Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI

Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 3; pp. 695 - 709
Main Authors Al-sharoa, Esraa, Al-khassaweneh, Mahmood, Aviyente, Selin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis. Methods: In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor. Results: The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior. Conclusion: The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution. Significance: The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.
AbstractList In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis. In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor. The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior. The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution. The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.
Objective : In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis. Methods : In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor. Results : The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior. Conclusion : The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution. Significance : The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.
In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.OBJECTIVEIn recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent studies show that functional connectivity during resting state is a dynamic process. Studying this temporal dynamics provides a better understanding of the human brain compared to static network analysis.In this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.METHODSIn this paper, a new tensor based temporal and multi-layer community detection algorithm is introduced to identify and track the brain network community structure across time and subjects. The framework studies the temporal evolution of communities in fMRI connectivity networks constructed across different regions of interests. The proposed approach relies on determining the subspace that best describes the community structure using Tucker decomposition of the tensor.The brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.RESULTSThe brain dynamics are summarized into a set of functional connectivity states that are repeated over time and subjects. The dynamic behavior of the brain is evaluated in terms of consistency of different subnetworks during resting state. The results illustrate that some of the networks, such as the default mode, cognitive control and bilateral limbic networks, have low consistency over time indicating their dynamic behavior.The results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.CONCLUSIONThe results indicate that the functional connectivity of the brain is dynamic and the detected community structure experiences smooth temporal evolution.The work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.SIGNIFICANCEThe work in this paper provides evidence for temporal brain dynamics during resting state through dynamic multi-layer community detection which enables us to better understand the behavior of different subnetworks.
Author Al-sharoa, Esraa
Aviyente, Selin
Al-khassaweneh, Mahmood
Author_xml – sequence: 1
  givenname: Esraa
  orcidid: 0000-0001-9648-5046
  surname: Al-sharoa
  fullname: Al-sharoa, Esraa
  email: alsharoa@msu.edu
  organization: Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 2
  givenname: Mahmood
  orcidid: 0000-0002-2207-6124
  surname: Al-khassaweneh
  fullname: Al-khassaweneh, Mahmood
  organization: Department of Electrical and Computer Engineering, Michigan State University and also with the Computer Engineering DepartmentYarmouk University
– sequence: 3
  givenname: Selin
  orcidid: 0000-0001-9023-107X
  surname: Aviyente
  fullname: Aviyente, Selin
  organization: Department of Electrical and Computer EngineeringMichigan State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993516$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv3CAUhFGVqtmk_QFVpQopl168BYwNHLu7aRspq0rJ9owwfq6IbLwFfPC_L-5uesihpyfgm6dh5gpd-NEDQu8pWVNK1OfDZn-7ZoTKNZMVr0X9Cq1oVcmCVSW9QCuSnwrFFL9EVzE-5SOXvH6DLplSqqxovUL-AD6OAW9MhBYfYDiOwfTY-Bbvpz653swQ8HYchsm7NOMdJLDJjR53WfWYpnZ2_hfeBOM83s3eDM5GvJvCcvsAMS3zMZkEuNs_3L1FrzvTR3h3ntfo59fbw_Z7cf_j2932y31hS65SQUuq6pYLTgy0jWiZbSvJLQjSUW4Mq7ltJAdGOCVdR5ToQChhaNXaBohqymv06bT3GMbfU7ahBxct9L3xME5RM1LLktOcQkZvXqBP4xR8dqcZlbySgv2lPp6pqRmg1cfgBhNm_ZxkBsQJsGGMMUCnrcvfzkmlnE2vKdFLZ3rpTC-d6XNnWUlfKJ-X_0_z4aRxAPCPl5xkt6z8A61MoVY
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3168659
crossref_primary_10_1016_j_bspc_2024_106471
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_1109_TNSRE_2022_3198679
crossref_primary_10_1088_1742_6596_2722_1_012011
crossref_primary_10_1016_j_eswa_2023_119791
crossref_primary_10_1016_j_jocs_2024_102520
crossref_primary_10_1016_j_engappai_2022_105657
crossref_primary_10_1016_j_neuroimage_2020_117615
crossref_primary_10_3390_brainsci15030277
crossref_primary_10_1109_TBME_2020_3011363
crossref_primary_10_1109_TNSRE_2023_3277509
crossref_primary_10_1109_ACCESS_2022_3232285
crossref_primary_10_3389_fnins_2019_00856
crossref_primary_10_1016_j_neuroimage_2020_117489
crossref_primary_10_3389_fnins_2019_00618
crossref_primary_10_1002_wics_1566
crossref_primary_10_3389_fninf_2020_581897
crossref_primary_10_1109_ACCESS_2021_3105692
crossref_primary_10_4236_jamp_2023_117124
crossref_primary_10_1038_s41598_024_74361_0
crossref_primary_10_1016_j_jneumeth_2019_108480
crossref_primary_10_1109_TBME_2022_3152413
crossref_primary_10_1109_TNSRE_2019_2953971
crossref_primary_10_1103_RevModPhys_94_031002
crossref_primary_10_3389_fnagi_2022_1068175
crossref_primary_10_1109_TMI_2021_3122226
crossref_primary_10_1109_TNSRE_2023_3309847
crossref_primary_10_1016_j_neunet_2024_106660
crossref_primary_10_3389_fncom_2022_747735
crossref_primary_10_1109_OJSP_2021_3051453
Cites_doi 10.1073/pnas.1422487112
10.1016/j.schres.2007.11.039
10.1002/hbm.22599
10.1186/1753-4631-1-3
10.1016/j.neuroimage.2012.03.070
10.1002/mrm.1910340409
10.1038/nn.3993
10.1073/pnas.98.2.676
10.1073/pnas.0135058100
10.1103/PhysRevE.92.022816
10.1103/PhysRevE.69.026113
10.1109/TSIPN.2017.2668146
10.2172/923081
10.1371/journal.pone.0086028
10.1103/PhysRevE.74.016110
10.1016/j.physrep.2016.09.002
10.1073/pnas.1018985108
10.1145/1281192.1281212
10.1073/pnas.0601417103
10.1016/j.mri.2007.03.007
10.1126/science.1184819
10.1007/s10548-014-0406-2
10.1093/cercor/bhn059
10.1214/aoms/1177729694
10.1109/PRNI.2013.28
10.1073/pnas.0605965104
10.1007/s11222-007-9033-z
10.1006/nimg.2001.0978
10.1007/s10072-011-0636-y
10.1145/1150402.1150467
10.1152/jn.00048.2006
10.1016/j.jmva.2006.11.013
10.1146/annurev-clinpsy-040510-143934
10.1137/S0895479898346995
10.1016/j.neuroimage.2013.12.063
10.1006/nimg.1997.0315
10.1073/pnas.1718449115
10.1093/cercor/bhs352
10.1016/j.neuroimage.2014.02.014
10.1109/ICASSP.2017.7952569
10.1007/s10548-013-0319-5
10.1007/978-3-642-23780-5_13
10.1137/S0895479896305696
10.1002/hbm.22404
10.1007/s10994-010-5214-7
10.1145/3172867
10.3389/fnins.2010.00200
10.1016/j.neuroimage.2014.11.054
10.1109/TBME.2016.2553960
10.1016/j.neuroimage.2016.11.026
10.1137/07070111X
10.1002/hbm.22290
10.1016/j.neuroimage.2013.05.079
10.1145/1367497.1367590
10.1016/j.sigpro.2005.01.012
10.1007/s10618-012-0302-x
10.1016/j.neuroimage.2009.12.011
10.1016/j.neuroimage.2013.07.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2018.2854676
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 709
ExternalDocumentID 29993516
10_1109_TBME_2018_2854676
8408722
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1422262; CCF-1615489
  funderid: 10.13039/100000001
– fundername: Schlumberger Foundation
  funderid: 10.13039/100002322
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-13196d4740aedb7d2cd584ce70f14aa264cb84e20410ff097fe797a15dcbe09b3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 15:51:10 EDT 2025
Mon Jun 30 10:25:07 EDT 2025
Thu Apr 03 07:06:40 EDT 2025
Tue Jul 01 03:28:30 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-13196d4740aedb7d2cd584ce70f14aa264cb84e20410ff097fe797a15dcbe09b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9648-5046
0000-0001-9023-107X
0000-0002-2207-6124
PMID 29993516
PQID 2184587293
PQPubID 85474
PageCount 15
ParticipantIDs proquest_miscellaneous_2068341993
pubmed_primary_29993516
proquest_journals_2184587293
crossref_citationtrail_10_1109_TBME_2018_2854676
crossref_primary_10_1109_TBME_2018_2854676
ieee_primary_8408722
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
ref58
ref14
ref53
braun (ref31) 0; 112
ref52
ref11
andrew (ref38) 2002; 2
ref17
ref16
ref19
ref18
(ref56) 2017
karahano?lu (ref69) 2015; 6
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
(ref59) 0
(ref54) 2007
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
tu (ref29) 2016
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
jutla (ref60) 2011
newman (ref49) 0
greiciuss (ref10) 0; 100
ref70
eavani (ref64) 0
ref68
ref24
ref67
ref23
ref26
ref25
ref20
ref63
david (ref66) 2009
ref22
ref65
ref21
ref28
ref27
(ref55) 2014
ref62
ref61
chakraborty (ref39) 2017; 50
References_xml – volume: 112
  start-page: 11 678
  year: 0
  ident: ref31
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1422487112
– ident: ref65
  doi: 10.1016/j.schres.2007.11.039
– ident: ref62
  doi: 10.1002/hbm.22599
– ident: ref22
  doi: 10.1186/1753-4631-1-3
– year: 0
  ident: ref59
  article-title: findchangepts
– ident: ref17
  doi: 10.1016/j.neuroimage.2012.03.070
– ident: ref4
  doi: 10.1002/mrm.1910340409
– year: 0
  ident: ref49
  article-title: Community detection in networks: Modularity optimization and maximum likelihood are equivalent
– ident: ref70
  doi: 10.1038/nn.3993
– ident: ref8
  doi: 10.1073/pnas.98.2.676
– volume: 100
  start-page: 253
  year: 0
  ident: ref10
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0135058100
– ident: ref44
  doi: 10.1103/PhysRevE.92.022816
– ident: ref43
  doi: 10.1103/PhysRevE.69.026113
– ident: ref19
  doi: 10.1109/TSIPN.2017.2668146
– ident: ref37
  doi: 10.2172/923081
– ident: ref28
  doi: 10.1371/journal.pone.0086028
– ident: ref48
  doi: 10.1103/PhysRevE.74.016110
– ident: ref50
  doi: 10.1016/j.physrep.2016.09.002
– ident: ref30
  doi: 10.1073/pnas.1018985108
– ident: ref26
  doi: 10.1145/1281192.1281212
– year: 2016
  ident: ref29
  article-title: Temporal clustering in dynamic networks with tensor decomposition
– volume: 6
  year: 2015
  ident: ref69
  article-title: Transient brain activity disentangles fmri resting-state dynamics in terms of spatially and temporally overlapping networks
  publication-title: Nature Commun
– ident: ref7
  doi: 10.1073/pnas.0601417103
– ident: ref1
  doi: 10.1016/j.mri.2007.03.007
– ident: ref32
  doi: 10.1126/science.1184819
– ident: ref13
  doi: 10.1007/s10548-014-0406-2
– ident: ref9
  doi: 10.1093/cercor/bhn059
– ident: ref51
  doi: 10.1214/aoms/1177729694
– year: 2007
  ident: ref54
  article-title: 1000 functional connectomes project
– ident: ref61
  doi: 10.1109/PRNI.2013.28
– start-page: 426
  year: 0
  ident: ref64
  article-title: Unsupervised learning of functional network dynamics in resting state fMRI
  publication-title: Proc Int Conf Inf Process Med Imag
– ident: ref47
  doi: 10.1073/pnas.0605965104
– ident: ref24
  doi: 10.1007/s11222-007-9033-z
– ident: ref57
  doi: 10.1006/nimg.2001.0978
– ident: ref6
  doi: 10.1007/s10072-011-0636-y
– ident: ref25
  doi: 10.1145/1150402.1150467
– ident: ref67
  doi: 10.1152/jn.00048.2006
– ident: ref53
  doi: 10.1016/j.jmva.2006.11.013
– volume: 2
  start-page: 849
  year: 2002
  ident: ref38
  article-title: On spectral clustering:analysis and an algorithm
  publication-title: Advances Neural Inf Process Syst
– year: 2014
  ident: ref55
  article-title: Statistical parametric mapping
– ident: ref23
  doi: 10.1146/annurev-clinpsy-040510-143934
– ident: ref36
  doi: 10.1137/S0895479898346995
– ident: ref14
  doi: 10.1016/j.neuroimage.2013.12.063
– ident: ref5
  doi: 10.1006/nimg.1997.0315
– ident: ref42
  doi: 10.1073/pnas.1718449115
– ident: ref2
  doi: 10.1093/cercor/bhs352
– ident: ref68
  doi: 10.1016/j.neuroimage.2014.02.014
– year: 2017
  ident: ref56
  article-title: Functional connectivity toolbox
– ident: ref33
  doi: 10.1109/ICASSP.2017.7952569
– ident: ref15
  doi: 10.1007/s10548-013-0319-5
– ident: ref41
  doi: 10.1007/978-3-642-23780-5_13
– ident: ref35
  doi: 10.1137/S0895479896305696
– year: 2011
  ident: ref60
  article-title: A generalized louvain method for community detection implemented in MATLAB
– volume: 50
  year: 2017
  ident: ref39
  article-title: Metrics for community analysis: A survey
  publication-title: ACM Comput Surv
– ident: ref18
  doi: 10.1002/hbm.22404
– ident: ref45
  doi: 10.1007/s10994-010-5214-7
– ident: ref40
  doi: 10.1145/3172867
– ident: ref21
  doi: 10.3389/fnins.2010.00200
– ident: ref16
  doi: 10.1016/j.neuroimage.2014.11.054
– ident: ref20
  doi: 10.1109/TBME.2016.2553960
– ident: ref52
  doi: 10.1016/j.neuroimage.2016.11.026
– ident: ref34
  doi: 10.1137/07070111X
– year: 2009
  ident: ref66
  article-title: Hippocampal neuroanatomy
  publication-title: The Hippocampus Book
– ident: ref63
  doi: 10.1002/hbm.22290
– ident: ref11
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: ref46
  doi: 10.1145/1367497.1367590
– ident: ref58
  doi: 10.1016/j.sigpro.2005.01.012
– ident: ref27
  doi: 10.1007/s10618-012-0302-x
– ident: ref12
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: ref3
  doi: 10.1016/j.neuroimage.2013.07.019
SSID ssj0014846
Score 2.4811962
Snippet Objective: In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease...
In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease populations. Recent...
Objective : In recent years, resting state fMRI has been widely utilized to understand the functional organization of the brain for healthy and disease...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 695
SubjectTerms Adult
Algorithms
Brain
Brain - diagnostic imaging
Brain - physiology
Brain architecture
Brain mapping
Cognitive ability
Communities
Community structure
Consistency
Dynamic functional connectivity networks
Dynamics
Evolution
Functional magnetic resonance imaging
Functional morphology
Hidden Markov models
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Mathematical analysis
Matrix decomposition
Measurement
Multilayers
Network analysis
Networks
Neural networks
Organizations
Population studies
Principal component analysis
Rest - physiology
resting state fMRI (rs-fMRI)
spectral clustering
Tensile stress
tensor decomposition
Tensors
Young Adult
Title Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI
URI https://ieeexplore.ieee.org/document/8408722
https://www.ncbi.nlm.nih.gov/pubmed/29993516
https://www.proquest.com/docview/2184587293
https://www.proquest.com/docview/2068341993
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcaGl5LC3ISJwQ2TqJs46PLNuqIIVDtZV6ixw_Ll1lUZs9tL-eGdsbVQgqTomUSeJoZjzfZF4An9AIoJl3BoXXl5lAA5Fp1_ms8kVdaa-FD326m5-z80vx46q62oEvYy2Mcy4kn7kpnYZYvl2bDf0qO0FnpJYFbrhP0HGLtVpjxEDUsSiH56jAhRIpgplzdbKcN6eUxFVPqVxwJmlsEe7CqqxoyvkDcxTmq_wbagaTc7YHzXaxMdPkeroZuqm5_6OP4_9-zT68SNiTfY3C8hJ2XH8Azx90JDyAp02KtR9Cv0QPd33D5mjnLFvGFlYrpnvLQtXuSiNaZ6nAZLhjCzeEtK6eIQ5mlJ9IFVRsTjMo2CIOvr9li1AWyS6ouQceA9Zlvrn4_gouz06X386zNJ0hM6VQNMMeldcKKbh2tpO2MBbBjHGS-1xojUDLdLVwBRc5954r6Z1UUueVNZ3jqitfw26_7t1bYBrFyJVSe1NrUUnVidJIxH1Gd8qihzoBvmVSa1LrcpqgsWqDC8NVSyxuicVtYvEEPo-3_Ip9Ox4jPiT2jISJMxM43kpCmzT7tiWXuMKrqpzAx_Ey6iQFWnTv1huk4bOa-uQRzZsoQeOzt4L37u_vPIJnuDIVs9yOYXe42bj3CHuG7kOQ99-gJvv0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8QSPx48AMED1HXxCdjj227ve0-eh7kUMoDKQlvzXY_EuPRM9B7gL-emW2vIUaNT23SabvNzOz8pvMF8BGNAJp5Z1B4fRoJNBCRdrWPMp_kmfZa-NCnuzibzC_Et8vscgM-D7UwzrmQfObGdBpi-XZpVvSr7BCdkVwmuOFuod3P4q5aa4gZiLwry-ExqnCiRB_DjLk6LKfFEaVx5WMqGJxIGlyE-7BKM5pz_sAghQkrfwebwegcP4divdwu1-TneNXWY3P3WyfH__2eF_CsR5_sSycuL2HDNdvw9EFPwm14VPTR9h1oSvRxl9dsipbOsrJrYrVgurEs1O0uNOJ11peYtLds5tqQ2NUwRMKMMhSphopNaQoFm902-uqHuWGzUBjJzqm9Bx4D2mW-OD95BRfHR-XXedTPZ4hMKhRNsUf1tUIKrp2tpU2MRThjnOQ-Floj1DJ1LlzCRcy950p6J5XUcWZN7biq013YbJaNew1MoyC5VGpvci0yqWqRGonIz-haWfRRR8DXTKpM37ycZmgsquDEcFURiyticdWzeASfhlt-dZ07_kW8Q-wZCHvOjOBgLQlVr9s3FTnFGV5V6Qg-DJdRKynUohu3XCENn-TUKY9o9joJGp69Frz9P7_zPTyel8VpdXpy9v0NPMFVqi7n7QA22-uVe4sgqK3fBdm_B-ip_z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Based+Temporal+and+Multilayer+Community+Detection+for+Studying+Brain+Dynamics+During+Resting+State+fMRI&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Al-Sharoa%2C+Esraa&rft.au=Al-Khassaweneh%2C+Mahmood&rft.au=Aviyente%2C+Selin&rft.date=2019-03-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=66&rft.issue=3&rft.spage=695&rft_id=info:doi/10.1109%2FTBME.2018.2854676&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon