  ident: ref30
  article-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref34
  doi: 10.1109/TMI.2018.2845918
– ident: ref27
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref42
  doi: 10.1007/s00586-019-05944-z
– ident: ref43
  doi: 10.1109/CVPR.2016.396
– ident: ref17
  doi: 10.1117/12.481400
– ident: ref33
  doi: 10.1109/3DV.2016.79
– ident: ref63
  doi: 10.1016/j.neuroimage.2009.03.068
– start-page: 903
  year: 2020
  ident: ref49
  article-title: SAU-Net: Efficient 3 D spine MRI segmentation using inter-slice attention
  publication-title: Proc Medical Imag Deep Learn
– ident: ref29
  doi: 10.1109/CVPR.2017.660
– ident: ref48
  doi: 10.1109/JBHI.2020.2986926
– start-page: 562
  year: 2015
  ident: ref61
  article-title: Deeply-supervised nets
  publication-title: Proc 18th Int Conf Artif Intell Statist
– ident: ref2
  doi: 10.1016/S0140-6736(08)60658-3
– year: 2015
  ident: ref59
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref47
  doi: 10.1016/j.media.2019.01.012
– year: 2017
  ident: ref51
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
– start-page: 116
  year: 2018
  ident: ref53
  article-title: ShuffleNet V2: Practical guidelines for efficient CNN architecture design
  publication-title: Proc Eur Conf Comput Vis
– ident: ref11
  doi: 10.1007/s00198-015-3190-2
– ident: ref20
  doi: 10.1148/radiology.211.2.r99ma40571
– ident: ref22
  doi: 10.1016/0031-3203(81)90009-1
– ident: ref12
  doi: 10.1007/s13244-014-0354-0
– volume: 10574
  start-page: 1057408
  year: 2018
  ident: ref37
  article-title: Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images
  publication-title: Proc Med Imag Image Process
– start-page: 753
  year: 2007
  ident: ref14
  article-title: A new approach for cervical vertebrae segmentation
  publication-title: Proc Iberoamer Congr Pattern Recognit
– ident: ref7
  doi: 10.1097/BRS.0b013e3181bb49f3
– year: 2018
  ident: ref38
  article-title: Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning
– ident: ref55
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref40
  doi: 10.1016/j.cmpb.2018.01.006
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref62
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1109/CVPR.2018.00745
– volume: 1
  start-page: 1
  year: 2015
  ident: ref3
  article-title: Adolescent idiopathic scoliosis
  publication-title: Nature Reviews Disease Primers
– ident: ref58
  doi: 10.1109/CVPR.2016.308
– ident: ref41
  doi: 10.1145/3292425.3293463
– volume: 19
  start-page: 236
  year: 0
  ident: ref1
  article-title: Three-dimensional terminology of spinal deformity. A report presented to the scoliosis research society by the scoliosis research society working group on 3-D terminology of spinal deformity
  publication-title: Spine
  doi: 10.1097/00007632-199401001-00020
– year: 2008
  ident: ref16
  article-title: Radiographic measurement manual. spinal deformity study group, medtronic sofamor danek usa
  publication-title: Memphis TN
– volume: 5
  start-page: 261
  year: 1948
  ident: ref15
  article-title: Outline for the study of scoliosis
  publication-title: Instructional Course Lectures
– ident: ref25
  doi: 10.1109/34.927467
– ident: ref4
  doi: 10.2106/00004623-197557070-00016
– ident: ref64
  doi: 10.1109/ICCV.2015.123
– start-page: 234
  year: 2015
  ident: ref32
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv
– start-page: 424
  year: 2016
  ident: ref35
  article-title: 3 D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv
– year: 2016
  ident: ref50
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
– ident: ref52
  doi: 10.1109/CVPR.2018.00474
– ident: ref13
  doi: 10.1007/s00198-009-1169-6
– ident: ref54
  doi: 10.1007/978-3-319-66182-7_15
– ident: ref19
  doi: 10.1109/IAI.2002.999922
– ident: ref26
  doi: 10.1109/CVPR.2015.7298965
– ident: ref23
  doi: 10.1016/S0165-1684(98)00139-X
– ident: ref56
  doi: 10.1109/CVPR.2015.7298594
– ident: ref65
  doi: 10.1145/2647868.2654889
– ident: ref24
  doi: 10.1006/cviu.1995.1004
– ident: ref10
  doi: 10.1016/j.otsr.2016.01.021
– start-page: 893
  year: 0
  ident: ref36
  article-title: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3 D fully convolutional networks
  publication-title: Proc IEEE Int Symp Biomed Imag
– ident: ref66
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref6
  doi: 10.1097/BRS.0b013e3181b3f31f
– ident: ref60
  doi: 10.1109/CVPR.2018.00199
– year: 2018
  ident: ref44
  article-title: Pyramid attention network for semantic segmentation
SSID ssj0000816896
Score 2.4230468
Snippet Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal...
Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and resultant sagittal deformities....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2710
SubjectTerms Adolescent idiopathic scoliosis
Backbone
Bioinformatics
biplanar radiographs
Computer applications
Computer networks
convolutional neural networks
Earth Observing System
Evaluation
Feature extraction
Image segmentation
Inference
Lightweight
LPAQR-Net
Modules
Radiographs
Radiography
Scoliosis
Segmentation
Spine
Three-dimensional displays
vertebra segmentation
Vertebrae
X-ray imaging
Title LPAQR-Net: Efficient Vertebra Segmentation From Biplanar Whole-Spine Radiographs
URI https://ieeexplore.ieee.org/document/9350161
https://www.ncbi.nlm.nih.gov/pubmed/33556029
https://www.proquest.com/docview/2555726942
https://www.proquest.com/docview/2487747737
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcEQ5oF76gD4WKDJST1WzJHFir3uDitWCCqJQWm6RY48rVMiuluylX9-x402lqiBukeJMnHlkZjwvgPdkdbvMCp7I2pCDIi0mKs9tMhLKcKGRdE5IkD0Vk8vi-Kq8WoGPfS0MIobkMxz6yxDLt1Oz8Edle8pHwbyv84Qct65Wqz9PCQMkwjiunC4SEsQiBjGzVO0dH0yOyBnMsyHxtxSFn73HSdWKNNiWfzVSGLFyv7UZtM74OZws99slm_waLtp6aH7_08rxsR_0Ap5F85Ptd_zyElawWYe1kxhg34CzL2f7X8-TU2w_scPQXYIAsO84b32AmV3gz9tYrNSw8Xx6yw6uZze60XP2ww_aTS5mBIada3vdtcK-ewWX48NvnydJHLqQGF6olhCXcUdC7ZSzMjdlqbk2pcuU0jpXqRkZZ4Upua1FnaFy2tHfUho-krauC234a1htpg2-BSZUWZbSWJJzQW4calmkWmcFclNbTN0A0iXiKxM7kvvBGDdV8ExSVXmyVZ5sVSTbAD70j8y6dhwPLd7wKO8XRmwPYHtJ3SoK7F2V-636qt58ALv9bRI1Hz_RDU4XtIacO_K-JCfIbzqu6GEvmWnz_-_cgqd-Z12e7zastvMFviNrpq13Ahv_AaTU66w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8DQNCXiBwfjo2MBIPCHSJXFs17xt06putNXYB-wtcvyBpm1p1aUv_HrOjhukCRBvkeJcnPvI3fm-AD6g1e0yw2kiKo0OijA2kXlukgGXmnJlUeeEBNkpH10Ux5fscg0-dbUw1tqQfGb7_jLE8s1ML_1R2a70UTDv6zxAvc-ytlqrO1EJIyTCQK4cLxIUxSKGMbNU7h7vj47QHcyzPnK44IWfvkdR2fI0WJe_dVIYsvJ3ezPoneFTmKx23KabXPeXTdXXP-81c_zfT9qAJ9EAJXstxzyDNVs_h4eTGGLfhJPxyd7X02Rqm8_kMPSXQADkm100PsRMzuyP21iuVJPhYnZL9q_mN6pWC_Ldj9pNzuYIhpwqc9U2w757ARfDw_ODURLHLiSaFrJBxGXUoVg76YzINWOKKs1cJqVSuUz1QDvDNaOm4lVmpVMO_5dC04EwVVUoTV_Cej2r7WsgXDLGhDYo6RwdOatEkSqVFZbqytjU9SBdIb7UsSe5H41xUwbfJJWlJ1vpyVZGsvXgY_fIvG3I8a_Fmx7l3cKI7R5sr6hbRpG9K3O_VV_Xm_fgfXcbhc1HUFRtZ0tcg-4d-l-CIuRXLVd0sFfMtPXnd76DR6PzybgcH02_vIHHfpdt1u82rDeLpd1B26ap3gaW_gUaFu71
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LPAQR-Net%3A+Efficient+Vertebra+Segmentation+From+Biplanar+Whole-Spine+Radiographs&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Liping&rft.au=Shi%2C+Lin&rft.au=Cheng%2C+Jack+Chun-Yiu&rft.au=Chu%2C+Winnie+Chiu-Wing&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=25&rft.issue=7&rft.spage=2710&rft.epage=2721&rft_id=info:doi/10.1109%2FJBHI.2021.3057647&rft_id=info%3Apmid%2F33556029&rft.externalDocID=9350161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon