Ensembled Transfer Learning and Multiple Kernel Learning for Phonocardiogram Based Atherosclerotic Coronary Artery Disease Detection

Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this st...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 6; pp. 2804 - 2813
Main Authors Pathak, Akanksha, Mandana, Kayapanda, Saha, Goutam
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.
AbstractList Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.
Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using phonocardiogram (PCG). It leaves a scope to explore improvement of performance metrics by fusion of learned representations from deep learning. In this study, we propose a novel, multiple kernel learning (MKL) for their fusion using deep embeddings transferred from pre-trained convolutional neural network (CNN). The proposed MKL, finds optimal kernel combination by maximizing the similarity with ideal kernel and minimizing the redundancy with other basis kernels. Experiments are performed on 960 PCG epochs collected from 40 CAD and 40 normal subjects. The transferred embeddings attain maximum subject-level accuracy of 89.25% with kappa of 0.7850. Later, their fusion with handcrafted features using the proposed MKL gives an accuracy of 91.19% and kappa 0.8238. The study shows the potential of development of high accuracy CAD detection system by using easy to acquire, non-invasive PCG signal.
Author Saha, Goutam
Mandana, Kayapanda
Pathak, Akanksha
Author_xml – sequence: 1
  givenname: Akanksha
  orcidid: 0000-0002-2351-8545
  surname: Pathak
  fullname: Pathak, Akanksha
  email: akanksha28.iitkgp@gmail.com
  organization: Department of Electrical and Electronics Communication Engineering, IIT Kharagpur, Kharagpur, India
– sequence: 2
  givenname: Kayapanda
  surname: Mandana
  fullname: Mandana, Kayapanda
  email: kmmandana@gmail.com
  organization: Cardiology Department, Fortis Hospital Kolkata, Kolkata, India
– sequence: 3
  givenname: Goutam
  orcidid: 0000-0001-6187-1684
  surname: Saha
  fullname: Saha, Goutam
  email: gsaha@ece.iitkgp.ernet.in
  organization: Department of Electrical and Electronics Communication Engineering, IIT Kharagpur, Kharagpur, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34982707$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFvFCEUxompsbX2DzAmhsSLl115zCwMx-222uoaPdQzYZg3Lc0MrMAcvPuHy2R3NelBDkDg9315730vyYkPHgl5DWwJwNSHz5c3t0vOOF9WUDMu5TNyxkE0C85Zc3K8g6pPyUVKj6yspjwp8YKcVrVquGTyjPy-9gnHdsCO3kXjU4-RbtFE7_w9Nb6jX6chu92A9AtGj8O_zz5E-v0h-GBN7Fy4j2aklyYVo3V-wBiSHcqenaWbEIM38Rddx4zluHIJC0ivMKPNLvhX5HlvhoQXh_Oc_Ph4fbe5WWy_fbrdrLcLWwrOC-BCoTCK8bYCgK5rZc8bVdfQGlVJwQxY3vVGNYyJ2qLsWG9bK0HBypiqqc7J-73vLoafE6asR5csDoPxGKakuQChVmLFq4K-e4I-hin6Ul2hJG_YStSz4dsDNbUjdnoX3Vga1cf5FkDuAVsGkiL22rps5p5zNG7QwPQcpp7D1HOY-hBmUcIT5dH8f5o3e41DxL-8EkIBE9Uf-n-qBw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107186
crossref_primary_10_1016_j_jscai_2025_102562
crossref_primary_10_1117_1_JEI_33_4_043052
crossref_primary_10_1007_s11042_023_17186_9
crossref_primary_10_1016_j_bspc_2025_107601
crossref_primary_10_1016_j_cmpb_2024_108462
crossref_primary_10_3390_electronics14010080
crossref_primary_10_34133_hds_0182
crossref_primary_10_1016_j_bspc_2023_104805
crossref_primary_10_1109_JSEN_2024_3373226
crossref_primary_10_3233_WEB_230063
crossref_primary_10_1016_j_heliyon_2024_e35631
crossref_primary_10_1109_JBHI_2024_3510519
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_3390_biomedicines11041167
crossref_primary_10_1093_ehjdh_ztac057
crossref_primary_10_1016_j_heliyon_2023_e23354
crossref_primary_10_1109_ACCESS_2024_3465511
crossref_primary_10_1016_j_compbiomed_2023_106707
crossref_primary_10_1016_j_compbiomed_2025_109904
crossref_primary_10_1186_s12711_024_00915_5
crossref_primary_10_1109_JBHI_2024_3354832
crossref_primary_10_3934_mbe_2023358
crossref_primary_10_1109_TIM_2024_3385035
crossref_primary_10_1016_j_bspc_2025_107705
crossref_primary_10_1109_JBHI_2023_3307870
crossref_primary_10_1007_s13239_022_00622_6
Cites_doi 10.1109/ACCESS.2020.3002151
10.1109/TBME.1983.325211
10.4065/mcp.2009.0391
10.1109/CIC.2002.1166828
10.1109/JSTARS.2017.2662484
10.1109/10.237677
10.1109/TBME.2015.2432129
10.1016/j.compbiomed.2020.103733
10.1016/j.ejmp.2020.01.007
10.1109/ICASSP.2017.7952261
10.1016/j.bspc.2020.102055
10.1016/j.jneumeth.2015.01.010
10.1016/j.bbe.2019.02.003
10.1016/j.apacoust.2020.107242
10.1016/j.sigpro.2012.11.029
10.1080/10255842.2010.538386
10.1109/TBME.2008.2003098
10.1109/10.52343
10.1145/3194658.3194671
10.1109/EMBC44109.2020.9175450
10.1109/TKDE.2009.191
10.1007/s13239-012-0094-6
10.1109/TBME.2015.2475278
10.1007/BF02367612
10.1109/JSEN.2019.2894706
10.1016/j.compbiomed.2013.05.018
10.1109/51.334639
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3140277
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2813
ExternalDocumentID 34982707
10_1109_JBHI_2022_3140277
9669106
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ministry of Education, India; MHRD
  funderid: 10.13039/501100004541
– fundername: Government of India
  grantid: 4-23/2014-TS.I
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-1269e6a902b3111ddb7f289441ba93760a1c2dfa980064ce7d0fcbc71915aa383
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 01:44:53 EDT 2025
Sun Jun 29 16:33:11 EDT 2025
Thu Apr 03 07:04:33 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Tue Jul 01 03:00:01 EDT 2025
Wed Aug 27 02:24:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-1269e6a902b3111ddb7f289441ba93760a1c2dfa980064ce7d0fcbc71915aa383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6187-1684
0000-0002-2351-8545
PMID 34982707
PQID 2672805648
PQPubID 85417
PageCount 10
ParticipantIDs proquest_miscellaneous_2616956523
proquest_journals_2672805648
crossref_primary_10_1109_JBHI_2022_3140277
crossref_citationtrail_10_1109_JBHI_2022_3140277
ieee_primary_9669106
pubmed_primary_34982707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
Simonyan (ref20) 2015
ref23
ref26
ref25
ref22
ref21
Goodfellow (ref14) 2016
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1109/ACCESS.2020.3002151
– ident: ref5
  doi: 10.1109/TBME.1983.325211
– ident: ref1
  doi: 10.4065/mcp.2009.0391
– ident: ref24
  doi: 10.1109/CIC.2002.1166828
– ident: ref19
  doi: 10.1109/JSTARS.2017.2662484
– ident: ref6
  doi: 10.1109/10.237677
– ident: ref3
  doi: 10.1109/TBME.2015.2432129
– ident: ref15
  doi: 10.1016/j.compbiomed.2020.103733
– ident: ref28
  doi: 10.1016/j.ejmp.2020.01.007
– volume-title: ICLR
  year: 2015
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref18
  doi: 10.1109/ICASSP.2017.7952261
– ident: ref11
  doi: 10.1016/j.bspc.2020.102055
– ident: ref26
  doi: 10.1016/j.jneumeth.2015.01.010
– ident: ref2
  doi: 10.1016/j.bbe.2019.02.003
– ident: ref7
  doi: 10.1016/j.apacoust.2020.107242
– ident: ref22
  doi: 10.1016/j.sigpro.2012.11.029
– ident: ref23
  doi: 10.1080/10255842.2010.538386
– ident: ref10
  doi: 10.1109/TBME.2008.2003098
– ident: ref4
  doi: 10.1109/10.52343
– ident: ref16
  doi: 10.1145/3194658.3194671
– ident: ref17
  doi: 10.1109/EMBC44109.2020.9175450
– ident: ref21
  doi: 10.1109/TKDE.2009.191
– ident: ref8
  doi: 10.1007/s13239-012-0094-6
– volume-title: Deep Learning
  year: 2016
  ident: ref14
– ident: ref29
  doi: 10.1109/TBME.2015.2475278
– ident: ref12
  doi: 10.1007/BF02367612
– ident: ref27
  doi: 10.1109/JSEN.2019.2894706
– ident: ref9
  doi: 10.1016/j.compbiomed.2013.05.018
– ident: ref13
  doi: 10.1109/51.334639
SSID ssj0000816896
Score 2.4853535
Snippet Conventional machine learning has paved the way for a simple, affordable, non-invasive approach for Coronary artery disease (CAD) detection using...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2804
SubjectTerms Accuracy
Arteries
Arteriosclerosis
Artificial neural networks
Atherosclerosis
Bioinformatics
Cardiovascular disease
Continuous wavelet transforms
Coronary artery
Coronary artery disease
Coronary Artery Disease - diagnostic imaging
Coronary vessels
Deep learning
Disease detection
Diseases
Heart
Heart diseases
Humans
Kernel
Kernels
Machine Learning
multiple kernel learning
Neural networks
Neural Networks, Computer
Optimization
Performance measurement
phonocardiogram
Phonocardiography
Redundancy
Transfer learning
Vein & artery diseases
VGG16
Title Ensembled Transfer Learning and Multiple Kernel Learning for Phonocardiogram Based Atherosclerotic Coronary Artery Disease Detection
URI https://ieeexplore.ieee.org/document/9669106
https://www.ncbi.nlm.nih.gov/pubmed/34982707
https://www.proquest.com/docview/2672805648
https://www.proquest.com/docview/2616956523
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVS98CqPQEFG4oTINvE6TnzsU0vRIg5U6i3yKyCxJCibPcCZH86M4w0IAeKUSHFiJzPOfJ9nPAPwIi-cUFzLtBTapwJ5T1oJUaAuUwI-lbtG0H7n5Vu5uBZXN8XNDrya9sJ470PwmZ_RafDlu85uaKnsGKE5Wje5C7tI3Ma9WtN6SiggEcpxcTxJcSKK6MTMM3V8dbp4jWSQc-SogtyWB7A_F6riJdWR_cUihRIrf0ebwepc3obldrxjsMmn2WYwM_vtt1SO__tCd-BWhJ_sZNSXu7Dj23uwv4wO9kP4ftGu_Wez8o4FK9b4nsUUrB-Ybh1bxgBE9sb3rV_9vIjgl7372LVoGynClYK-2CmaSMdOCGN2a-yv77BbdkZJE3T_lUbh8XA--ojYuR9CXFh7H64vL96fLdJYqCG1-BGHNOdSealVxs0c_53OmbJBIodIy2hFUTc6t9w1WlWEgKwvXdZYY0vkioXWyJEfwF7btf4RsLkvRaYrbUruRNGU2phG5nmpnbZcGptAthVWbWMWcyqmsaoDm8lUTaKuSdR1FHUCL6dbvowpPP7V-JDENDWMEkrgaKsRdZzk65pLqu1VSFEl8Hy6jNOTfC669d2G2uQSKSjS_QQejpo0PXurgI__3OcTOKCRjXFpR7A39Bv_FBHQYJ4F1f8BCi3_mg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVeeJVHoICROCGyTbyOkxz71PaRikMr9Rb5FZBYErSbPcCZH86M4w0IAeIUS3ZiJzOTmc8zngF4k2ZWlFzJOBfKxQJxT1wIkSEvUwK-MrWNoPPO1aWcXYuzm-xmA96NZ2Gccz74zE2o6X35tjMr2irbQ9MctZu8BbdR72d8OK017qj4EhK-IBfHRoyiKIIbM03KvbOD2SnCQc4RpQpyXG7D1lSUBc-pkuwvOskXWfm7ven1zsk9qNYrHsJNPk1WvZ6Yb78lc_zfV7oPd4MByvYHjnkAG659CFtVcLHvwPfjduk-67mzzOuxxi1YSML6ganWsiqEILJzt2jd_Gcnmr_s_ceuRe1IMa4U9sUOUElatk9WZrfE-RYdTssOKW2CWnylVTi8HA1eInbkeh8Z1j6C65Pjq8NZHEo1xAY_Yh-nXJZOqjLheop_T2t13iCUQ1tLq5LiblRquG1UWZANZFxuk8ZokyNazJRClPwYNtuudU-BTV0uElUonXMrsiZXWjcyTXNlleFSmwiSNbFqE_KYUzmNee3xTFLWROqaSF0HUkfwdrzly5DE41-Dd4hM48BAoQh21xxRBzFf1lxSda9MiiKC12M3Cih5XVTruhWNSSWCUAT8ETwZOGl89poBn_15zldwZ3ZVXdQXp5fnz2GbVjlEqe3CZr9YuRdoD_X6pReDH4RZAvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensembled+Transfer+Learning+and+Multiple+Kernel+Learning+for+Phonocardiogram+Based+Atherosclerotic+Coronary+Artery+Disease+Detection&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Pathak%2C+Akanksha&rft.au=Mandana%2C+Kayapanda&rft.au=Saha%2C+Goutam&rft.date=2022-06-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=6&rft.spage=2804&rft.epage=2813&rft_id=info:doi/10.1109%2FJBHI.2022.3140277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2022_3140277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon