Ensembled Transfer Learning and Multiple Kernel Learning for Phonocardiogram Based Atherosclerotic Coronary Artery Disease Detection
Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this st...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 26; no. 6; pp. 2804 - 2813 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal. |
---|---|
AbstractList | Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal. Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal. |
Author | Saha, Goutam Mandana, Kayapanda Pathak, Akanksha |
Author_xml | – sequence: 1 givenname: Akanksha orcidid: 0000-0002-2351-8545 surname: Pathak fullname: Pathak, Akanksha email: akanksha28.iitkgp@gmail.com organization: Department of Electrical and Electronics Communication Engineering, IIT Kharagpur, Kharagpur, India – sequence: 2 givenname: Kayapanda surname: Mandana fullname: Mandana, Kayapanda email: kmmandana@gmail.com organization: Cardiology Department, Fortis Hospital Kolkata, Kolkata, India – sequence: 3 givenname: Goutam orcidid: 0000-0001-6187-1684 surname: Saha fullname: Saha, Goutam email: gsaha@ece.iitkgp.ernet.in organization: Department of Electrical and Electronics Communication Engineering, IIT Kharagpur, Kharagpur, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34982707$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFvFCEUxompsbX2DzAmhsSLl115zCwMx-222uoaPdQzYZg3Lc0MrMAcvPuHy2R3NelBDkDg9315730vyYkPHgl5DWwJwNSHz5c3t0vOOF9WUDMu5TNyxkE0C85Zc3K8g6pPyUVKj6yspjwp8YKcVrVquGTyjPy-9gnHdsCO3kXjU4-RbtFE7_w9Nb6jX6chu92A9AtGj8O_zz5E-v0h-GBN7Fy4j2aklyYVo3V-wBiSHcqenaWbEIM38Rddx4zluHIJC0ivMKPNLvhX5HlvhoQXh_Oc_Ph4fbe5WWy_fbrdrLcLWwrOC-BCoTCK8bYCgK5rZc8bVdfQGlVJwQxY3vVGNYyJ2qLsWG9bK0HBypiqqc7J-73vLoafE6asR5csDoPxGKakuQChVmLFq4K-e4I-hin6Ul2hJG_YStSz4dsDNbUjdnoX3Vga1cf5FkDuAVsGkiL22rps5p5zNG7QwPQcpp7D1HOY-hBmUcIT5dH8f5o3e41DxL-8EkIBE9Uf-n-qBw |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107186 crossref_primary_10_1016_j_jscai_2025_102562 crossref_primary_10_1117_1_JEI_33_4_043052 crossref_primary_10_1007_s11042_023_17186_9 crossref_primary_10_1016_j_bspc_2025_107601 crossref_primary_10_1016_j_cmpb_2024_108462 crossref_primary_10_3390_electronics14010080 crossref_primary_10_34133_hds_0182 crossref_primary_10_1016_j_bspc_2023_104805 crossref_primary_10_1109_JSEN_2024_3373226 crossref_primary_10_3233_WEB_230063 crossref_primary_10_1016_j_heliyon_2024_e35631 crossref_primary_10_1109_JBHI_2024_3510519 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_3390_biomedicines11041167 crossref_primary_10_1093_ehjdh_ztac057 crossref_primary_10_1016_j_heliyon_2023_e23354 crossref_primary_10_1109_ACCESS_2024_3465511 crossref_primary_10_1016_j_compbiomed_2023_106707 crossref_primary_10_1016_j_compbiomed_2025_109904 crossref_primary_10_1186_s12711_024_00915_5 crossref_primary_10_1109_JBHI_2024_3354832 crossref_primary_10_3934_mbe_2023358 crossref_primary_10_1109_TIM_2024_3385035 crossref_primary_10_1016_j_bspc_2025_107705 crossref_primary_10_1109_JBHI_2023_3307870 crossref_primary_10_1007_s13239_022_00622_6 |
Cites_doi | 10.1109/ACCESS.2020.3002151 10.1109/TBME.1983.325211 10.4065/mcp.2009.0391 10.1109/CIC.2002.1166828 10.1109/JSTARS.2017.2662484 10.1109/10.237677 10.1109/TBME.2015.2432129 10.1016/j.compbiomed.2020.103733 10.1016/j.ejmp.2020.01.007 10.1109/ICASSP.2017.7952261 10.1016/j.bspc.2020.102055 10.1016/j.jneumeth.2015.01.010 10.1016/j.bbe.2019.02.003 10.1016/j.apacoust.2020.107242 10.1016/j.sigpro.2012.11.029 10.1080/10255842.2010.538386 10.1109/TBME.2008.2003098 10.1109/10.52343 10.1145/3194658.3194671 10.1109/EMBC44109.2020.9175450 10.1109/TKDE.2009.191 10.1007/s13239-012-0094-6 10.1109/TBME.2015.2475278 10.1007/BF02367612 10.1109/JSEN.2019.2894706 10.1016/j.compbiomed.2013.05.018 10.1109/51.334639 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2022.3140277 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 2813 |
ExternalDocumentID | 34982707 10_1109_JBHI_2022_3140277 9669106 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, India; MHRD funderid: 10.13039/501100004541 – fundername: Government of India grantid: 4-23/2014-TS.I |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c349t-1269e6a902b3111ddb7f289441ba93760a1c2dfa980064ce7d0fcbc71915aa383 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 01:44:53 EDT 2025 Sun Jun 29 16:33:11 EDT 2025 Thu Apr 03 07:04:33 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Tue Jul 01 03:00:01 EDT 2025 Wed Aug 27 02:24:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-1269e6a902b3111ddb7f289441ba93760a1c2dfa980064ce7d0fcbc71915aa383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6187-1684 0000-0002-2351-8545 |
PMID | 34982707 |
PQID | 2672805648 |
PQPubID | 85417 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2616956523 proquest_journals_2672805648 crossref_primary_10_1109_JBHI_2022_3140277 crossref_citationtrail_10_1109_JBHI_2022_3140277 ieee_primary_9669106 pubmed_primary_34982707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 Simonyan (ref20) 2015 ref23 ref26 ref25 ref22 ref21 Goodfellow (ref14) 2016 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref25 doi: 10.1109/ACCESS.2020.3002151 – ident: ref5 doi: 10.1109/TBME.1983.325211 – ident: ref1 doi: 10.4065/mcp.2009.0391 – ident: ref24 doi: 10.1109/CIC.2002.1166828 – ident: ref19 doi: 10.1109/JSTARS.2017.2662484 – ident: ref6 doi: 10.1109/10.237677 – ident: ref3 doi: 10.1109/TBME.2015.2432129 – ident: ref15 doi: 10.1016/j.compbiomed.2020.103733 – ident: ref28 doi: 10.1016/j.ejmp.2020.01.007 – volume-title: ICLR year: 2015 ident: ref20 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref18 doi: 10.1109/ICASSP.2017.7952261 – ident: ref11 doi: 10.1016/j.bspc.2020.102055 – ident: ref26 doi: 10.1016/j.jneumeth.2015.01.010 – ident: ref2 doi: 10.1016/j.bbe.2019.02.003 – ident: ref7 doi: 10.1016/j.apacoust.2020.107242 – ident: ref22 doi: 10.1016/j.sigpro.2012.11.029 – ident: ref23 doi: 10.1080/10255842.2010.538386 – ident: ref10 doi: 10.1109/TBME.2008.2003098 – ident: ref4 doi: 10.1109/10.52343 – ident: ref16 doi: 10.1145/3194658.3194671 – ident: ref17 doi: 10.1109/EMBC44109.2020.9175450 – ident: ref21 doi: 10.1109/TKDE.2009.191 – ident: ref8 doi: 10.1007/s13239-012-0094-6 – volume-title: Deep Learning year: 2016 ident: ref14 – ident: ref29 doi: 10.1109/TBME.2015.2475278 – ident: ref12 doi: 10.1007/BF02367612 – ident: ref27 doi: 10.1109/JSEN.2019.2894706 – ident: ref9 doi: 10.1016/j.compbiomed.2013.05.018 – ident: ref13 doi: 10.1109/51.334639 |
SSID | ssj0000816896 |
Score | 2.4853535 |
Snippet | Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2804 |
SubjectTerms | Accuracy Arteries Arteriosclerosis Artificial neural networks Atherosclerosis Bioinformatics Cardiovascular disease Continuous wavelet transforms Coronary artery Coronary artery disease Coronary Artery Disease - diagnostic imaging Coronary vessels Deep learning Disease detection Diseases Heart Heart diseases Humans Kernel Kernels Machine Learning multiple kernel learning Neural networks Neural Networks, Computer Optimization Performance measurement phonocardiogram Phonocardiography Redundancy Transfer learning Vein & artery diseases VGG16 |
Title | Ensembled Transfer Learning and Multiple Kernel Learning for Phonocardiogram Based Atherosclerotic Coronary Artery Disease Detection |
URI | https://ieeexplore.ieee.org/document/9669106 https://www.ncbi.nlm.nih.gov/pubmed/34982707 https://www.proquest.com/docview/2672805648 https://www.proquest.com/docview/2616956523 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVS98CqPQEFG4oTINvE6TnzsU0vRIg5U6i3yKyCxJCibPcCZH86M4w0IAeKUSHFiJzPOfJ9nPAPwIi-cUFzLtBTapwJ5T1oJUaAuUwI-lbtG0H7n5Vu5uBZXN8XNDrya9sJ470PwmZ_RafDlu85uaKnsGKE5Wje5C7tI3Ma9WtN6SiggEcpxcTxJcSKK6MTMM3V8dbp4jWSQc-SogtyWB7A_F6riJdWR_cUihRIrf0ebwepc3obldrxjsMmn2WYwM_vtt1SO__tCd-BWhJ_sZNSXu7Dj23uwv4wO9kP4ftGu_Wez8o4FK9b4nsUUrB-Ybh1bxgBE9sb3rV_9vIjgl7372LVoGynClYK-2CmaSMdOCGN2a-yv77BbdkZJE3T_lUbh8XA--ojYuR9CXFh7H64vL96fLdJYqCG1-BGHNOdSealVxs0c_53OmbJBIodIy2hFUTc6t9w1WlWEgKwvXdZYY0vkioXWyJEfwF7btf4RsLkvRaYrbUruRNGU2phG5nmpnbZcGptAthVWbWMWcyqmsaoDm8lUTaKuSdR1FHUCL6dbvowpPP7V-JDENDWMEkrgaKsRdZzk65pLqu1VSFEl8Hy6jNOTfC669d2G2uQSKSjS_QQejpo0PXurgI__3OcTOKCRjXFpR7A39Bv_FBHQYJ4F1f8BCi3_mg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVeeJVHoICROCGyTbyOkxz71PaRikMr9Rb5FZBYErSbPcCZH86M4w0IAeIUS3ZiJzOTmc8zngF4k2ZWlFzJOBfKxQJxT1wIkSEvUwK-MrWNoPPO1aWcXYuzm-xmA96NZ2Gccz74zE2o6X35tjMr2irbQ9MctZu8BbdR72d8OK017qj4EhK-IBfHRoyiKIIbM03KvbOD2SnCQc4RpQpyXG7D1lSUBc-pkuwvOskXWfm7ven1zsk9qNYrHsJNPk1WvZ6Yb78lc_zfV7oPd4MByvYHjnkAG659CFtVcLHvwPfjduk-67mzzOuxxi1YSML6ganWsiqEILJzt2jd_Gcnmr_s_ceuRe1IMa4U9sUOUElatk9WZrfE-RYdTssOKW2CWnylVTi8HA1eInbkeh8Z1j6C65Pjq8NZHEo1xAY_Yh-nXJZOqjLheop_T2t13iCUQ1tLq5LiblRquG1UWZANZFxuk8ZokyNazJRClPwYNtuudU-BTV0uElUonXMrsiZXWjcyTXNlleFSmwiSNbFqE_KYUzmNee3xTFLWROqaSF0HUkfwdrzly5DE41-Dd4hM48BAoQh21xxRBzFf1lxSda9MiiKC12M3Cih5XVTruhWNSSWCUAT8ETwZOGl89poBn_15zldwZ3ZVXdQXp5fnz2GbVjlEqe3CZr9YuRdoD_X6pReDH4RZAvM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensembled+Transfer+Learning+and+Multiple+Kernel+Learning+for+Phonocardiogram+Based+Atherosclerotic+Coronary+Artery+Disease+Detection&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Pathak%2C+Akanksha&rft.au=Mandana%2C+Kayapanda&rft.au=Saha%2C+Goutam&rft.date=2022-06-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=6&rft.spage=2804&rft.epage=2813&rft_id=info:doi/10.1109%2FJBHI.2022.3140277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2022_3140277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |