Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI
Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a b...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 66; no. 3; pp. 695 - 709 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis. Methods: In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor. Results: The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior. Conclusion: The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution. Significance: The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks. |
---|---|
AbstractList | In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.
In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.
The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.
The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.
The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks. Objective : In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis. Methods : In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor. Results : The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior. Conclusion : The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution. Significance : The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks. In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.OBJECTIVEIn recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.METHODSIn this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.RESULTSThe brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.CONCLUSIONThe results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.SIGNIFICANCEThe work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks. |
Author | Al-sharoa, Esraa Aviyente, Selin Al-khassaweneh, Mahmood |
Author_xml | – sequence: 1 givenname: Esraa orcidid: 0000-0001-9648-5046 surname: Al-sharoa fullname: Al-sharoa, Esraa email: alsharoa@msu.edu organization: Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA – sequence: 2 givenname: Mahmood orcidid: 0000-0002-2207-6124 surname: Al-khassaweneh fullname: Al-khassaweneh, Mahmood organization: Department of Electrical and Computer Engineering, Michigan State University and also with the Computer Engineering DepartmentYarmouk University – sequence: 3 givenname: Selin orcidid: 0000-0001-9023-107X surname: Aviyente fullname: Aviyente, Selin organization: Department of Electrical and Computer EngineeringMichigan State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993516$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv3CAUhFGVqtmk_QFVpQopl168BYwNHLu7aRspq0rJ9owwfq6IbLwFfPC_L-5uesihpyfgm6dh5gpd-NEDQu8pWVNK1OfDZn-7ZoTKNZMVr0X9Cq1oVcmCVSW9QCuSnwrFFL9EVzE-5SOXvH6DLplSqqxovUL-AD6OAW9MhBYfYDiOwfTY-Bbvpz653swQ8HYchsm7NOMdJLDJjR53WfWYpnZ2_hfeBOM83s3eDM5GvJvCcvsAMS3zMZkEuNs_3L1FrzvTR3h3ntfo59fbw_Z7cf_j2932y31hS65SQUuq6pYLTgy0jWiZbSvJLQjSUW4Mq7ltJAdGOCVdR5ToQChhaNXaBohqymv06bT3GMbfU7ahBxct9L3xME5RM1LLktOcQkZvXqBP4xR8dqcZlbySgv2lPp6pqRmg1cfgBhNm_ZxkBsQJsGGMMUCnrcvfzkmlnE2vKdFLZ3rpTC-d6XNnWUlfKJ-X_0_z4aRxAPCPl5xkt6z8A61MoVY |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3168659 crossref_primary_10_1016_j_bspc_2024_106471 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_1109_TNSRE_2022_3198679 crossref_primary_10_1088_1742_6596_2722_1_012011 crossref_primary_10_1016_j_eswa_2023_119791 crossref_primary_10_1016_j_jocs_2024_102520 crossref_primary_10_1016_j_engappai_2022_105657 crossref_primary_10_1016_j_neuroimage_2020_117615 crossref_primary_10_3390_brainsci15030277 crossref_primary_10_1109_TBME_2020_3011363 crossref_primary_10_1109_TNSRE_2023_3277509 crossref_primary_10_1109_ACCESS_2022_3232285 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_1016_j_neuroimage_2020_117489 crossref_primary_10_3389_fnins_2019_00618 crossref_primary_10_1002_wics_1566 crossref_primary_10_3389_fninf_2020_581897 crossref_primary_10_1109_ACCESS_2021_3105692 crossref_primary_10_4236_jamp_2023_117124 crossref_primary_10_1038_s41598_024_74361_0 crossref_primary_10_1016_j_jneumeth_2019_108480 crossref_primary_10_1109_TBME_2022_3152413 crossref_primary_10_1109_TNSRE_2019_2953971 crossref_primary_10_1103_RevModPhys_94_031002 crossref_primary_10_3389_fnagi_2022_1068175 crossref_primary_10_1109_TMI_2021_3122226 crossref_primary_10_1109_TNSRE_2023_3309847 crossref_primary_10_1016_j_neunet_2024_106660 crossref_primary_10_3389_fncom_2022_747735 crossref_primary_10_1109_OJSP_2021_3051453 |
Cites_doi | 10.1073/pnas.1422487112 10.1016/j.schres.2007.11.039 10.1002/hbm.22599 10.1186/1753-4631-1-3 10.1016/j.neuroimage.2012.03.070 10.1002/mrm.1910340409 10.1038/nn.3993 10.1073/pnas.98.2.676 10.1073/pnas.0135058100 10.1103/PhysRevE.92.022816 10.1103/PhysRevE.69.026113 10.1109/TSIPN.2017.2668146 10.2172/923081 10.1371/journal.pone.0086028 10.1103/PhysRevE.74.016110 10.1016/j.physrep.2016.09.002 10.1073/pnas.1018985108 10.1145/1281192.1281212 10.1073/pnas.0601417103 10.1016/j.mri.2007.03.007 10.1126/science.1184819 10.1007/s10548-014-0406-2 10.1093/cercor/bhn059 10.1214/aoms/1177729694 10.1109/PRNI.2013.28 10.1073/pnas.0605965104 10.1007/s11222-007-9033-z 10.1006/nimg.2001.0978 10.1007/s10072-011-0636-y 10.1145/1150402.1150467 10.1152/jn.00048.2006 10.1016/j.jmva.2006.11.013 10.1146/annurev-clinpsy-040510-143934 10.1137/S0895479898346995 10.1016/j.neuroimage.2013.12.063 10.1006/nimg.1997.0315 10.1073/pnas.1718449115 10.1093/cercor/bhs352 10.1016/j.neuroimage.2014.02.014 10.1109/ICASSP.2017.7952569 10.1007/s10548-013-0319-5 10.1007/978-3-642-23780-5_13 10.1137/S0895479896305696 10.1002/hbm.22404 10.1007/s10994-010-5214-7 10.1145/3172867 10.3389/fnins.2010.00200 10.1016/j.neuroimage.2014.11.054 10.1109/TBME.2016.2553960 10.1016/j.neuroimage.2016.11.026 10.1137/07070111X 10.1002/hbm.22290 10.1016/j.neuroimage.2013.05.079 10.1145/1367497.1367590 10.1016/j.sigpro.2005.01.012 10.1007/s10618-012-0302-x 10.1016/j.neuroimage.2009.12.011 10.1016/j.neuroimage.2013.07.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2018.2854676 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 709 |
ExternalDocumentID | 29993516 10_1109_TBME_2018_2854676 8408722 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1422262; CCF-1615489 funderid: 10.13039/100000001 – fundername: Schlumberger Foundation funderid: 10.13039/100002322 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c349t-13196d4740aedb7d2cd584ce70f14aa264cb84e20410ff097fe797a15dcbe09b3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 15:51:10 EDT 2025 Mon Jun 30 10:25:07 EDT 2025 Thu Apr 03 07:06:40 EDT 2025 Tue Jul 01 03:28:30 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-13196d4740aedb7d2cd584ce70f14aa264cb84e20410ff097fe797a15dcbe09b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9648-5046 0000-0001-9023-107X 0000-0002-2207-6124 |
PMID | 29993516 |
PQID | 2184587293 |
PQPubID | 85474 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2068341993 pubmed_primary_29993516 proquest_journals_2184587293 crossref_citationtrail_10_1109_TBME_2018_2854676 crossref_primary_10_1109_TBME_2018_2854676 ieee_primary_8408722 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref12 ref15 ref58 ref14 ref53 braun (ref31) 0; 112 ref52 ref11 andrew (ref38) 2002; 2 ref17 ref16 ref19 ref18 (ref56) 2017 karahano?lu (ref69) 2015; 6 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 (ref59) 0 (ref54) 2007 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 tu (ref29) 2016 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 jutla (ref60) 2011 newman (ref49) 0 greiciuss (ref10) 0; 100 ref70 eavani (ref64) 0 ref68 ref24 ref67 ref23 ref26 ref25 ref20 ref63 david (ref66) 2009 ref22 ref65 ref21 ref28 ref27 (ref55) 2014 ref62 ref61 chakraborty (ref39) 2017; 50 |
References_xml | – volume: 112 start-page: 11 678 year: 0 ident: ref31 article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1422487112 – ident: ref65 doi: 10.1016/j.schres.2007.11.039 – ident: ref62 doi: 10.1002/hbm.22599 – ident: ref22 doi: 10.1186/1753-4631-1-3 – year: 0 ident: ref59 article-title: findchangepts – ident: ref17 doi: 10.1016/j.neuroimage.2012.03.070 – ident: ref4 doi: 10.1002/mrm.1910340409 – year: 0 ident: ref49 article-title: Community detection in networks: Modularity optimization and maximum likelihood are equivalent – ident: ref70 doi: 10.1038/nn.3993 – ident: ref8 doi: 10.1073/pnas.98.2.676 – volume: 100 start-page: 253 year: 0 ident: ref10 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.0135058100 – ident: ref44 doi: 10.1103/PhysRevE.92.022816 – ident: ref43 doi: 10.1103/PhysRevE.69.026113 – ident: ref19 doi: 10.1109/TSIPN.2017.2668146 – ident: ref37 doi: 10.2172/923081 – ident: ref28 doi: 10.1371/journal.pone.0086028 – ident: ref48 doi: 10.1103/PhysRevE.74.016110 – ident: ref50 doi: 10.1016/j.physrep.2016.09.002 – ident: ref30 doi: 10.1073/pnas.1018985108 – ident: ref26 doi: 10.1145/1281192.1281212 – year: 2016 ident: ref29 article-title: Temporal clustering in dynamic networks with tensor decomposition – volume: 6 year: 2015 ident: ref69 article-title: Transient brain activity disentangles fmri resting-state dynamics in terms of spatially and temporally overlapping networks publication-title: Nature Commun – ident: ref7 doi: 10.1073/pnas.0601417103 – ident: ref1 doi: 10.1016/j.mri.2007.03.007 – ident: ref32 doi: 10.1126/science.1184819 – ident: ref13 doi: 10.1007/s10548-014-0406-2 – ident: ref9 doi: 10.1093/cercor/bhn059 – ident: ref51 doi: 10.1214/aoms/1177729694 – year: 2007 ident: ref54 article-title: 1000 functional connectomes project – ident: ref61 doi: 10.1109/PRNI.2013.28 – start-page: 426 year: 0 ident: ref64 article-title: Unsupervised learning of functional network dynamics in resting state fMRI publication-title: Proc Int Conf Inf Process Med Imag – ident: ref47 doi: 10.1073/pnas.0605965104 – ident: ref24 doi: 10.1007/s11222-007-9033-z – ident: ref57 doi: 10.1006/nimg.2001.0978 – ident: ref6 doi: 10.1007/s10072-011-0636-y – ident: ref25 doi: 10.1145/1150402.1150467 – ident: ref67 doi: 10.1152/jn.00048.2006 – ident: ref53 doi: 10.1016/j.jmva.2006.11.013 – volume: 2 start-page: 849 year: 2002 ident: ref38 article-title: On spectral clustering:analysis and an algorithm publication-title: Advances Neural Inf Process Syst – year: 2014 ident: ref55 article-title: Statistical parametric mapping – ident: ref23 doi: 10.1146/annurev-clinpsy-040510-143934 – ident: ref36 doi: 10.1137/S0895479898346995 – ident: ref14 doi: 10.1016/j.neuroimage.2013.12.063 – ident: ref5 doi: 10.1006/nimg.1997.0315 – ident: ref42 doi: 10.1073/pnas.1718449115 – ident: ref2 doi: 10.1093/cercor/bhs352 – ident: ref68 doi: 10.1016/j.neuroimage.2014.02.014 – year: 2017 ident: ref56 article-title: Functional connectivity toolbox – ident: ref33 doi: 10.1109/ICASSP.2017.7952569 – ident: ref15 doi: 10.1007/s10548-013-0319-5 – ident: ref41 doi: 10.1007/978-3-642-23780-5_13 – ident: ref35 doi: 10.1137/S0895479896305696 – year: 2011 ident: ref60 article-title: A generalized louvain method for community detection implemented in MATLAB – volume: 50 year: 2017 ident: ref39 article-title: Metrics for community analysis: A survey publication-title: ACM Comput Surv – ident: ref18 doi: 10.1002/hbm.22404 – ident: ref45 doi: 10.1007/s10994-010-5214-7 – ident: ref40 doi: 10.1145/3172867 – ident: ref21 doi: 10.3389/fnins.2010.00200 – ident: ref16 doi: 10.1016/j.neuroimage.2014.11.054 – ident: ref20 doi: 10.1109/TBME.2016.2553960 – ident: ref52 doi: 10.1016/j.neuroimage.2016.11.026 – ident: ref34 doi: 10.1137/07070111X – year: 2009 ident: ref66 article-title: Hippocampal neuroanatomy publication-title: The Hippocampus Book – ident: ref63 doi: 10.1002/hbm.22290 – ident: ref11 doi: 10.1016/j.neuroimage.2013.05.079 – ident: ref46 doi: 10.1145/1367497.1367590 – ident: ref58 doi: 10.1016/j.sigpro.2005.01.012 – ident: ref27 doi: 10.1007/s10618-012-0302-x – ident: ref12 doi: 10.1016/j.neuroimage.2009.12.011 – ident: ref3 doi: 10.1016/j.neuroimage.2013.07.019 |
SSID | ssj0014846 |
Score | 2.4811962 |
Snippet | Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease... In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent... Objective : In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 695 |
SubjectTerms | Adult Algorithms Brain Brain - diagnostic imaging Brain - physiology Brain architecture Brain mapping Cognitive ability Communities Community structure Consistency Dynamic functional connectivity networks Dynamics Evolution Functional magnetic resonance imaging Functional morphology Hidden Markov models Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Mathematical analysis Matrix decomposition Measurement Multilayers Network analysis Networks Neural networks Organizations Population studies Principal component analysis Rest - physiology resting state fMRI (rs-fMRI) spectral clustering Tensile stress tensor decomposition Tensors Young Adult |
Title | Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI |
URI | https://ieeexplore.ieee.org/document/8408722 https://www.ncbi.nlm.nih.gov/pubmed/29993516 https://www.proquest.com/docview/2184587293 https://www.proquest.com/docview/2068341993 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcaGl5LC3ISJwQ2TqJs46PLNuqIIVDtZV6ixw_Ll1lUZs9tL-eGdsbVQgqTomUSeJoZjzfZF4An9AIoJl3BoXXl5lAA5Fp1_ms8kVdaa-FD326m5-z80vx46q62oEvYy2Mcy4kn7kpnYZYvl2bDf0qO0FnpJYFbrhP0HGLtVpjxEDUsSiH56jAhRIpgplzdbKcN6eUxFVPqVxwJmlsEe7CqqxoyvkDcxTmq_wbagaTc7YHzXaxMdPkeroZuqm5_6OP4_9-zT68SNiTfY3C8hJ2XH8Azx90JDyAp02KtR9Cv0QPd33D5mjnLFvGFlYrpnvLQtXuSiNaZ6nAZLhjCzeEtK6eIQ5mlJ9IFVRsTjMo2CIOvr9li1AWyS6ouQceA9Zlvrn4_gouz06X386zNJ0hM6VQNMMeldcKKbh2tpO2MBbBjHGS-1xojUDLdLVwBRc5954r6Z1UUueVNZ3jqitfw26_7t1bYBrFyJVSe1NrUUnVidJIxH1Gd8qihzoBvmVSa1LrcpqgsWqDC8NVSyxuicVtYvEEPo-3_Ip9Ox4jPiT2jISJMxM43kpCmzT7tiWXuMKrqpzAx_Ey6iQFWnTv1huk4bOa-uQRzZsoQeOzt4L37u_vPIJnuDIVs9yOYXe42bj3CHuG7kOQ99-gJvv0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8QSPx48AMED1HXxCdjj227ve0-eh7kUMoDKQlvzXY_EuPRM9B7gL-emW2vIUaNT23SabvNzOz8pvMF8BGNAJp5Z1B4fRoJNBCRdrWPMp_kmfZa-NCnuzibzC_Et8vscgM-D7UwzrmQfObGdBpi-XZpVvSr7BCdkVwmuOFuod3P4q5aa4gZiLwry-ExqnCiRB_DjLk6LKfFEaVx5WMqGJxIGlyE-7BKM5pz_sAghQkrfwebwegcP4divdwu1-TneNXWY3P3WyfH__2eF_CsR5_sSycuL2HDNdvw9EFPwm14VPTR9h1oSvRxl9dsipbOsrJrYrVgurEs1O0uNOJ11peYtLds5tqQ2NUwRMKMMhSphopNaQoFm902-uqHuWGzUBjJzqm9Bx4D2mW-OD95BRfHR-XXedTPZ4hMKhRNsUf1tUIKrp2tpU2MRThjnOQ-Floj1DJ1LlzCRcy950p6J5XUcWZN7biq013YbJaNew1MoyC5VGpvci0yqWqRGonIz-haWfRRR8DXTKpM37ycZmgsquDEcFURiyticdWzeASfhlt-dZ07_kW8Q-wZCHvOjOBgLQlVr9s3FTnFGV5V6Qg-DJdRKynUohu3XCENn-TUKY9o9joJGp69Frz9P7_zPTyel8VpdXpy9v0NPMFVqi7n7QA22-uVe4sgqK3fBdm_B-ip_z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Based+Temporal+and+Multilayer+Community+Detection+for+Studying+Brain+Dynamics+During+Resting+State+fMRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Al-Sharoa%2C+Esraa&rft.au=Al-Khassaweneh%2C+Mahmood&rft.au=Aviyente%2C+Selin&rft.date=2019-03-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=66&rft.issue=3&rft.spage=695&rft_id=info:doi/10.1109%2FTBME.2018.2854676&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |