LPAQR-Net: Efficient Vertebra Segmentation From Biplanar Whole-Spine Radiographs
Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and s...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 25; no. 7; pp. 2710 - 2721 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation. |
---|---|
AbstractList | Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation. Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation. Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and resultant sagittal deformities. However, vertebra segmentation is challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation from biplanar whole-spine radiographs. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints, (2) a series of global attention refinement (GAR) to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. A multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on frontal and lateral radiographs of 332 AIS patients show our method achieves significant reductions in inference time and computational demands and excellent performances compared to the state-of- the-art. Meanwhile, results on the public AASCE2019 dataset demonstrate the great generalization ability of our model. It is the first attempt to explore lightweight networks for vertebra segmentation from biplanar whole-spine radiographs. Our model simulates radiologists gathering nearby contexts for accurate vertebra localization to improve the segmentation of blurred vertebrae. Significant: The method provides efficient and accurate vertebra segmentation from frontal and lateral whole-spine radiographs in which can help clinicians with a fast and reproducible evaluation of spinal deformity. |
Author | Chu, Winnie Chiu-Wing Cheng, Jack Chun-Yiu Shi, Lin Zhang, Liping Yu, Simon Chun-Ho |
Author_xml | – sequence: 1 givenname: Liping orcidid: 0000-0003-1962-0106 surname: Zhang fullname: Zhang, Liping email: lpzhang@link.cuhk.edu.hk organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China – sequence: 2 givenname: Lin orcidid: 0000-0003-2318-4669 surname: Shi fullname: Shi, Lin email: shilin@cuhk.edu.hk organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China – sequence: 3 givenname: Jack Chun-Yiu orcidid: 0000-0001-8153-364X surname: Cheng fullname: Cheng, Jack Chun-Yiu email: jackcheng@ort.cuhk.edu.hk organization: Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China – sequence: 4 givenname: Winnie Chiu-Wing orcidid: 0000-0003-4962-4132 surname: Chu fullname: Chu, Winnie Chiu-Wing email: winniechu@cuhk.edu.hk organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China – sequence: 5 givenname: Simon Chun-Ho orcidid: 0000-0002-8715-5026 surname: Yu fullname: Yu, Simon Chun-Ho email: simonyu@cuhk.edu.hk organization: Faculty of Medicine, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33556029$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu2zAQRYkiQZIm-YCiQCCgm27k8iGKYnaxkVdhNA836ZKgqGHCQBJVUl7k70PDdhdedDYzGJw7uJj7Ge31vgeEvhA8IQTLHz-nN7cTiimZMMxFWYhP6IiSssopxdXediayOESnMb7hVFVayfIAHTLGeYmpPEL38_uLh8f8F4zn2aW1zjjox-wZwgh10NkCXrq00KPzfXYVfJdN3dDqXofsz6tvIV8MrofsUTfOvwQ9vMYTtG91G-F004_R09Xl79lNPr-7vp1dzHPDCjkmY4TZqsJW2kZQw7lm2nBLpNSaSmwqY5vScNbUZU1AWm0JIcKwSjR1XWjDjtH39d0h-L9LiKPqXDTQJnPgl1HRohKiEIKJhH7bQd_8MvTJnaKcc0FLWdBEnW2oZd1Bo4bgOh3e1fZXCRBrwAQfYwCrjFt_ZgzatYpgtQpGrYJRq2DUJpikJDvK7fH_ab6uNQ4A_vGScUxKwj4A0jqWpA |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102385 crossref_primary_10_3390_diagnostics14171859 crossref_primary_10_1016_j_procs_2025_02_180 crossref_primary_10_1109_ACCESS_2024_3353794 crossref_primary_10_1016_j_optlastec_2023_109632 crossref_primary_10_1109_TMI_2022_3224459 crossref_primary_10_1016_j_health_2023_100251 crossref_primary_10_1109_JBHI_2023_3258361 crossref_primary_10_3390_rs15061540 crossref_primary_10_1002_ima_22896 crossref_primary_10_3390_electronics11152388 crossref_primary_10_1016_j_media_2023_102906 crossref_primary_10_1007_s00586_022_07155_5 crossref_primary_10_1007_s43390_024_00990_0 crossref_primary_10_1177_10538127241289351 crossref_primary_10_1186_s13018_024_05383_7 crossref_primary_10_1007_s12559_023_10131_w crossref_primary_10_1080_17434440_2024_2384541 crossref_primary_10_1007_s10278_023_00830_z |
Cites_doi | 10.1007/s00264-012-1512-y 10.1097/01.rli.0000244343.27431.26 10.1007/s11832-016-0713-0 10.1109/CVPRW.2017.156 10.1109/TPAMI.2017.2699184 10.1097/00007632-200204010-00013 10.1016/j.media.2019.02.005 10.1155/2011/640208 10.1109/CVPR.2017.243 10.1109/TMI.2018.2845918 10.1109/TPAMI.2016.2644615 10.1007/s00586-019-05944-z 10.1109/CVPR.2016.396 10.1117/12.481400 10.1109/3DV.2016.79 10.1016/j.neuroimage.2009.03.068 10.1109/CVPR.2017.660 10.1109/JBHI.2020.2986926 10.1016/S0140-6736(08)60658-3 10.1016/j.media.2019.01.012 10.1007/s00198-015-3190-2 10.1148/radiology.211.2.r99ma40571 10.1016/0031-3203(81)90009-1 10.1007/s13244-014-0354-0 10.1097/BRS.0b013e3181bb49f3 10.1007/978-3-319-46493-0_38 10.1016/j.cmpb.2018.01.006 10.1109/CVPR.2018.00745 10.1109/CVPR.2016.308 10.1145/3292425.3293463 10.1097/00007632-199401001-00020 10.1109/34.927467 10.2106/00004623-197557070-00016 10.1109/ICCV.2015.123 10.1109/CVPR.2018.00474 10.1007/s00198-009-1169-6 10.1007/978-3-319-66182-7_15 10.1109/IAI.2002.999922 10.1109/CVPR.2015.7298965 10.1016/S0165-1684(98)00139-X 10.1109/CVPR.2015.7298594 10.1145/2647868.2654889 10.1006/cviu.1995.1004 10.1016/j.otsr.2016.01.021 10.1007/978-3-7908-2604-3_16 10.1097/BRS.0b013e3181b3f31f 10.1109/CVPR.2018.00199 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2021.3057647 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 2721 |
ExternalDocumentID | 33556029 10_1109_JBHI_2021_3057647 9350161 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Innovation and Technology Commission grantid: GHP-025-17SZ; GHP-028-14SZ funderid: 10.13039/501100003452 – fundername: Hong Kong Special Administrative Region, China grantid: CUHK14204117; CUHK14206716 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c349t-2113f880f9fd72c55a3ac5f199aa290c8cfd6c53db6b1e9faf1117c387dbb4ac3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 12:41:38 EDT 2025 Sun Jun 29 12:15:41 EDT 2025 Thu Apr 03 07:04:20 EDT 2025 Tue Jul 01 02:59:59 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Aug 27 02:40:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-2113f880f9fd72c55a3ac5f199aa290c8cfd6c53db6b1e9faf1117c387dbb4ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1962-0106 0000-0001-8153-364X 0000-0002-8715-5026 0000-0003-2318-4669 0000-0003-4962-4132 |
PMID | 33556029 |
PQID | 2555726942 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_33556029 proquest_journals_2555726942 proquest_miscellaneous_2487747737 ieee_primary_9350161 crossref_citationtrail_10_1109_JBHI_2021_3057647 crossref_primary_10_1109_JBHI_2021_3057647 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 paszke (ref50) 2016 ref58 ref52 ref55 ref11 ref54 ref10 ref17 ref19 ref18 ronneberger (ref32) 2015 ref46 ref48 ref47 ref42 ref41 ref43 zhang (ref49) 2020 ref8 ref7 lessmann (ref37) 2018; 10574 ref9 ref4 ref6 ref5 li (ref44) 2018 ref40 howard (ref51) 2017 ioffe (ref59) 2015 ref34 yu (ref45) 2020 ref31 ref33 janssens (ref36) 0 lee (ref61) 2015 ref2 ref39 stokes (ref1) 0; 19 cawley (ref62) 2010; 11 çiçek (ref35) 2016 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 cheng (ref3) 2015; 1 ma (ref53) 2018 mahmoudi (ref14) 2007 ref28 ref27 ref29 cobb (ref15) 1948; 5 lu (ref38) 2018 chen (ref30) 2017 ref60 o’brien (ref16) 2008 |
References_xml | – ident: ref9 doi: 10.1007/s00264-012-1512-y – ident: ref21 doi: 10.1097/01.rli.0000244343.27431.26 – year: 2020 ident: ref45 article-title: BiSeNet V2: Bilateral network with guided aggregation for real-time semantic segmentation – ident: ref8 doi: 10.1007/s11832-016-0713-0 – ident: ref31 doi: 10.1109/CVPRW.2017.156 – ident: ref28 doi: 10.1109/TPAMI.2017.2699184 – ident: ref5 doi: 10.1097/00007632-200204010-00013 – ident: ref39 doi: 10.1016/j.media.2019.02.005 – ident: ref18 doi: 10.1155/2011/640208 – ident: ref57 doi: 10.1109/CVPR.2017.243 – year: 2017 ident: ref30 article-title: Rethinking atrous convolution for semantic image segmentation – ident: ref34 doi: 10.1109/TMI.2018.2845918 – ident: ref27 doi: 10.1109/TPAMI.2016.2644615 – ident: ref42 doi: 10.1007/s00586-019-05944-z – ident: ref43 doi: 10.1109/CVPR.2016.396 – ident: ref17 doi: 10.1117/12.481400 – ident: ref33 doi: 10.1109/3DV.2016.79 – ident: ref63 doi: 10.1016/j.neuroimage.2009.03.068 – start-page: 903 year: 2020 ident: ref49 article-title: SAU-Net: Efficient 3 D spine MRI segmentation using inter-slice attention publication-title: Proc Medical Imag Deep Learn – ident: ref29 doi: 10.1109/CVPR.2017.660 – ident: ref48 doi: 10.1109/JBHI.2020.2986926 – start-page: 562 year: 2015 ident: ref61 article-title: Deeply-supervised nets publication-title: Proc 18th Int Conf Artif Intell Statist – ident: ref2 doi: 10.1016/S0140-6736(08)60658-3 – year: 2015 ident: ref59 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref47 doi: 10.1016/j.media.2019.01.012 – year: 2017 ident: ref51 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications – start-page: 116 year: 2018 ident: ref53 article-title: ShuffleNet V2: Practical guidelines for efficient CNN architecture design publication-title: Proc Eur Conf Comput Vis – ident: ref11 doi: 10.1007/s00198-015-3190-2 – ident: ref20 doi: 10.1148/radiology.211.2.r99ma40571 – ident: ref22 doi: 10.1016/0031-3203(81)90009-1 – ident: ref12 doi: 10.1007/s13244-014-0354-0 – volume: 10574 start-page: 1057408 year: 2018 ident: ref37 article-title: Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images publication-title: Proc Med Imag Image Process – start-page: 753 year: 2007 ident: ref14 article-title: A new approach for cervical vertebrae segmentation publication-title: Proc Iberoamer Congr Pattern Recognit – ident: ref7 doi: 10.1097/BRS.0b013e3181bb49f3 – year: 2018 ident: ref38 article-title: Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning – ident: ref55 doi: 10.1007/978-3-319-46493-0_38 – ident: ref40 doi: 10.1016/j.cmpb.2018.01.006 – volume: 11 start-page: 2079 year: 2010 ident: ref62 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J Mach Learn Res – ident: ref46 doi: 10.1109/CVPR.2018.00745 – volume: 1 start-page: 1 year: 2015 ident: ref3 article-title: Adolescent idiopathic scoliosis publication-title: Nature Reviews Disease Primers – ident: ref58 doi: 10.1109/CVPR.2016.308 – ident: ref41 doi: 10.1145/3292425.3293463 – volume: 19 start-page: 236 year: 0 ident: ref1 article-title: Three-dimensional terminology of spinal deformity. A report presented to the scoliosis research society by the scoliosis research society working group on 3-D terminology of spinal deformity publication-title: Spine doi: 10.1097/00007632-199401001-00020 – year: 2008 ident: ref16 article-title: Radiographic measurement manual. spinal deformity study group, medtronic sofamor danek usa publication-title: Memphis TN – volume: 5 start-page: 261 year: 1948 ident: ref15 article-title: Outline for the study of scoliosis publication-title: Instructional Course Lectures – ident: ref25 doi: 10.1109/34.927467 – ident: ref4 doi: 10.2106/00004623-197557070-00016 – ident: ref64 doi: 10.1109/ICCV.2015.123 – start-page: 234 year: 2015 ident: ref32 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv – start-page: 424 year: 2016 ident: ref35 article-title: 3 D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Proc Int Conf Med Image Comput Comput -Assist Interv – year: 2016 ident: ref50 article-title: ENet: A deep neural network architecture for real-time semantic segmentation – ident: ref52 doi: 10.1109/CVPR.2018.00474 – ident: ref13 doi: 10.1007/s00198-009-1169-6 – ident: ref54 doi: 10.1007/978-3-319-66182-7_15 – ident: ref19 doi: 10.1109/IAI.2002.999922 – ident: ref26 doi: 10.1109/CVPR.2015.7298965 – ident: ref23 doi: 10.1016/S0165-1684(98)00139-X – ident: ref56 doi: 10.1109/CVPR.2015.7298594 – ident: ref65 doi: 10.1145/2647868.2654889 – ident: ref24 doi: 10.1006/cviu.1995.1004 – ident: ref10 doi: 10.1016/j.otsr.2016.01.021 – start-page: 893 year: 0 ident: ref36 article-title: Fully automatic segmentation of lumbar vertebrae from CT images using cascaded 3 D fully convolutional networks publication-title: Proc IEEE Int Symp Biomed Imag – ident: ref66 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref6 doi: 10.1097/BRS.0b013e3181b3f31f – ident: ref60 doi: 10.1109/CVPR.2018.00199 – year: 2018 ident: ref44 article-title: Pyramid attention network for semantic segmentation |
SSID | ssj0000816896 |
Score | 2.4230468 |
Snippet | Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal... Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and resultant sagittal deformities.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2710 |
SubjectTerms | Adolescent idiopathic scoliosis Backbone Bioinformatics biplanar radiographs Computer applications Computer networks convolutional neural networks Earth Observing System Evaluation Feature extraction Image segmentation Inference Lightweight LPAQR-Net Modules Radiographs Radiography Scoliosis Segmentation Spine Three-dimensional displays vertebra segmentation Vertebrae X-ray imaging |
Title | LPAQR-Net: Efficient Vertebra Segmentation From Biplanar Whole-Spine Radiographs |
URI | https://ieeexplore.ieee.org/document/9350161 https://www.ncbi.nlm.nih.gov/pubmed/33556029 https://www.proquest.com/docview/2555726942 https://www.proquest.com/docview/2487747737 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LTtwwcEQ5oF76gD4WKDJST1WzJHFir3uDitWCCqJQWm6RY48rVMiuluylX9-x402lqiBukeJMnHlkZjwvgPdkdbvMCp7I2pCDIi0mKs9tMhLKcKGRdE5IkD0Vk8vi-Kq8WoGPfS0MIobkMxz6yxDLt1Oz8Edle8pHwbyv84Qct65Wqz9PCQMkwjiunC4SEsQiBjGzVO0dH0yOyBnMsyHxtxSFn73HSdWKNNiWfzVSGLFyv7UZtM74OZws99slm_waLtp6aH7_08rxsR_0Ap5F85Ptd_zyElawWYe1kxhg34CzL2f7X8-TU2w_scPQXYIAsO84b32AmV3gz9tYrNSw8Xx6yw6uZze60XP2ww_aTS5mBIada3vdtcK-ewWX48NvnydJHLqQGF6olhCXcUdC7ZSzMjdlqbk2pcuU0jpXqRkZZ4Upua1FnaFy2tHfUho-krauC234a1htpg2-BSZUWZbSWJJzQW4calmkWmcFclNbTN0A0iXiKxM7kvvBGDdV8ExSVXmyVZ5sVSTbAD70j8y6dhwPLd7wKO8XRmwPYHtJ3SoK7F2V-636qt58ALv9bRI1Hz_RDU4XtIacO_K-JCfIbzqu6GEvmWnz_-_cgqd-Z12e7zastvMFviNrpq13Ahv_AaTU66w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8DQNCXiBwfjo2MBIPCHSJXFs17xt06putNXYB-wtcvyBpm1p1aUv_HrOjhukCRBvkeJcnPvI3fm-AD6g1e0yw2kiKo0OijA2kXlukgGXmnJlUeeEBNkpH10Ux5fscg0-dbUw1tqQfGb7_jLE8s1ML_1R2a70UTDv6zxAvc-ytlqrO1EJIyTCQK4cLxIUxSKGMbNU7h7vj47QHcyzPnK44IWfvkdR2fI0WJe_dVIYsvJ3ezPoneFTmKx23KabXPeXTdXXP-81c_zfT9qAJ9EAJXstxzyDNVs_h4eTGGLfhJPxyd7X02Rqm8_kMPSXQADkm100PsRMzuyP21iuVJPhYnZL9q_mN6pWC_Ldj9pNzuYIhpwqc9U2w757ARfDw_ODURLHLiSaFrJBxGXUoVg76YzINWOKKs1cJqVSuUz1QDvDNaOm4lVmpVMO_5dC04EwVVUoTV_Cej2r7WsgXDLGhDYo6RwdOatEkSqVFZbqytjU9SBdIb7UsSe5H41xUwbfJJWlJ1vpyVZGsvXgY_fIvG3I8a_Fmx7l3cKI7R5sr6hbRpG9K3O_VV_Xm_fgfXcbhc1HUFRtZ0tcg-4d-l-CIuRXLVd0sFfMtPXnd76DR6PzybgcH02_vIHHfpdt1u82rDeLpd1B26ap3gaW_gUaFu71 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LPAQR-Net%3A+Efficient+Vertebra+Segmentation+From+Biplanar+Whole-Spine+Radiographs&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhang%2C+Liping&rft.au=Shi%2C+Lin&rft.au=Cheng%2C+Jack+Chun-Yiu&rft.au=Chu%2C+Winnie+Chiu-Wing&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=25&rft.issue=7&rft.spage=2710&rft.epage=2721&rft_id=info:doi/10.1109%2FJBHI.2021.3057647&rft_id=info%3Apmid%2F33556029&rft.externalDocID=9350161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |