Magnetic resonance imaging evaluation of vertebral tumor prediction using hierarchical hidden Markov random field model on Internet of Medical Things (IOMT) platform

•This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on s...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 159; p. 107772
Main Authors Alsiddiky, Abdulmonem, Awwad, Waleed, Bakarman, Khalid, Fouad, H., Mahmoud, Nourelhoda M.
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 15.07.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2020.107772

Cover

Abstract •This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on segmentation of lumbar spinal stenosis. Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods.
AbstractList Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods.
•This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on segmentation of lumbar spinal stenosis. Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods.
ArticleNumber 107772
Author Bakarman, Khalid
Alsiddiky, Abdulmonem
Awwad, Waleed
Fouad, H.
Mahmoud, Nourelhoda M.
Author_xml – sequence: 1
  givenname: Abdulmonem
  surname: Alsiddiky
  fullname: Alsiddiky, Abdulmonem
  organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
– sequence: 2
  givenname: Waleed
  surname: Awwad
  fullname: Awwad, Waleed
  organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
– sequence: 3
  givenname: Khalid
  surname: Bakarman
  fullname: Bakarman, Khalid
  organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
– sequence: 4
  givenname: H.
  surname: Fouad
  fullname: Fouad, H.
  organization: CC, Applied Medical Science Dept., King Saud University, Riyadh, Saudi Arabia
– sequence: 5
  givenname: Nourelhoda M.
  surname: Mahmoud
  fullname: Mahmoud, Nourelhoda M.
  email: nourelhoda.mahmoud@mu.edu.eg
  organization: Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
BookMark eNqNkUGL2zAQhUXZhWZ3-x9UemkPTiXZke1TKaHbBjbsJYXehCyNE6W2lI7kQH_Q_s_Kmx5KTwsDgtF738B7N-TKBw-EvOVsyRmXH4_LEXScEEbwaSmYmPd1XYtXZMGbuiwqLn5ckQUTsiyEqPhrchPjkTEmy1YuyNNW7z0kZyhCDF57A9SNeu_8nsJZD5NOLngaenoGTNChHmiaxoD0hGCdef6d4iw_OECN5uBM1hycteDpVuPPcKaovQ0j7R0Mlo7BwkCzbeMTYD4-07czLPt2h4yK9P3mcbv7QE-DTn3A8Y5c93qI8Obve0u-33_Zrb8VD49fN-vPD4UpqzYV3GrTlS0wKIWWXW24rYyQHWuYbhrW2aZeCanzyMZ2TPK-7tmKW1ublTWmKW_Juwv3hOHXBDGpY5jQ55NKVBWrWlFKllWfLiqDIUaEXhmXnnNKqN2gOFNzN-qo_ulGzd2oSzeZ0P5HOGFOHX-_yLu-eCEHcc6Zq2gc5N6sQzBJ2eBeQPkD_KW3bA
CitedBy_id crossref_primary_10_1007_s44196_024_00635_0
crossref_primary_10_1016_j_comcom_2020_05_039
crossref_primary_10_1016_j_najef_2024_102311
crossref_primary_10_1109_ACCESS_2020_3021823
crossref_primary_10_1007_s10489_021_03078_8
crossref_primary_10_1007_s11051_020_04905_8
crossref_primary_10_1016_j_measurement_2020_108254
crossref_primary_10_1155_2023_2506144
crossref_primary_10_1007_s10586_020_03127_w
crossref_primary_10_1016_j_jcot_2020_05_011
crossref_primary_10_1109_ACCESS_2020_3027632
crossref_primary_10_1109_ACCESS_2020_3012719
crossref_primary_10_2196_52519
crossref_primary_10_1016_j_measurement_2020_107887
crossref_primary_10_1007_s40747_020_00194_9
crossref_primary_10_1016_j_measurement_2020_108258
crossref_primary_10_1016_j_imavis_2020_104044
crossref_primary_10_1109_ACCESS_2020_3034689
crossref_primary_10_1016_j_swevo_2023_101430
crossref_primary_10_1016_j_measurement_2021_110470
crossref_primary_10_1111_jep_14229
Cites_doi 10.1007/s00330-018-5769-4
10.1109/ACCESS.2019.2944652
10.3389/fphys.2019.01364
10.1016/j.mri.2019.02.013
10.1016/j.measurement.2019.05.027
10.2214/AJR.11.7192
10.1016/j.jvir.2019.01.030
10.1001/archneur.57.5.690
10.21873/invivo.11562
10.1007/s00270-016-1492-1
10.5312/wjo.v5.i3.262
10.1002/jmri.1880060416
10.1111/papr.12813
10.1016/j.compmedimag.2016.02.002
10.5312/wjo.v7.i2.109
10.1371/journal.pone.0223762
10.1016/j.media.2017.07.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 15, 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.107772
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_107772
S0263224120303109
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
SSH
WUQ
XPP
EFKBS
ID FETCH-LOGICAL-c349t-1dacb39e0e32a6b7c1d4c26b080a880bd87526a26a68db061f7f051dd7c5dcc83
IEDL.DBID AIKHN
ISSN 0263-2241
IngestDate Wed Aug 13 06:27:48 EDT 2025
Tue Jul 01 04:37:47 EDT 2025
Thu Apr 24 22:58:11 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spinal diagnosis
MRI
Vertebral tumor
Hidden Markov random field model
CT scan
Tumor detection
Early prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-1dacb39e0e32a6b7c1d4c26b080a880bd87526a26a68db061f7f051dd7c5dcc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440492360
PQPubID 2047460
ParticipantIDs proquest_journals_2440492360
crossref_citationtrail_10_1016_j_measurement_2020_107772
crossref_primary_10_1016_j_measurement_2020_107772
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Cao, Fan, Wang, Zhang (b0110) 2019; 7
Rispoli, Rakesh, Shah, Gulati (b0050) 2019
Thawait, Kim, Klufas, Morrison, Flanders, Carrino, Ohno-Machado (b0075) 2013; 200
Jamaludin, Kadir, Zisserman (b0095) 2017; 41
Hiremath, Amiri, Thapa-Chhetry, Snethen, Schmidt-Read, Ramos-Lamboy (b0080) 2019; 14
Engel, Bender, Adams, Boker, Fahlenkamp, Wagner (b0035) 2019; 29
Glinskii, Huxley, Xie, Bunyak, Palaniappan, Glinsky (b0040) 2019; 10
Zhong, He, Zhu, Wu, Fang, Chen (b0115) 2017; 40
Lang, Zhang, Zhang, Zhang, Chow, Chang (b0100) 2019
Morris, Michalak, Leng, Moynagh, Kurup, McCollough, Fletcher (b0020) 2019
Tadele, Woodraw, Johnson (b0010) 2019; 2
Kienstra, Terwee, Dekker, Canta, Borstlap, Tijssen (b0060) 2000; 57
Hecht, Czabanka, Vajkoczy (b0015) 2019
Shakeel, Desa, Burhanuddin (b0025) 2019
Littrell, Inwards, Rose, Wenger (b0005) 2019
J.T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, et al., DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. arXiv preprint arXiv:1807.10215, 2018.
.
Gomathi, Baskar, Shakeel (b0030) 2019
Gravel, Tselikas, Moulin, Yevich, Baudin, Hakime (b0070) 2019
Sung, Hsieh, Kuo (b0135) 2019
Ciftdemir, Kaya, Selcuk, Yalniz (b0045) 2016; 7
Mohamed Shakeel, El Tobely, Al-Feel, Gunasekaran Manogaran, Baskar (b0055) 2019
Shakeel, Burhanuddin, Desa (b0065) 2019
Tokuhashi, Uei, Oshima, Ajiro (b0105) 2014; 5
Yonezawa, Murakami, Sangsin, Mizukoshi, Tsuchiya (b0125) 2019
Liao, Liaw, Tsui, Juan (b0140) 2019; 33
Moulopoulos, Yoshimitsu, Johnston, Leeds, Libshitz (b0130) 1996; 6
Cai, Landis, Laidley, Kornecki, Lum, Li (b0085) 2016; 51
Morris (10.1016/j.measurement.2020.107772_b0020) 2019
Hiremath (10.1016/j.measurement.2020.107772_b0080) 2019; 14
Zhong (10.1016/j.measurement.2020.107772_b0115) 2017; 40
Gravel (10.1016/j.measurement.2020.107772_b0070) 2019
Sung (10.1016/j.measurement.2020.107772_b0135) 2019
10.1016/j.measurement.2020.107772_b0090
Littrell (10.1016/j.measurement.2020.107772_b0005) 2019
Gomathi (10.1016/j.measurement.2020.107772_b0030) 2019
Kienstra (10.1016/j.measurement.2020.107772_b0060) 2000; 57
Thawait (10.1016/j.measurement.2020.107772_b0075) 2013; 200
Lang (10.1016/j.measurement.2020.107772_b0100) 2019
Hecht (10.1016/j.measurement.2020.107772_b0015) 2019
Engel (10.1016/j.measurement.2020.107772_b0035) 2019; 29
Glinskii (10.1016/j.measurement.2020.107772_b0040) 2019; 10
Shakeel (10.1016/j.measurement.2020.107772_b0025) 2019
Cai (10.1016/j.measurement.2020.107772_b0085) 2016; 51
Yonezawa (10.1016/j.measurement.2020.107772_b0125) 2019
Tokuhashi (10.1016/j.measurement.2020.107772_b0105) 2014; 5
Tadele (10.1016/j.measurement.2020.107772_b0010) 2019; 2
Liao (10.1016/j.measurement.2020.107772_b0140) 2019; 33
Shakeel (10.1016/j.measurement.2020.107772_b0065) 2019
Mohamed Shakeel (10.1016/j.measurement.2020.107772_b0055) 2019
Moulopoulos (10.1016/j.measurement.2020.107772_b0130) 1996; 6
Jamaludin (10.1016/j.measurement.2020.107772_b0095) 2017; 41
Ciftdemir (10.1016/j.measurement.2020.107772_b0045) 2016; 7
Rispoli (10.1016/j.measurement.2020.107772_b0050) 2019
10.1016/j.measurement.2020.107772_b0120
Cao (10.1016/j.measurement.2020.107772_b0110) 2019; 7
References_xml – volume: 2
  year: 2019
  ident: b0010
  article-title: Case report of spinal cord astrocytoma presenting with extensive spinal vertebral body destruction
  publication-title: World Neurosurg.: X
– reference: J.T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, et al., DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. arXiv preprint arXiv:1807.10215, 2018.
– start-page: 1
  year: 2019
  end-page: 7
  ident: b0005
  article-title: Chondrosarcoma arising within synovial chondromatosis of the lumbar spine
  publication-title: Skeletal Radiol.
– volume: 14
  year: 2019
  ident: b0080
  article-title: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: a pilot study
  publication-title: PLoS ONE
– volume: 57
  start-page: 690
  year: 2000
  end-page: 695
  ident: b0060
  article-title: Prediction of spinal epidural metastases
  publication-title: Arch. Neurol.
– volume: 29
  start-page: 1855
  year: 2019
  end-page: 1862
  ident: b0035
  article-title: Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging
  publication-title: Eur. Radiol.
– volume: 6
  start-page: 667
  year: 1996
  end-page: 674
  ident: b0130
  article-title: MR prediction of benign and malignant vertebral compression fractures
  publication-title: J. Magn. Reson. Imaging
– volume: 40
  start-page: 277
  year: 2017
  end-page: 284
  ident: b0115
  article-title: Risk prediction of new adjacent vertebral fractures after PVP for patients with vertebral compression fractures: development of a prediction model
  publication-title: Cardiovasc. Intervent. Radiol.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b0135
  article-title: A primary meningioma of the lumbar spine with neck metastasis
  publication-title: J. Spinal Cord Med.
– start-page: 1
  year: 2019
  ident: b0055
  article-title: Neural network based brain tumor detection using wireless infrared imaging sensor
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 9
  ident: b0070
  article-title: Early detection with MRI of incomplete treatment of spine metastases after percutaneous cryoablation
  publication-title: Eur. Radiol.
– start-page: 429
  year: 2019
  end-page: 436
  ident: b0015
  article-title: Corpectomies and osteotomies in the upper thoracic spine and cervicothoracic region
  publication-title: Spine Surgery
– volume: 41
  start-page: 63
  year: 2017
  end-page: 73
  ident: b0095
  article-title: SpineNet: automated classification and evidence visualization in spinal MRIs
  publication-title: Med. Image Anal.
– start-page: 702
  year: 2019
  end-page: 712
  ident: b0065
  article-title: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks
  publication-title: Measurement
– start-page: 1
  year: 2019
  end-page: 20
  ident: b0030
  article-title: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network
  publication-title: Multimed. Tools Appl.
– year: 2019
  ident: b0020
  article-title: Dual-energy CT monitoring of cryoablation zone growth in the spinal column and bony pelvis: a laboratory study
  publication-title: J. Vasc. Interv. Radiol.
– volume: 7
  start-page: 109
  year: 2016
  end-page: 116
  ident: b0045
  article-title: Tumors of the spine
  publication-title: World J. Orthopedics
– volume: 10
  start-page: 1364
  year: 2019
  ident: b0040
  article-title: Complex non-sinus-associated pachymeningeal lymphatic structures: Interrelationship with blood microvasculature
  publication-title: Front. Physiol.
– year: 2019
  ident: b0100
  article-title: Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI
  publication-title: Magn. Reson. Imaging
– start-page: 1
  year: 2019
  end-page: 10
  ident: b0125
  article-title: Lung metastases regression with increased CD8+ T lymphocyte infiltration following preoperative spinal embolization and total en bloc spondylectomy using tumor-bearing frozen autograft in a patient with spinal metastatic leiomyosarcoma
  publication-title: Eur. Spine J.
– volume: 33
  start-page: 939
  year: 2019
  end-page: 943
  ident: b0140
  article-title: Invasion of adjacent lumbar vertebral body from renal pelvis carcinoma: associated with bone metastasis but easily overlooked on initial CT scan
  publication-title: In Vivo
– volume: 7
  start-page: 145227
  year: 2019
  end-page: 145234
  ident: b0110
  article-title: A novel combination model of convolutional neural network and long short-term memory network for upper limb evaluation using kinect-based system
  publication-title: IEEE Access
– volume: 200
  start-page: 493
  year: 2013
  end-page: 502
  ident: b0075
  article-title: Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis
  publication-title: Am. J. Roentgenol.
– volume: 51
  start-page: 11
  year: 2016
  end-page: 19
  ident: b0085
  article-title: Multi-modal vertebrae recognition using a transformed deep convolution network
  publication-title: Comput. Med. Imaging Graph.
– reference: .
– year: 2019
  ident: b0050
  article-title: Interventional pain treatments in the management of oncologic patients with thoracic spinal tumor-related pain: a case series
  publication-title: Pain Pract.
– volume: 5
  start-page: 262
  year: 2014
  ident: b0105
  article-title: Scoring system for prediction of metastatic spine tumor prognosis
  publication-title: World J. Orthopedics
– start-page: 1
  year: 2019
  end-page: 19
  ident: b0025
  article-title: Improved watershed histogram thresholding with probabilistic neural networks for lung cancer diagnosis for CBMIR systems
  publication-title: Multimed. Tools Appl.
– volume: 29
  start-page: 1855
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0035
  article-title: Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5769-4
– volume: 7
  start-page: 145227
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0110
  article-title: A novel combination model of convolutional neural network and long short-term memory network for upper limb evaluation using kinect-based system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944652
– volume: 10
  start-page: 1364
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0040
  article-title: Complex non-sinus-associated pachymeningeal lymphatic structures: Interrelationship with blood microvasculature
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.01364
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0070
  article-title: Early detection with MRI of incomplete treatment of spine metastases after percutaneous cryoablation
  publication-title: Eur. Radiol.
– start-page: 429
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0015
  article-title: Corpectomies and osteotomies in the upper thoracic spine and cervicothoracic region
– year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0100
  article-title: Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.02.013
– start-page: 702
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0065
  article-title: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.027
– volume: 200
  start-page: 493
  issue: 3
  year: 2013
  ident: 10.1016/j.measurement.2020.107772_b0075
  article-title: Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.11.7192
– year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0020
  article-title: Dual-energy CT monitoring of cryoablation zone growth in the spinal column and bony pelvis: a laboratory study
  publication-title: J. Vasc. Interv. Radiol.
  doi: 10.1016/j.jvir.2019.01.030
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0025
  article-title: Improved watershed histogram thresholding with probabilistic neural networks for lung cancer diagnosis for CBMIR systems
  publication-title: Multimed. Tools Appl.
– volume: 57
  start-page: 690
  issue: 5
  year: 2000
  ident: 10.1016/j.measurement.2020.107772_b0060
  article-title: Prediction of spinal epidural metastases
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.57.5.690
– volume: 33
  start-page: 939
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0140
  article-title: Invasion of adjacent lumbar vertebral body from renal pelvis carcinoma: associated with bone metastasis but easily overlooked on initial CT scan
  publication-title: In Vivo
  doi: 10.21873/invivo.11562
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0135
  article-title: A primary meningioma of the lumbar spine with neck metastasis
  publication-title: J. Spinal Cord Med.
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0030
  article-title: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network
  publication-title: Multimed. Tools Appl.
– ident: 10.1016/j.measurement.2020.107772_b0120
– volume: 40
  start-page: 277
  issue: 2
  year: 2017
  ident: 10.1016/j.measurement.2020.107772_b0115
  article-title: Risk prediction of new adjacent vertebral fractures after PVP for patients with vertebral compression fractures: development of a prediction model
  publication-title: Cardiovasc. Intervent. Radiol.
  doi: 10.1007/s00270-016-1492-1
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0005
  article-title: Chondrosarcoma arising within synovial chondromatosis of the lumbar spine
  publication-title: Skeletal Radiol.
– volume: 5
  start-page: 262
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2020.107772_b0105
  article-title: Scoring system for prediction of metastatic spine tumor prognosis
  publication-title: World J. Orthopedics
  doi: 10.5312/wjo.v5.i3.262
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0055
  article-title: Neural network based brain tumor detection using wireless infrared imaging sensor
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0125
  article-title: Lung metastases regression with increased CD8+ T lymphocyte infiltration following preoperative spinal embolization and total en bloc spondylectomy using tumor-bearing frozen autograft in a patient with spinal metastatic leiomyosarcoma
  publication-title: Eur. Spine J.
– volume: 6
  start-page: 667
  issue: 4
  year: 1996
  ident: 10.1016/j.measurement.2020.107772_b0130
  article-title: MR prediction of benign and malignant vertebral compression fractures
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.1880060416
– year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0050
  article-title: Interventional pain treatments in the management of oncologic patients with thoracic spinal tumor-related pain: a case series
  publication-title: Pain Pract.
  doi: 10.1111/papr.12813
– volume: 51
  start-page: 11
  year: 2016
  ident: 10.1016/j.measurement.2020.107772_b0085
  article-title: Multi-modal vertebrae recognition using a transformed deep convolution network
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.02.002
– volume: 7
  start-page: 109
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2020.107772_b0045
  article-title: Tumors of the spine
  publication-title: World J. Orthopedics
  doi: 10.5312/wjo.v7.i2.109
– volume: 14
  issue: 10
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0080
  article-title: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: a pilot study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0223762
– ident: 10.1016/j.measurement.2020.107772_b0090
– volume: 41
  start-page: 63
  year: 2017
  ident: 10.1016/j.measurement.2020.107772_b0095
  article-title: SpineNet: automated classification and evidence visualization in spinal MRIs
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.002
– volume: 2
  year: 2019
  ident: 10.1016/j.measurement.2020.107772_b0010
  article-title: Case report of spinal cord astrocytoma presenting with extensive spinal vertebral body destruction
  publication-title: World Neurosurg.: X
SSID ssj0006396
Score 2.3659875
Snippet •This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection...
Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107772
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Computed tomography
CT scan
Diagnosis
Early prediction
Fields (mathematics)
Health services
Hidden Markov random field model
Image segmentation
Internet of medical things
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Medical research
MRI
NMR
Nuclear magnetic resonance
Object recognition
Spinal diagnosis
Spine
Tomography
Tumor detection
Tumors
Vertebrae
Vertebral tumor
Title Magnetic resonance imaging evaluation of vertebral tumor prediction using hierarchical hidden Markov random field model on Internet of Medical Things (IOMT) platform
URI https://dx.doi.org/10.1016/j.measurement.2020.107772
https://www.proquest.com/docview/2440492360
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_aK4o-iFbFai0r-KAP8W53k90L-FKK5apcfbCFvi37lXJydzmuqY_-N_6fziSbXhWEgpCXTZglZCbzsTPzG4C3aIOs4JZnFecxyzHUycayKrJCu2CDc7ry1O88PVWT8_zzRXGxBUd9LwyVVSbd3-n0VlunO8P0NYer2Wz4bURQ42iABMop4Vtuw46QpSoGsHN48mVyeqOQ0Qir7qhFZkRwH95syrwWm6M4jBYF3ddai3-Zqb8UdmuFjh_Do-Q-ssPuDZ_AVlzuwsNboIK7cK8t6vRXT-HX1F4uqUmRYUxdE7JGZLNFO5aIbVC-WV0xGspMGeQ5a64X9Zqt1pS_aZ9SYfwlo4nZbc4BWYoL0laM2nzqHwyNXagXrC2FY-1gHYZk3UljbGj3lAxi3YxQ9u7k6_TsPVvNbUMe8zM4P_50djTJ0liGzMu8bDIerHeyjKMohVVOex5yL5RD39OiNnABQyChLF5qHBz6C5Wu8NcPQfsieD-Wz2GwrJfxBbACSaLHCFAGntvSlejvSEU-yMhWleZ7MO65YHzCLKfRGXPTF6d9N7cYaIiBpmPgHogb0lUH3HEXoo89q80fUmjQwNyFfL8XD5NUwZURhMCIbrQavfy_3V_BA1rRwTIv9mHQrK_ja_SIGncA2x9-8oMk978BPwsPqw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Shz5yKG2a0jRpO4Ue2oOwtXqsDb2EkGA3sXuoA7kt-1JwsS3jKP1H_Z-dkVZxWigEArpIyyxCM5rHzsw3AJ_IBmkR6zgq4thHKYU6UT8psiiTxmlnjCws9zuPJ_nwIv12mV1uwXHbC8NllUH3Nzq91tbhSTd8ze5qNuv-6DHUOBkgQXLK-JaPYDvNKNrrwPbR6Gw4uVXIZITz5qgliZjgCXzclHktNkdxFC0Kfi6lFP8zU_8o7NoKnb6A58F9xKPmDV_Cll_uws4dUMFdeFwXddrrV_B7rK-W3KSIFFOXjKzhcbaoxxLhBuUbywJ5KDNnkOdY3SzKNa7WnL-pV7kw_gp5YnadcyCW0g1rK-Q2n_IXkrFz5QLrUjisB-sgkTUnjb7i3UMyCJsZofh59H08_YKrua7YY96Di9OT6fEwCmMZIpukgyqKnbYmGfieT4TOjbSxS63IDfmemrSBcRQCiVzTlfedIX-hkAX9-s5Jmzlr-8lr6CzLpX8DmBGJtxQBJi5O9cAMyN9JcvZBerooZLwP_ZYLygbMch6dMVdtcdpPdYeBihmoGgbug7glXTXAHfch-tqyWv0lhYoMzH3ID1vxUEEVXCvBCIzkRue9tw_b_QM8HU7H5-p8NDk7gGe8wofMcXYInWp949-Rd1SZ90H6_wC-7RGa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+resonance+imaging+evaluation+of+vertebral+tumor+prediction+using+hierarchical+hidden+Markov+random+field+model+on+Internet+of+Medical+Things+%28IOMT%29+platform&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Alsiddiky%2C+Abdulmonem&rft.au=Awwad%2C+Waleed&rft.au=Bakarman%2C+Khalid&rft.au=Fouad%2C+H&rft.date=2020-07-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=159&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2020.107772&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon