Magnetic resonance imaging evaluation of vertebral tumor prediction using hierarchical hidden Markov random field model on Internet of Medical Things (IOMT) platform
•This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on s...
Saved in:
Published in | Measurement : journal of the International Measurement Confederation Vol. 159; p. 107772 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
15.07.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0263-2241 1873-412X |
DOI | 10.1016/j.measurement.2020.107772 |
Cover
Abstract | •This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on segmentation of lumbar spinal stenosis.
Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods. |
---|---|
AbstractList | Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods. •This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection of tumors.•It has been used to implement the threshold techniques in MRI images on the IoMT.•This method attains the better performance on segmentation of lumbar spinal stenosis. Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses, a large amount of image data from different modalities is often used and interchangeably analyzed based on the automatic vertebra identification. It includes recognition of vertebral positions and recognition in several image modalities. Due to the differences in MR or CT images appearance or shape/size of the vertebras, the identification is however difficult in the present conventional medical research. The segmentation of vertebral tumors that are manually performed by MRI is an important and time-consuming process by the conventional research algorithms. The accuracy of identification of the size and location of spine tumors plays a major role in effective tumor diagnosis and treatment. Therefore, this paper presents the Hierarchical Hidden Markov Random Field Model (HHMRF) to predict the vertebral tumor for the early detection and diagnosis treatment in an effective and efficient manner. The importance of this research is to implement a state-of-the-art strategy for detection of tumors using HHMRF and threshold techniques in MRI images on the Internet of Medical Things Platform (IoMT). HHMRF can coordinate the final section of vertebral tumor homogeneous areas of tissue while preserving the edges between different tissue constituents more effectively using mathematical computation. The proposed method attains the state-of-the-art performance on the diagnosis and segmentation of lumbar spinal stenosis using deep neural network and experimentally analyzed with 97.44% accuracy and 97.11% efficiency ratio on IoMT platform whereas proposed HHMRF achieves 98.5% high precision ratio compared to other existing TDCN (78.2%), DLA (81.6%), M-CNN (78.9%), and DCE-MRI (80.2%) methods. |
ArticleNumber | 107772 |
Author | Bakarman, Khalid Alsiddiky, Abdulmonem Awwad, Waleed Fouad, H. Mahmoud, Nourelhoda M. |
Author_xml | – sequence: 1 givenname: Abdulmonem surname: Alsiddiky fullname: Alsiddiky, Abdulmonem organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia – sequence: 2 givenname: Waleed surname: Awwad fullname: Awwad, Waleed organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia – sequence: 3 givenname: Khalid surname: Bakarman fullname: Bakarman, Khalid organization: Orthopedic Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia – sequence: 4 givenname: H. surname: Fouad fullname: Fouad, H. organization: CC, Applied Medical Science Dept., King Saud University, Riyadh, Saudi Arabia – sequence: 5 givenname: Nourelhoda M. surname: Mahmoud fullname: Mahmoud, Nourelhoda M. email: nourelhoda.mahmoud@mu.edu.eg organization: Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt |
BookMark | eNqNkUGL2zAQhUXZhWZ3-x9UemkPTiXZke1TKaHbBjbsJYXehCyNE6W2lI7kQH_Q_s_Kmx5KTwsDgtF738B7N-TKBw-EvOVsyRmXH4_LEXScEEbwaSmYmPd1XYtXZMGbuiwqLn5ckQUTsiyEqPhrchPjkTEmy1YuyNNW7z0kZyhCDF57A9SNeu_8nsJZD5NOLngaenoGTNChHmiaxoD0hGCdef6d4iw_OECN5uBM1hycteDpVuPPcKaovQ0j7R0Mlo7BwkCzbeMTYD4-07czLPt2h4yK9P3mcbv7QE-DTn3A8Y5c93qI8Obve0u-33_Zrb8VD49fN-vPD4UpqzYV3GrTlS0wKIWWXW24rYyQHWuYbhrW2aZeCanzyMZ2TPK-7tmKW1ublTWmKW_Juwv3hOHXBDGpY5jQ55NKVBWrWlFKllWfLiqDIUaEXhmXnnNKqN2gOFNzN-qo_ulGzd2oSzeZ0P5HOGFOHX-_yLu-eCEHcc6Zq2gc5N6sQzBJ2eBeQPkD_KW3bA |
CitedBy_id | crossref_primary_10_1007_s44196_024_00635_0 crossref_primary_10_1016_j_comcom_2020_05_039 crossref_primary_10_1016_j_najef_2024_102311 crossref_primary_10_1109_ACCESS_2020_3021823 crossref_primary_10_1007_s10489_021_03078_8 crossref_primary_10_1007_s11051_020_04905_8 crossref_primary_10_1016_j_measurement_2020_108254 crossref_primary_10_1155_2023_2506144 crossref_primary_10_1007_s10586_020_03127_w crossref_primary_10_1016_j_jcot_2020_05_011 crossref_primary_10_1109_ACCESS_2020_3027632 crossref_primary_10_1109_ACCESS_2020_3012719 crossref_primary_10_2196_52519 crossref_primary_10_1016_j_measurement_2020_107887 crossref_primary_10_1007_s40747_020_00194_9 crossref_primary_10_1016_j_measurement_2020_108258 crossref_primary_10_1016_j_imavis_2020_104044 crossref_primary_10_1109_ACCESS_2020_3034689 crossref_primary_10_1016_j_swevo_2023_101430 crossref_primary_10_1016_j_measurement_2021_110470 crossref_primary_10_1111_jep_14229 |
Cites_doi | 10.1007/s00330-018-5769-4 10.1109/ACCESS.2019.2944652 10.3389/fphys.2019.01364 10.1016/j.mri.2019.02.013 10.1016/j.measurement.2019.05.027 10.2214/AJR.11.7192 10.1016/j.jvir.2019.01.030 10.1001/archneur.57.5.690 10.21873/invivo.11562 10.1007/s00270-016-1492-1 10.5312/wjo.v5.i3.262 10.1002/jmri.1880060416 10.1111/papr.12813 10.1016/j.compmedimag.2016.02.002 10.5312/wjo.v7.i2.109 10.1371/journal.pone.0223762 10.1016/j.media.2017.07.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Jul 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jul 15, 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.measurement.2020.107772 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-412X |
ExternalDocumentID | 10_1016_j_measurement_2020_107772 S0263224120303109 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW SSH WUQ XPP EFKBS |
ID | FETCH-LOGICAL-c349t-1dacb39e0e32a6b7c1d4c26b080a880bd87526a26a68db061f7f051dd7c5dcc83 |
IEDL.DBID | AIKHN |
ISSN | 0263-2241 |
IngestDate | Wed Aug 13 06:27:48 EDT 2025 Tue Jul 01 04:37:47 EDT 2025 Thu Apr 24 22:58:11 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spinal diagnosis MRI Vertebral tumor Hidden Markov random field model CT scan Tumor detection Early prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-1dacb39e0e32a6b7c1d4c26b080a880bd87526a26a68db061f7f051dd7c5dcc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2440492360 |
PQPubID | 2047460 |
ParticipantIDs | proquest_journals_2440492360 crossref_citationtrail_10_1016_j_measurement_2020_107772 crossref_primary_10_1016_j_measurement_2020_107772 elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107772 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Measurement : journal of the International Measurement Confederation |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Cao, Fan, Wang, Zhang (b0110) 2019; 7 Rispoli, Rakesh, Shah, Gulati (b0050) 2019 Thawait, Kim, Klufas, Morrison, Flanders, Carrino, Ohno-Machado (b0075) 2013; 200 Jamaludin, Kadir, Zisserman (b0095) 2017; 41 Hiremath, Amiri, Thapa-Chhetry, Snethen, Schmidt-Read, Ramos-Lamboy (b0080) 2019; 14 Engel, Bender, Adams, Boker, Fahlenkamp, Wagner (b0035) 2019; 29 Glinskii, Huxley, Xie, Bunyak, Palaniappan, Glinsky (b0040) 2019; 10 Zhong, He, Zhu, Wu, Fang, Chen (b0115) 2017; 40 Lang, Zhang, Zhang, Zhang, Chow, Chang (b0100) 2019 Morris, Michalak, Leng, Moynagh, Kurup, McCollough, Fletcher (b0020) 2019 Tadele, Woodraw, Johnson (b0010) 2019; 2 Kienstra, Terwee, Dekker, Canta, Borstlap, Tijssen (b0060) 2000; 57 Hecht, Czabanka, Vajkoczy (b0015) 2019 Shakeel, Desa, Burhanuddin (b0025) 2019 Littrell, Inwards, Rose, Wenger (b0005) 2019 J.T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, et al., DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. arXiv preprint arXiv:1807.10215, 2018. . Gomathi, Baskar, Shakeel (b0030) 2019 Gravel, Tselikas, Moulin, Yevich, Baudin, Hakime (b0070) 2019 Sung, Hsieh, Kuo (b0135) 2019 Ciftdemir, Kaya, Selcuk, Yalniz (b0045) 2016; 7 Mohamed Shakeel, El Tobely, Al-Feel, Gunasekaran Manogaran, Baskar (b0055) 2019 Shakeel, Burhanuddin, Desa (b0065) 2019 Tokuhashi, Uei, Oshima, Ajiro (b0105) 2014; 5 Yonezawa, Murakami, Sangsin, Mizukoshi, Tsuchiya (b0125) 2019 Liao, Liaw, Tsui, Juan (b0140) 2019; 33 Moulopoulos, Yoshimitsu, Johnston, Leeds, Libshitz (b0130) 1996; 6 Cai, Landis, Laidley, Kornecki, Lum, Li (b0085) 2016; 51 Morris (10.1016/j.measurement.2020.107772_b0020) 2019 Hiremath (10.1016/j.measurement.2020.107772_b0080) 2019; 14 Zhong (10.1016/j.measurement.2020.107772_b0115) 2017; 40 Gravel (10.1016/j.measurement.2020.107772_b0070) 2019 Sung (10.1016/j.measurement.2020.107772_b0135) 2019 10.1016/j.measurement.2020.107772_b0090 Littrell (10.1016/j.measurement.2020.107772_b0005) 2019 Gomathi (10.1016/j.measurement.2020.107772_b0030) 2019 Kienstra (10.1016/j.measurement.2020.107772_b0060) 2000; 57 Thawait (10.1016/j.measurement.2020.107772_b0075) 2013; 200 Lang (10.1016/j.measurement.2020.107772_b0100) 2019 Hecht (10.1016/j.measurement.2020.107772_b0015) 2019 Engel (10.1016/j.measurement.2020.107772_b0035) 2019; 29 Glinskii (10.1016/j.measurement.2020.107772_b0040) 2019; 10 Shakeel (10.1016/j.measurement.2020.107772_b0025) 2019 Cai (10.1016/j.measurement.2020.107772_b0085) 2016; 51 Yonezawa (10.1016/j.measurement.2020.107772_b0125) 2019 Tokuhashi (10.1016/j.measurement.2020.107772_b0105) 2014; 5 Tadele (10.1016/j.measurement.2020.107772_b0010) 2019; 2 Liao (10.1016/j.measurement.2020.107772_b0140) 2019; 33 Shakeel (10.1016/j.measurement.2020.107772_b0065) 2019 Mohamed Shakeel (10.1016/j.measurement.2020.107772_b0055) 2019 Moulopoulos (10.1016/j.measurement.2020.107772_b0130) 1996; 6 Jamaludin (10.1016/j.measurement.2020.107772_b0095) 2017; 41 Ciftdemir (10.1016/j.measurement.2020.107772_b0045) 2016; 7 Rispoli (10.1016/j.measurement.2020.107772_b0050) 2019 10.1016/j.measurement.2020.107772_b0120 Cao (10.1016/j.measurement.2020.107772_b0110) 2019; 7 |
References_xml | – volume: 2 year: 2019 ident: b0010 article-title: Case report of spinal cord astrocytoma presenting with extensive spinal vertebral body destruction publication-title: World Neurosurg.: X – reference: J.T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, et al., DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning. arXiv preprint arXiv:1807.10215, 2018. – start-page: 1 year: 2019 end-page: 7 ident: b0005 article-title: Chondrosarcoma arising within synovial chondromatosis of the lumbar spine publication-title: Skeletal Radiol. – volume: 14 year: 2019 ident: b0080 article-title: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: a pilot study publication-title: PLoS ONE – volume: 57 start-page: 690 year: 2000 end-page: 695 ident: b0060 article-title: Prediction of spinal epidural metastases publication-title: Arch. Neurol. – volume: 29 start-page: 1855 year: 2019 end-page: 1862 ident: b0035 article-title: Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging publication-title: Eur. Radiol. – volume: 6 start-page: 667 year: 1996 end-page: 674 ident: b0130 article-title: MR prediction of benign and malignant vertebral compression fractures publication-title: J. Magn. Reson. Imaging – volume: 40 start-page: 277 year: 2017 end-page: 284 ident: b0115 article-title: Risk prediction of new adjacent vertebral fractures after PVP for patients with vertebral compression fractures: development of a prediction model publication-title: Cardiovasc. Intervent. Radiol. – start-page: 1 year: 2019 end-page: 4 ident: b0135 article-title: A primary meningioma of the lumbar spine with neck metastasis publication-title: J. Spinal Cord Med. – start-page: 1 year: 2019 ident: b0055 article-title: Neural network based brain tumor detection using wireless infrared imaging sensor publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 9 ident: b0070 article-title: Early detection with MRI of incomplete treatment of spine metastases after percutaneous cryoablation publication-title: Eur. Radiol. – start-page: 429 year: 2019 end-page: 436 ident: b0015 article-title: Corpectomies and osteotomies in the upper thoracic spine and cervicothoracic region publication-title: Spine Surgery – volume: 41 start-page: 63 year: 2017 end-page: 73 ident: b0095 article-title: SpineNet: automated classification and evidence visualization in spinal MRIs publication-title: Med. Image Anal. – start-page: 702 year: 2019 end-page: 712 ident: b0065 article-title: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks publication-title: Measurement – start-page: 1 year: 2019 end-page: 20 ident: b0030 article-title: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network publication-title: Multimed. Tools Appl. – year: 2019 ident: b0020 article-title: Dual-energy CT monitoring of cryoablation zone growth in the spinal column and bony pelvis: a laboratory study publication-title: J. Vasc. Interv. Radiol. – volume: 7 start-page: 109 year: 2016 end-page: 116 ident: b0045 article-title: Tumors of the spine publication-title: World J. Orthopedics – volume: 10 start-page: 1364 year: 2019 ident: b0040 article-title: Complex non-sinus-associated pachymeningeal lymphatic structures: Interrelationship with blood microvasculature publication-title: Front. Physiol. – year: 2019 ident: b0100 article-title: Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI publication-title: Magn. Reson. Imaging – start-page: 1 year: 2019 end-page: 10 ident: b0125 article-title: Lung metastases regression with increased CD8+ T lymphocyte infiltration following preoperative spinal embolization and total en bloc spondylectomy using tumor-bearing frozen autograft in a patient with spinal metastatic leiomyosarcoma publication-title: Eur. Spine J. – volume: 33 start-page: 939 year: 2019 end-page: 943 ident: b0140 article-title: Invasion of adjacent lumbar vertebral body from renal pelvis carcinoma: associated with bone metastasis but easily overlooked on initial CT scan publication-title: In Vivo – volume: 7 start-page: 145227 year: 2019 end-page: 145234 ident: b0110 article-title: A novel combination model of convolutional neural network and long short-term memory network for upper limb evaluation using kinect-based system publication-title: IEEE Access – volume: 200 start-page: 493 year: 2013 end-page: 502 ident: b0075 article-title: Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis publication-title: Am. J. Roentgenol. – volume: 51 start-page: 11 year: 2016 end-page: 19 ident: b0085 article-title: Multi-modal vertebrae recognition using a transformed deep convolution network publication-title: Comput. Med. Imaging Graph. – reference: . – year: 2019 ident: b0050 article-title: Interventional pain treatments in the management of oncologic patients with thoracic spinal tumor-related pain: a case series publication-title: Pain Pract. – volume: 5 start-page: 262 year: 2014 ident: b0105 article-title: Scoring system for prediction of metastatic spine tumor prognosis publication-title: World J. Orthopedics – start-page: 1 year: 2019 end-page: 19 ident: b0025 article-title: Improved watershed histogram thresholding with probabilistic neural networks for lung cancer diagnosis for CBMIR systems publication-title: Multimed. Tools Appl. – volume: 29 start-page: 1855 issue: 4 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0035 article-title: Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5769-4 – volume: 7 start-page: 145227 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0110 article-title: A novel combination model of convolutional neural network and long short-term memory network for upper limb evaluation using kinect-based system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944652 – volume: 10 start-page: 1364 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0040 article-title: Complex non-sinus-associated pachymeningeal lymphatic structures: Interrelationship with blood microvasculature publication-title: Front. Physiol. doi: 10.3389/fphys.2019.01364 – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0070 article-title: Early detection with MRI of incomplete treatment of spine metastases after percutaneous cryoablation publication-title: Eur. Radiol. – start-page: 429 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0015 article-title: Corpectomies and osteotomies in the upper thoracic spine and cervicothoracic region – year: 2019 ident: 10.1016/j.measurement.2020.107772_b0100 article-title: Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.02.013 – start-page: 702 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0065 article-title: Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks publication-title: Measurement doi: 10.1016/j.measurement.2019.05.027 – volume: 200 start-page: 493 issue: 3 year: 2013 ident: 10.1016/j.measurement.2020.107772_b0075 article-title: Comparison of four prediction models to discriminate benign from malignant vertebral compression fractures according to MRI feature analysis publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.11.7192 – year: 2019 ident: 10.1016/j.measurement.2020.107772_b0020 article-title: Dual-energy CT monitoring of cryoablation zone growth in the spinal column and bony pelvis: a laboratory study publication-title: J. Vasc. Interv. Radiol. doi: 10.1016/j.jvir.2019.01.030 – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0025 article-title: Improved watershed histogram thresholding with probabilistic neural networks for lung cancer diagnosis for CBMIR systems publication-title: Multimed. Tools Appl. – volume: 57 start-page: 690 issue: 5 year: 2000 ident: 10.1016/j.measurement.2020.107772_b0060 article-title: Prediction of spinal epidural metastases publication-title: Arch. Neurol. doi: 10.1001/archneur.57.5.690 – volume: 33 start-page: 939 issue: 3 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0140 article-title: Invasion of adjacent lumbar vertebral body from renal pelvis carcinoma: associated with bone metastasis but easily overlooked on initial CT scan publication-title: In Vivo doi: 10.21873/invivo.11562 – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0135 article-title: A primary meningioma of the lumbar spine with neck metastasis publication-title: J. Spinal Cord Med. – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0030 article-title: Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network publication-title: Multimed. Tools Appl. – ident: 10.1016/j.measurement.2020.107772_b0120 – volume: 40 start-page: 277 issue: 2 year: 2017 ident: 10.1016/j.measurement.2020.107772_b0115 article-title: Risk prediction of new adjacent vertebral fractures after PVP for patients with vertebral compression fractures: development of a prediction model publication-title: Cardiovasc. Intervent. Radiol. doi: 10.1007/s00270-016-1492-1 – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0005 article-title: Chondrosarcoma arising within synovial chondromatosis of the lumbar spine publication-title: Skeletal Radiol. – volume: 5 start-page: 262 issue: 3 year: 2014 ident: 10.1016/j.measurement.2020.107772_b0105 article-title: Scoring system for prediction of metastatic spine tumor prognosis publication-title: World J. Orthopedics doi: 10.5312/wjo.v5.i3.262 – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0055 article-title: Neural network based brain tumor detection using wireless infrared imaging sensor publication-title: IEEE Access – start-page: 1 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0125 article-title: Lung metastases regression with increased CD8+ T lymphocyte infiltration following preoperative spinal embolization and total en bloc spondylectomy using tumor-bearing frozen autograft in a patient with spinal metastatic leiomyosarcoma publication-title: Eur. Spine J. – volume: 6 start-page: 667 issue: 4 year: 1996 ident: 10.1016/j.measurement.2020.107772_b0130 article-title: MR prediction of benign and malignant vertebral compression fractures publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.1880060416 – year: 2019 ident: 10.1016/j.measurement.2020.107772_b0050 article-title: Interventional pain treatments in the management of oncologic patients with thoracic spinal tumor-related pain: a case series publication-title: Pain Pract. doi: 10.1111/papr.12813 – volume: 51 start-page: 11 year: 2016 ident: 10.1016/j.measurement.2020.107772_b0085 article-title: Multi-modal vertebrae recognition using a transformed deep convolution network publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2016.02.002 – volume: 7 start-page: 109 issue: 2 year: 2016 ident: 10.1016/j.measurement.2020.107772_b0045 article-title: Tumors of the spine publication-title: World J. Orthopedics doi: 10.5312/wjo.v7.i2.109 – volume: 14 issue: 10 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0080 article-title: Mobile health-based physical activity intervention for individuals with spinal cord injury in the community: a pilot study publication-title: PLoS ONE doi: 10.1371/journal.pone.0223762 – ident: 10.1016/j.measurement.2020.107772_b0090 – volume: 41 start-page: 63 year: 2017 ident: 10.1016/j.measurement.2020.107772_b0095 article-title: SpineNet: automated classification and evidence visualization in spinal MRIs publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.002 – volume: 2 year: 2019 ident: 10.1016/j.measurement.2020.107772_b0010 article-title: Case report of spinal cord astrocytoma presenting with extensive spinal vertebral body destruction publication-title: World Neurosurg.: X |
SSID | ssj0006396 |
Score | 2.3659875 |
Snippet | •This paper presents the HHMRF to predict the vertebral tumor for the early detection.•The importance of this research is to implement a strategy for detection... Recently, prediction evaluation of the metastatic spine tumors in therapy is considered a significant area of research. Further, for spinal clinical diagnoses,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107772 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Computed tomography CT scan Diagnosis Early prediction Fields (mathematics) Health services Hidden Markov random field model Image segmentation Internet of medical things Magnetic resonance imaging Medical diagnosis Medical imaging Medical research MRI NMR Nuclear magnetic resonance Object recognition Spinal diagnosis Spine Tomography Tumor detection Tumors Vertebrae Vertebral tumor |
Title | Magnetic resonance imaging evaluation of vertebral tumor prediction using hierarchical hidden Markov random field model on Internet of Medical Things (IOMT) platform |
URI | https://dx.doi.org/10.1016/j.measurement.2020.107772 https://www.proquest.com/docview/2440492360 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_aK4o-iFbFai0r-KAP8W53k90L-FKK5apcfbCFvi37lXJydzmuqY_-N_6fziSbXhWEgpCXTZglZCbzsTPzG4C3aIOs4JZnFecxyzHUycayKrJCu2CDc7ry1O88PVWT8_zzRXGxBUd9LwyVVSbd3-n0VlunO8P0NYer2Wz4bURQ42iABMop4Vtuw46QpSoGsHN48mVyeqOQ0Qir7qhFZkRwH95syrwWm6M4jBYF3ddai3-Zqb8UdmuFjh_Do-Q-ssPuDZ_AVlzuwsNboIK7cK8t6vRXT-HX1F4uqUmRYUxdE7JGZLNFO5aIbVC-WV0xGspMGeQ5a64X9Zqt1pS_aZ9SYfwlo4nZbc4BWYoL0laM2nzqHwyNXagXrC2FY-1gHYZk3UljbGj3lAxi3YxQ9u7k6_TsPVvNbUMe8zM4P_50djTJ0liGzMu8bDIerHeyjKMohVVOex5yL5RD39OiNnABQyChLF5qHBz6C5Wu8NcPQfsieD-Wz2GwrJfxBbACSaLHCFAGntvSlejvSEU-yMhWleZ7MO65YHzCLKfRGXPTF6d9N7cYaIiBpmPgHogb0lUH3HEXoo89q80fUmjQwNyFfL8XD5NUwZURhMCIbrQavfy_3V_BA1rRwTIv9mHQrK_ja_SIGncA2x9-8oMk978BPwsPqw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Shz5yKG2a0jRpO4Ue2oOwtXqsDb2EkGA3sXuoA7kt-1JwsS3jKP1H_Z-dkVZxWigEArpIyyxCM5rHzsw3AJ_IBmkR6zgq4thHKYU6UT8psiiTxmlnjCws9zuPJ_nwIv12mV1uwXHbC8NllUH3Nzq91tbhSTd8ze5qNuv-6DHUOBkgQXLK-JaPYDvNKNrrwPbR6Gw4uVXIZITz5qgliZjgCXzclHktNkdxFC0Kfi6lFP8zU_8o7NoKnb6A58F9xKPmDV_Cll_uws4dUMFdeFwXddrrV_B7rK-W3KSIFFOXjKzhcbaoxxLhBuUbywJ5KDNnkOdY3SzKNa7WnL-pV7kw_gp5YnadcyCW0g1rK-Q2n_IXkrFz5QLrUjisB-sgkTUnjb7i3UMyCJsZofh59H08_YKrua7YY96Di9OT6fEwCmMZIpukgyqKnbYmGfieT4TOjbSxS63IDfmemrSBcRQCiVzTlfedIX-hkAX9-s5Jmzlr-8lr6CzLpX8DmBGJtxQBJi5O9cAMyN9JcvZBerooZLwP_ZYLygbMch6dMVdtcdpPdYeBihmoGgbug7glXTXAHfch-tqyWv0lhYoMzH3ID1vxUEEVXCvBCIzkRue9tw_b_QM8HU7H5-p8NDk7gGe8wofMcXYInWp949-Rd1SZ90H6_wC-7RGa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+resonance+imaging+evaluation+of+vertebral+tumor+prediction+using+hierarchical+hidden+Markov+random+field+model+on+Internet+of+Medical+Things+%28IOMT%29+platform&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Alsiddiky%2C+Abdulmonem&rft.au=Awwad%2C+Waleed&rft.au=Bakarman%2C+Khalid&rft.au=Fouad%2C+H&rft.date=2020-07-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=159&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2020.107772&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |