Bayesian graphical modeling for heterogeneous causal effects
There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 1; pp. 15 - 32 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.01.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG‐models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject‐specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features. |
---|---|
AbstractList | There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG‐models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject‐specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features. There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a more precise and targeted decision-making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a more precise and targeted decision-making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features. |
Author | Castelletti, Federico Consonni, Guido |
Author_xml | – sequence: 1 givenname: Federico orcidid: 0000-0001-7911-2942 surname: Castelletti fullname: Castelletti, Federico email: federico.castelletti@unicatt.it organization: Università Cattolica del Sacro Cuore – sequence: 2 givenname: Guido surname: Consonni fullname: Consonni, Guido organization: Università Cattolica del Sacro Cuore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36317356$$D View this record in MEDLINE/PubMed |
BookMark | eNp10EtLxDAUBeAgI844Cv4CKbhx0zGPpmnAjYovUFyo65BmbsZI24xJi8y_t_NSEF3dzXcPh7OPBo1vAKEjgicEY3oWXT2RXModNCJYihRTXgzQCFMh0lwQPkT7Mb5jTAinYg8NWc6IYDwfofNLvYDodJPMgp6_OaOrpPZTqFwzS6wPyRu0EPwMGvBdTIzuYi_AWjBtPEC7VlcRDjd3jF5vrl-u7tKHp9v7q4uH1LBMypQairE0WosSylJTAsTSDDOAjMvMEuCmoAZEpnPLQFtWgBRlBqzQDNspsDE6XefOg__oILaqdtFAVelVK0UFI5hzjLOenvyi774LTd-uVzwvBM3kUh1vVFfWMFXz4GodFmq7Sw8ma2CCjzGAVca1unW-aYN2lSJYLYdX_fBqOfxPxe-HbeYfNF3TT1fB4l-nnu8fV_4LxnKQ-A |
CitedBy_id | crossref_primary_10_1007_s11336_024_09969_2 crossref_primary_10_1093_biomtc_ujae067 |
Cites_doi | 10.1080/01621459.2016.1167694 10.1198/10618600152627924 10.1371/journal.pgen.0030161 10.1214/19-STS721 10.1214/aos/1035844981 10.1037/h0037350 10.1214/13-STS416 10.1198/016214504000001880 10.1093/biomet/ast043 10.1093/bioinformatics/btp543 10.1214/13-BA811 10.1214/15-AOS1411 10.1093/bioinformatics/btx174 10.1016/j.jspi.2012.02.013 10.1093/biomet/65.1.31 10.1080/01621459.2017.1389739 10.1214/21-BA1260 10.1016/j.jmva.2006.11.013 10.1214/18-AOS1689 10.1073/pnas.1510489113 10.1214/17-BA1073 10.1080/03610910601096262 10.1080/01621459.1995.10476550 10.1080/01621459.2017.1319839 10.1093/acprof:oso/9780199694587.003.0010 10.1111/biom.13281 10.1111/biom.12791 10.1214/11-EJS634 10.1002/sta4.49 10.1080/10618600.2022.2069779 10.3390/ijms21082907 10.1080/01621459.2018.1434531 10.1214/13-BA856 10.1093/biostatistics/kxw029 10.1182/blood-2007-10-119438 10.1038/s41375-020-01094-0 10.1080/01621459.2014.896806 10.1214/10-AOS792 10.1093/bioinformatics/btq170 10.1214/19-BA1195 10.1111/biom.13244 10.1214/19-BA1153 10.1073/pnas.96.8.4240 10.1093/oso/9780198522195.001.0001 10.1093/nar/gkr988 10.1002/sim.8751 10.1214/10-AOAS410 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.9599 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 32 |
ExternalDocumentID | 36317356 10_1002_sim_9599 SIM9599 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3499-2c2009caa7bebba21e1f2403ee4594f1e5c82ce74a6f3eaf38e97b4e38a30fde3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 00:20:36 EDT 2025 Sat Jul 19 20:41:14 EDT 2025 Mon Jul 21 06:03:38 EDT 2025 Tue Jul 01 03:28:18 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Wed Jan 22 16:20:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | directed acyclic graph Dirichlet process mixture subject-specific graph personalized treatment tumor heterogeneity |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3499-2c2009caa7bebba21e1f2403ee4594f1e5c82ce74a6f3eaf38e97b4e38a30fde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7911-2942 |
PMID | 36317356 |
PQID | 2756872494 |
PQPubID | 48361 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2731055004 proquest_journals_2756872494 pubmed_primary_36317356 crossref_citationtrail_10_1002_sim_9599 crossref_primary_10_1002_sim_9599 wiley_primary_10_1002_sim_9599_SIM9599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 January 2023 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 15 January 2023 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2013; 28 2019; 14 2022; 24 2020; 15 2013; 8 2017; 112 2012; 13 2012; 12 2012; 10 2007; 36 2010; 26 2021; 31 2014; 3 2021; 77 2000 2005; 100 1978; 65 2017; 33 2016; 113 2019; 114 2018; 74 2007; 3 2014; 9 2016; 44 2009; 25 2012; 142 2010; 38 1995; 90 2002; 30 2020; 39 1996 2020; 35 2016; 18 1999; 8 2007; 98 2011; 5 2011; 9 2021; 16 1974; 66 2018; 113 2019; 47 2015; 110 2018 2016 2020; 21 2009; 1 2014; 101 2018; 13 2012; 40 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Yang K (e_1_2_11_56_1) 2018 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Maathuis M (e_1_2_11_8_1) 2016 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 Georgescu M (e_1_2_11_50_1) 2012; 12 e_1_2_11_54_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Pearl J (e_1_2_11_7_1) 2000 Hauser A (e_1_2_11_55_1) 2012; 13 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 Witte J (e_1_2_11_36_1) 2020; 21 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Lauritzen SL (e_1_2_11_6_1) 1996 |
References_xml | – volume: 38 start-page: 2587 issue: 5 year: 2010 end-page: 2619 article-title: Bayes and empirical‐Bayes multiplicity adjustment in the variable‐selection problem publication-title: Ann Stat – volume: 24 start-page: 1 year: 2022 end-page: 3 article-title: Search algorithms and loss functions for Bayesian clustering publication-title: J Comput Graph Stat – volume: 65 start-page: 31 issue: 1 year: 1978 end-page: 38 article-title: Bayesian cluster analysis publication-title: Biometrika – volume: 9 start-page: 521 issue: 3 year: 2014 end-page: 550 article-title: Robust Bayesian graphical modeling using Dirichlet ‐distributions publication-title: Bayesian Anal – volume: 28 start-page: 313 issue: 3 year: 2013 end-page: 334 article-title: Modeling with normalized random measure mixture models publication-title: Stat Sci – volume: 36 start-page: 45 issue: 1 year: 2007 end-page: 54 article-title: Sampling the Dirichlet mixture model with slices publication-title: Commun Stat Simul Comput – volume: 39 start-page: 4745 issue: 30 year: 2020 end-page: 4766 article-title: Bayesian learning of multiple directed networks from observational data publication-title: Stat Med – volume: 33 start-page: 2372 issue: 15 year: 2017 end-page: 2378 article-title: Mining heterogeneous causal effects for personalized cancer treatment publication-title: Bioinformatics – volume: 113 start-page: 7353 issue: 27 year: 2016 end-page: 7360 article-title: Recursive partitioning for heterogeneous causal effects publication-title: Proc Natl Acad Sci – volume: 77 start-page: 125 issue: 1 year: 2021 end-page: 135 article-title: A Bayesian nonparametric model for zero‐inflated outcomes: prediction, clustering, and causal estimation publication-title: Biometrics – volume: 30 start-page: 1412 issue: 5 year: 2002 end-page: 1440 article-title: Parameter priors for directed acyclic graphical models and the characterization of several probability distributions publication-title: Ann Stat – volume: 44 start-page: 2433 issue: 6 year: 2016 end-page: 2466 article-title: Causal inference with a graphical hierarchy of interventions publication-title: Ann Stat – volume: 101 start-page: 219 issue: 1 year: 2014 end-page: 228 article-title: Identifiability of Gaussian structural equation models with equal error variances publication-title: Biometrika – volume: 40 start-page: D109 year: 2012 end-page: D114 article-title: KEGG for integration and interpretation of large‐scale molecular data sets publication-title: Nucl Acids Res – volume: 26 start-page: 1572 issue: 12 year: 2010 end-page: 1573 article-title: Consensus cluster plus: a class discovery tool with confidence assessments and item tracking publication-title: Bioinformatics – volume: 31 start-page: 2030 year: 2021 end-page: 2042 article-title: Targeted inhibition of cooperative mutation‐ and therapy‐induced AKT activation in AML effectively enhances response to chemotherapy publication-title: Leukemia – volume: 1 start-page: 154 issue: 113 year: 2009 end-page: 164 article-title: Functional proteomic profiling of AML predicts response and survival publication-title: Blood – volume: 9 start-page: 283 year: 2011 end-page: 316 – volume: 21 start-page: 1 issue: 246 year: 2020 end-page: 45 article-title: On efficient adjustment in causal graphs publication-title: J Mach Learn Res – volume: 3 start-page: 1724 issue: 9 year: 2007 end-page: 1735 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet – volume: 13 start-page: 2409 issue: 1 year: 2012 end-page: 2464 article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs publication-title: J Mach Learn Res – volume: 15 start-page: 965 issue: 3 year: 2020 end-page: 1056 article-title: Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with discussion) publication-title: Bayesian Anal – volume: 114 start-page: 723 issue: 526 year: 2019 end-page: 734 article-title: Graphical model selection for Gaussian conditional random fields in the presence of latent variables publication-title: J Am Stat Assoc – volume: 142 start-page: 1947 issue: 7 year: 2012 end-page: 1959 article-title: Selecting the precision parameter prior in Dirichlet process mixture models publication-title: J Stat Plan Infer – volume: 35 start-page: 404 issue: 3 year: 2020 end-page: 426 article-title: Invariance, causality and robustness publication-title: Stat Sci – volume: 77 start-page: 136 issue: 1 year: 2021 end-page: 149 article-title: Bayesian inference of causal effects from observational data in Gaussian graphical models publication-title: Biometrics – volume: 74 start-page: 606 issue: 2 year: 2018 end-page: 615 article-title: Heterogeneous reciprocal graphical models publication-title: Biometrics – volume: 47 start-page: 319 issue: 1 year: 2019 end-page: 348 article-title: Posterior graph selection and estimation consistency for high‐dimensional Bayesian DAG models publication-title: Ann Stat – volume: 100 start-page: 322 issue: 469 year: 2005 end-page: 331 article-title: Causal inference using potential outcomes publication-title: J Am Stat Assoc – start-page: 5541 year: 2018 end-page: 5550 – year: 1996 – year: 2000 – volume: 110 start-page: 159 issue: 509 year: 2015 end-page: 174 article-title: Bayesian inference of multiple Gaussian graphical models publication-title: J Am Stat Assoc – volume: 114 start-page: 184 issue: 525 year: 2019 end-page: 197 article-title: Bayesian graphical regression publication-title: J Am Stat Assoc – volume: 5 start-page: 981 year: 2011 end-page: 1014 article-title: Sparse covariance estimation in heterogeneous samples publication-title: Electr J Stat – volume: 5 start-page: 1057 issue: 2A year: 2011 end-page: 1080 article-title: Robust graphical modeling of gene networks using classical and alternative ‐distributions publication-title: Ann Appl Stat – volume: 90 start-page: 577 issue: 430 year: 1995 end-page: 588 article-title: Bayesian density estimation and inference using mixtures publication-title: J Am Stat Assoc – volume: 3 start-page: 109 issue: 1 year: 2014 end-page: 125 article-title: Bayesian sparse graphical models and their mixtures publication-title: Stat – volume: 16 start-page: 1113 issue: 4 year: 2021 end-page: 1137 article-title: Bayesian causal inference in probit graphical models publication-title: Bayesian Anal – volume: 18 start-page: 32 issue: 1 year: 2016 end-page: 47 article-title: A Bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome publication-title: Biostatistics – volume: 10 start-page: 230 issue: 2 year: 2012 end-page: 248 article-title: On the relationship between Markov chain Monte Carlo methods for model uncertainty publication-title: J Comput Graph Stat – volume: 25 start-page: 2906 issue: 22 year: 2009 end-page: 2912 article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis publication-title: Bioinformatics – start-page: 387 year: 2016 end-page: 408 – volume: 98 start-page: 873 issue: 5 year: 2007 end-page: 895 article-title: Comparing clusterings ‐ an information based distance publication-title: J Multivar Anal – volume: 112 start-page: 779 issue: 518 year: 2017 end-page: 793 article-title: Sparse multi‐dimensional graphical models: a unified Bayesian framework publication-title: J Am Stat Assoc – volume: 12 start-page: 1170 issue: 1 year: 2012 end-page: 1177 article-title: PTEN tumor suppressor network in PI3K‐Akt pathway control publication-title: Genes Cancer – volume: 8 start-page: 4240 issue: 96 year: 1999 end-page: 4245 article-title: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3‐kinase/AKT pathway publication-title: Proc Natl Acad Sci – volume: 8 start-page: 269 issue: 2 year: 2013 end-page: 302 article-title: Bayesian nonparametric inference – Why and how publication-title: Bayesian Anal – volume: 21 issue: 8 year: 2020 article-title: The PI3K‐Akt‐mTOR signaling pathway in human acute myeloid leukemia (AML) cells publication-title: Int J Mol Sci – volume: 14 start-page: 1271 issue: 4 year: 2019 end-page: 1301 article-title: Hierarchical normalized completely random measures for robust graphical modeling publication-title: Bayesian Anal – volume: 13 start-page: 559 issue: 2 year: 2018 end-page: 626 article-title: Bayesian cluster analysis: point estimation and credible balls (with discussion) publication-title: Bayesian Anal – volume: 66 start-page: 688 issue: 5 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol – volume: 113 start-page: 1228 issue: 523 year: 2018 end-page: 1242 article-title: Estimation and inference of heterogeneous treatment effects using random forests publication-title: J Am Stat Assoc – ident: e_1_2_11_23_1 doi: 10.1080/01621459.2016.1167694 – ident: e_1_2_11_16_1 – ident: e_1_2_11_12_1 doi: 10.1198/10618600152627924 – ident: e_1_2_11_52_1 doi: 10.1371/journal.pgen.0030161 – ident: e_1_2_11_35_1 doi: 10.1214/19-STS721 – ident: e_1_2_11_37_1 doi: 10.1214/aos/1035844981 – ident: e_1_2_11_13_1 doi: 10.1037/h0037350 – ident: e_1_2_11_51_1 doi: 10.1214/13-STS416 – ident: e_1_2_11_32_1 doi: 10.1198/016214504000001880 – ident: e_1_2_11_39_1 doi: 10.1093/biomet/ast043 – ident: e_1_2_11_3_1 doi: 10.1093/bioinformatics/btp543 – ident: e_1_2_11_9_1 doi: 10.1214/13-BA811 – ident: e_1_2_11_54_1 doi: 10.1214/15-AOS1411 – ident: e_1_2_11_4_1 doi: 10.1093/bioinformatics/btx174 – ident: e_1_2_11_41_1 doi: 10.1016/j.jspi.2012.02.013 – ident: e_1_2_11_44_1 doi: 10.1093/biomet/65.1.31 – ident: e_1_2_11_24_1 doi: 10.1080/01621459.2017.1389739 – ident: e_1_2_11_20_1 doi: 10.1214/21-BA1260 – ident: e_1_2_11_45_1 doi: 10.1016/j.jmva.2006.11.013 – ident: e_1_2_11_10_1 doi: 10.1214/18-AOS1689 – ident: e_1_2_11_14_1 doi: 10.1073/pnas.1510489113 – ident: e_1_2_11_43_1 doi: 10.1214/17-BA1073 – ident: e_1_2_11_11_1 doi: 10.1080/03610910601096262 – ident: e_1_2_11_40_1 doi: 10.1080/01621459.1995.10476550 – ident: e_1_2_11_15_1 doi: 10.1080/01621459.2017.1319839 – ident: e_1_2_11_27_1 doi: 10.1093/acprof:oso/9780199694587.003.0010 – volume: 13 start-page: 2409 issue: 1 year: 2012 ident: e_1_2_11_55_1 article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs publication-title: J Mach Learn Res – ident: e_1_2_11_19_1 doi: 10.1111/biom.13281 – ident: e_1_2_11_28_1 doi: 10.1111/biom.12791 – volume-title: Causality: Models, Reasoning, and Inference year: 2000 ident: e_1_2_11_7_1 – ident: e_1_2_11_25_1 doi: 10.1214/11-EJS634 – start-page: 5541 volume-title: Proceedings of the 35th International Conference on Machine Learning. Volume 80 of Proceedings of Machine Learning Research year: 2018 ident: e_1_2_11_56_1 – ident: e_1_2_11_26_1 doi: 10.1002/sta4.49 – ident: e_1_2_11_42_1 doi: 10.1080/10618600.2022.2069779 – ident: e_1_2_11_47_1 doi: 10.3390/ijms21082907 – ident: e_1_2_11_53_1 doi: 10.1080/01621459.2018.1434531 – ident: e_1_2_11_30_1 doi: 10.1214/13-BA856 – ident: e_1_2_11_33_1 doi: 10.1093/biostatistics/kxw029 – ident: e_1_2_11_5_1 doi: 10.1182/blood-2007-10-119438 – ident: e_1_2_11_48_1 doi: 10.1038/s41375-020-01094-0 – ident: e_1_2_11_21_1 doi: 10.1080/01621459.2014.896806 – ident: e_1_2_11_38_1 doi: 10.1214/10-AOS792 – ident: e_1_2_11_18_1 – volume: 12 start-page: 1170 issue: 1 year: 2012 ident: e_1_2_11_50_1 article-title: PTEN tumor suppressor network in PI3K‐Akt pathway control publication-title: Genes Cancer – ident: e_1_2_11_2_1 doi: 10.1093/bioinformatics/btq170 – ident: e_1_2_11_17_1 doi: 10.1214/19-BA1195 – ident: e_1_2_11_34_1 doi: 10.1111/biom.13244 – ident: e_1_2_11_31_1 doi: 10.1214/19-BA1153 – ident: e_1_2_11_49_1 doi: 10.1073/pnas.96.8.4240 – volume: 21 start-page: 1 issue: 246 year: 2020 ident: e_1_2_11_36_1 article-title: On efficient adjustment in causal graphs publication-title: J Mach Learn Res – volume-title: Graphical Models year: 1996 ident: e_1_2_11_6_1 doi: 10.1093/oso/9780198522195.001.0001 – start-page: 387 volume-title: Handbook of Big Data year: 2016 ident: e_1_2_11_8_1 – ident: e_1_2_11_46_1 doi: 10.1093/nar/gkr988 – ident: e_1_2_11_22_1 doi: 10.1002/sim.8751 – ident: e_1_2_11_29_1 doi: 10.1214/10-AOAS410 |
SSID | ssj0011527 |
Score | 2.4143069 |
Snippet | There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a... There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15 |
SubjectTerms | Bayes Theorem Blood cancer Causality Cell cycle Chemotherapy directed acyclic graph Dirichlet process mixture Humans Leukemia, Myeloid, Acute - etiology Leukemia, Myeloid, Acute - genetics Normal Distribution personalized treatment subject‐specific graph tumor heterogeneity |
Title | Bayesian graphical modeling for heterogeneous causal effects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9599 https://www.ncbi.nlm.nih.gov/pubmed/36317356 https://www.proquest.com/docview/2756872494 https://www.proquest.com/docview/2731055004 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KH0pgrGu6j2xt8WBsT04iS_6CvrSlJR1kD9sCgT0YSTnR0jUZc_yw_vW9s2yXbiuUPhns85d00v2ku_sdwAey0SLJnAqVs2modIohgXoX0nl0cmyVTThRePolmczU53k8b6IqORfG80N0G248Mur5mge4NuXojjS0vLwe5nHOuXscqsV46GvHHCXaaq3soUxSEbe8s-No1N543xL9Ay_vo9Xa3Jxtw4_2Q32UydWwWpuhvfmLw_Fpf_ICnjcoNDjyarMDG7jsw9a08bP34ZnfzQt8klIfeoxJPaXzLhwe6z_IuZdBzXbNvRzUBXXICgaEgYMLDrFZkWbiqioDq6uSJJrAkZcwOzv9fjIJmyIMoZW0Ggojy_4Tq3Vq0BgdCRSOOfwQVZwrJzC2WWQxVTpxErWTGeapUSgzLcdugfIVbC5XS3wDgcCUyedlbpRRpAZGxM7xbKwypplfDOBT2yGFbRjKuVDGz8JzK0cFtVTBLTWA953kL8_K8R-ZvbZPi2ZclgWT3WcpLTkVPaK7TCOK3SS6bhaSkVw1lGaPAbz2utC9RCaEt2ScDOBj3aMPvr34dj7l49vHCr6DHley590dEe_B5vp3hfuEd9bmoNbsWy7G-3I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYoSC1SVWALdCmFVEJwyrKTmbzUXgAVLY_lwEPigBTNDB61atmtursH-PXYmSSIR6Wqp0iJ8xrbY489_gywQTZaJJlToXI2DZVOMSSn3oV0Hp3sWmUTLhTunyS9C3V4GV9OwZe6FsbjQzQBN9aMcr5mBeeA9PYDaujox00nj_P8FcxwQ-9yPXXaYEeJul8r5yiTVMQ18mw32q7vfGyLnjmYj_3V0uDsz8FV_al-n8nPzmRsOvbuCYrjf_7LPLyrHNFgx0vOAkzhoAWv-1WqvQVvfUAv8HVKLZhlt9SjOr-Hr7v6Frn8MigBr5nRQdlThwxhQG5w8J132QxJOHE4GQVWT0ZEUe0dWYSL_W_ne72w6sMQWkkLojCynEKxWqcGjdGRQOEYxg9RxblyAmObRRZTpRMnUTuZYZ4ahTLTsuuuUS7B9GA4wA8QCEwZf17mRhlFkmBE7BxPyCpjpPnrNmzVHClsBVLOvTJ-FR5eOSpopAoeqTZ8bih_e2COF2hWa6YWlWqOCsa7z1JadSp6RHOZlIozJbocFqKR3DiUJpA2LHthaF4iE3K5ZJy0YbNk6V_fXpwd9Pm48q-E6_Cmd94_Lo4PTo4-wiw3tudgj4hXYXr8Z4KfyP0Zm7VSzO8B3eL_jQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxxBDA9WQQRRe_bjqtYVxD7tebMz-wW--NFD255IW0HwYZmZy6BY76R399D-9SY7uyvWFopPC7vZr0kyyUySXwC2yUaLJHMqVM6modIphuTUu5DOo5Ndq2zChcL90-T4XH26iC-qrEquhfH4EM2GG2tGOV-zgt8N3O4DaOj4-raTx3n-AuZU0s1Yoo--NtBRom7XyiHKJBVxDTzbjXbrOx-boif-5WN3tbQ3vWW4rL_Up5ncdKYT07G__wBxfN6vrMBS5YYG-15uXsIMDlsw368C7S1Y9Nt5ga9SasECO6Ue03kV9g70L-Tiy6CEu2Y2B2VHHTKDATnBwRXn2IxINHE0HQdWT8dEUWWOvILz3sfvh8dh1YUhtJKWQ2FkOYBitU4NGqMjgcIxiB-iinPlBMY2iyymSidOonYywzw1CmWmZdcNUL6G2eFoiG8hEJgy-rzMjTKK5MCI2DmejlXGOPODNnyoGVLYCqKcO2X8KDy4clTQSBU8Um3YaijvPCzHX2jWa54WlWKOC0a7z1Jacyp6RHOZVIrjJLocFqKR3DaUpo82vPGy0LxEJuRwyThpw07J0X--vfh20ufju_8l3IT5s6Ne8eXk9PMaLHBXe97pEfE6zE5-TnGDfJ-JeV8K-T3_Av5F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+graphical+modeling+for+heterogeneous+causal+effects&rft.jtitle=Statistics+in+medicine&rft.au=Castelletti%2C+Federico&rft.au=Consonni%2C+Guido&rft.date=2023-01-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=1&rft.spage=15&rft.epage=32&rft_id=info:doi/10.1002%2Fsim.9599&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |