Bayesian graphical modeling for heterogeneous causal effects

There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 1; pp. 15 - 32
Main Authors Castelletti, Federico, Consonni, Guido
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG‐models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject‐specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.
AbstractList There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a more precise and targeted decision‐making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG‐models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject‐specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.
There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a more precise and targeted decision-making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a more precise and targeted decision-making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemotherapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We evaluate treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian Model Averaging (BMA). With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.
Author Castelletti, Federico
Consonni, Guido
Author_xml – sequence: 1
  givenname: Federico
  orcidid: 0000-0001-7911-2942
  surname: Castelletti
  fullname: Castelletti, Federico
  email: federico.castelletti@unicatt.it
  organization: Università Cattolica del Sacro Cuore
– sequence: 2
  givenname: Guido
  surname: Consonni
  fullname: Consonni, Guido
  organization: Università Cattolica del Sacro Cuore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36317356$$D View this record in MEDLINE/PubMed
BookMark eNp10EtLxDAUBeAgI844Cv4CKbhx0zGPpmnAjYovUFyo65BmbsZI24xJi8y_t_NSEF3dzXcPh7OPBo1vAKEjgicEY3oWXT2RXModNCJYihRTXgzQCFMh0lwQPkT7Mb5jTAinYg8NWc6IYDwfofNLvYDodJPMgp6_OaOrpPZTqFwzS6wPyRu0EPwMGvBdTIzuYi_AWjBtPEC7VlcRDjd3jF5vrl-u7tKHp9v7q4uH1LBMypQairE0WosSylJTAsTSDDOAjMvMEuCmoAZEpnPLQFtWgBRlBqzQDNspsDE6XefOg__oILaqdtFAVelVK0UFI5hzjLOenvyi774LTd-uVzwvBM3kUh1vVFfWMFXz4GodFmq7Sw8ma2CCjzGAVca1unW-aYN2lSJYLYdX_fBqOfxPxe-HbeYfNF3TT1fB4l-nnu8fV_4LxnKQ-A
CitedBy_id crossref_primary_10_1007_s11336_024_09969_2
crossref_primary_10_1093_biomtc_ujae067
Cites_doi 10.1080/01621459.2016.1167694
10.1198/10618600152627924
10.1371/journal.pgen.0030161
10.1214/19-STS721
10.1214/aos/1035844981
10.1037/h0037350
10.1214/13-STS416
10.1198/016214504000001880
10.1093/biomet/ast043
10.1093/bioinformatics/btp543
10.1214/13-BA811
10.1214/15-AOS1411
10.1093/bioinformatics/btx174
10.1016/j.jspi.2012.02.013
10.1093/biomet/65.1.31
10.1080/01621459.2017.1389739
10.1214/21-BA1260
10.1016/j.jmva.2006.11.013
10.1214/18-AOS1689
10.1073/pnas.1510489113
10.1214/17-BA1073
10.1080/03610910601096262
10.1080/01621459.1995.10476550
10.1080/01621459.2017.1319839
10.1093/acprof:oso/9780199694587.003.0010
10.1111/biom.13281
10.1111/biom.12791
10.1214/11-EJS634
10.1002/sta4.49
10.1080/10618600.2022.2069779
10.3390/ijms21082907
10.1080/01621459.2018.1434531
10.1214/13-BA856
10.1093/biostatistics/kxw029
10.1182/blood-2007-10-119438
10.1038/s41375-020-01094-0
10.1080/01621459.2014.896806
10.1214/10-AOS792
10.1093/bioinformatics/btq170
10.1214/19-BA1195
10.1111/biom.13244
10.1214/19-BA1153
10.1073/pnas.96.8.4240
10.1093/oso/9780198522195.001.0001
10.1093/nar/gkr988
10.1002/sim.8751
10.1214/10-AOAS410
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.9599
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 32
ExternalDocumentID 36317356
10_1002_sim_9599
SIM9599
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3499-2c2009caa7bebba21e1f2403ee4594f1e5c82ce74a6f3eaf38e97b4e38a30fde3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 00:20:36 EDT 2025
Sat Jul 19 20:41:14 EDT 2025
Mon Jul 21 06:03:38 EDT 2025
Tue Jul 01 03:28:18 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Wed Jan 22 16:20:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords directed acyclic graph
Dirichlet process mixture
subject-specific graph
personalized treatment
tumor heterogeneity
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3499-2c2009caa7bebba21e1f2403ee4594f1e5c82ce74a6f3eaf38e97b4e38a30fde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7911-2942
PMID 36317356
PQID 2756872494
PQPubID 48361
PageCount 18
ParticipantIDs proquest_miscellaneous_2731055004
proquest_journals_2756872494
pubmed_primary_36317356
crossref_citationtrail_10_1002_sim_9599
crossref_primary_10_1002_sim_9599
wiley_primary_10_1002_sim_9599_SIM9599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 January 2023
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 15 January 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 28
2019; 14
2022; 24
2020; 15
2013; 8
2017; 112
2012; 13
2012; 12
2012; 10
2007; 36
2010; 26
2021; 31
2014; 3
2021; 77
2000
2005; 100
1978; 65
2017; 33
2016; 113
2019; 114
2018; 74
2007; 3
2014; 9
2016; 44
2009; 25
2012; 142
2010; 38
1995; 90
2002; 30
2020; 39
1996
2020; 35
2016; 18
1999; 8
2007; 98
2011; 5
2011; 9
2021; 16
1974; 66
2018; 113
2019; 47
2015; 110
2018
2016
2020; 21
2009; 1
2014; 101
2018; 13
2012; 40
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Yang K (e_1_2_11_56_1) 2018
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Maathuis M (e_1_2_11_8_1) 2016
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
Georgescu M (e_1_2_11_50_1) 2012; 12
e_1_2_11_54_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Pearl J (e_1_2_11_7_1) 2000
Hauser A (e_1_2_11_55_1) 2012; 13
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
Witte J (e_1_2_11_36_1) 2020; 21
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Lauritzen SL (e_1_2_11_6_1) 1996
References_xml – volume: 38
  start-page: 2587
  issue: 5
  year: 2010
  end-page: 2619
  article-title: Bayes and empirical‐Bayes multiplicity adjustment in the variable‐selection problem
  publication-title: Ann Stat
– volume: 24
  start-page: 1
  year: 2022
  end-page: 3
  article-title: Search algorithms and loss functions for Bayesian clustering
  publication-title: J Comput Graph Stat
– volume: 65
  start-page: 31
  issue: 1
  year: 1978
  end-page: 38
  article-title: Bayesian cluster analysis
  publication-title: Biometrika
– volume: 9
  start-page: 521
  issue: 3
  year: 2014
  end-page: 550
  article-title: Robust Bayesian graphical modeling using Dirichlet ‐distributions
  publication-title: Bayesian Anal
– volume: 28
  start-page: 313
  issue: 3
  year: 2013
  end-page: 334
  article-title: Modeling with normalized random measure mixture models
  publication-title: Stat Sci
– volume: 36
  start-page: 45
  issue: 1
  year: 2007
  end-page: 54
  article-title: Sampling the Dirichlet mixture model with slices
  publication-title: Commun Stat Simul Comput
– volume: 39
  start-page: 4745
  issue: 30
  year: 2020
  end-page: 4766
  article-title: Bayesian learning of multiple directed networks from observational data
  publication-title: Stat Med
– volume: 33
  start-page: 2372
  issue: 15
  year: 2017
  end-page: 2378
  article-title: Mining heterogeneous causal effects for personalized cancer treatment
  publication-title: Bioinformatics
– volume: 113
  start-page: 7353
  issue: 27
  year: 2016
  end-page: 7360
  article-title: Recursive partitioning for heterogeneous causal effects
  publication-title: Proc Natl Acad Sci
– volume: 77
  start-page: 125
  issue: 1
  year: 2021
  end-page: 135
  article-title: A Bayesian nonparametric model for zero‐inflated outcomes: prediction, clustering, and causal estimation
  publication-title: Biometrics
– volume: 30
  start-page: 1412
  issue: 5
  year: 2002
  end-page: 1440
  article-title: Parameter priors for directed acyclic graphical models and the characterization of several probability distributions
  publication-title: Ann Stat
– volume: 44
  start-page: 2433
  issue: 6
  year: 2016
  end-page: 2466
  article-title: Causal inference with a graphical hierarchy of interventions
  publication-title: Ann Stat
– volume: 101
  start-page: 219
  issue: 1
  year: 2014
  end-page: 228
  article-title: Identifiability of Gaussian structural equation models with equal error variances
  publication-title: Biometrika
– volume: 40
  start-page: D109
  year: 2012
  end-page: D114
  article-title: KEGG for integration and interpretation of large‐scale molecular data sets
  publication-title: Nucl Acids Res
– volume: 26
  start-page: 1572
  issue: 12
  year: 2010
  end-page: 1573
  article-title: Consensus cluster plus: a class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
– volume: 31
  start-page: 2030
  year: 2021
  end-page: 2042
  article-title: Targeted inhibition of cooperative mutation‐ and therapy‐induced AKT activation in AML effectively enhances response to chemotherapy
  publication-title: Leukemia
– volume: 1
  start-page: 154
  issue: 113
  year: 2009
  end-page: 164
  article-title: Functional proteomic profiling of AML predicts response and survival
  publication-title: Blood
– volume: 9
  start-page: 283
  year: 2011
  end-page: 316
– volume: 21
  start-page: 1
  issue: 246
  year: 2020
  end-page: 45
  article-title: On efficient adjustment in causal graphs
  publication-title: J Mach Learn Res
– volume: 3
  start-page: 1724
  issue: 9
  year: 2007
  end-page: 1735
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet
– volume: 13
  start-page: 2409
  issue: 1
  year: 2012
  end-page: 2464
  article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 965
  issue: 3
  year: 2020
  end-page: 1056
  article-title: Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with discussion)
  publication-title: Bayesian Anal
– volume: 114
  start-page: 723
  issue: 526
  year: 2019
  end-page: 734
  article-title: Graphical model selection for Gaussian conditional random fields in the presence of latent variables
  publication-title: J Am Stat Assoc
– volume: 142
  start-page: 1947
  issue: 7
  year: 2012
  end-page: 1959
  article-title: Selecting the precision parameter prior in Dirichlet process mixture models
  publication-title: J Stat Plan Infer
– volume: 35
  start-page: 404
  issue: 3
  year: 2020
  end-page: 426
  article-title: Invariance, causality and robustness
  publication-title: Stat Sci
– volume: 77
  start-page: 136
  issue: 1
  year: 2021
  end-page: 149
  article-title: Bayesian inference of causal effects from observational data in Gaussian graphical models
  publication-title: Biometrics
– volume: 74
  start-page: 606
  issue: 2
  year: 2018
  end-page: 615
  article-title: Heterogeneous reciprocal graphical models
  publication-title: Biometrics
– volume: 47
  start-page: 319
  issue: 1
  year: 2019
  end-page: 348
  article-title: Posterior graph selection and estimation consistency for high‐dimensional Bayesian DAG models
  publication-title: Ann Stat
– volume: 100
  start-page: 322
  issue: 469
  year: 2005
  end-page: 331
  article-title: Causal inference using potential outcomes
  publication-title: J Am Stat Assoc
– start-page: 5541
  year: 2018
  end-page: 5550
– year: 1996
– year: 2000
– volume: 110
  start-page: 159
  issue: 509
  year: 2015
  end-page: 174
  article-title: Bayesian inference of multiple Gaussian graphical models
  publication-title: J Am Stat Assoc
– volume: 114
  start-page: 184
  issue: 525
  year: 2019
  end-page: 197
  article-title: Bayesian graphical regression
  publication-title: J Am Stat Assoc
– volume: 5
  start-page: 981
  year: 2011
  end-page: 1014
  article-title: Sparse covariance estimation in heterogeneous samples
  publication-title: Electr J Stat
– volume: 5
  start-page: 1057
  issue: 2A
  year: 2011
  end-page: 1080
  article-title: Robust graphical modeling of gene networks using classical and alternative ‐distributions
  publication-title: Ann Appl Stat
– volume: 90
  start-page: 577
  issue: 430
  year: 1995
  end-page: 588
  article-title: Bayesian density estimation and inference using mixtures
  publication-title: J Am Stat Assoc
– volume: 3
  start-page: 109
  issue: 1
  year: 2014
  end-page: 125
  article-title: Bayesian sparse graphical models and their mixtures
  publication-title: Stat
– volume: 16
  start-page: 1113
  issue: 4
  year: 2021
  end-page: 1137
  article-title: Bayesian causal inference in probit graphical models
  publication-title: Bayesian Anal
– volume: 18
  start-page: 32
  issue: 1
  year: 2016
  end-page: 47
  article-title: A Bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome
  publication-title: Biostatistics
– volume: 10
  start-page: 230
  issue: 2
  year: 2012
  end-page: 248
  article-title: On the relationship between Markov chain Monte Carlo methods for model uncertainty
  publication-title: J Comput Graph Stat
– volume: 25
  start-page: 2906
  issue: 22
  year: 2009
  end-page: 2912
  article-title: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
  publication-title: Bioinformatics
– start-page: 387
  year: 2016
  end-page: 408
– volume: 98
  start-page: 873
  issue: 5
  year: 2007
  end-page: 895
  article-title: Comparing clusterings ‐ an information based distance
  publication-title: J Multivar Anal
– volume: 112
  start-page: 779
  issue: 518
  year: 2017
  end-page: 793
  article-title: Sparse multi‐dimensional graphical models: a unified Bayesian framework
  publication-title: J Am Stat Assoc
– volume: 12
  start-page: 1170
  issue: 1
  year: 2012
  end-page: 1177
  article-title: PTEN tumor suppressor network in PI3K‐Akt pathway control
  publication-title: Genes Cancer
– volume: 8
  start-page: 4240
  issue: 96
  year: 1999
  end-page: 4245
  article-title: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3‐kinase/AKT pathway
  publication-title: Proc Natl Acad Sci
– volume: 8
  start-page: 269
  issue: 2
  year: 2013
  end-page: 302
  article-title: Bayesian nonparametric inference – Why and how
  publication-title: Bayesian Anal
– volume: 21
  issue: 8
  year: 2020
  article-title: The PI3K‐Akt‐mTOR signaling pathway in human acute myeloid leukemia (AML) cells
  publication-title: Int J Mol Sci
– volume: 14
  start-page: 1271
  issue: 4
  year: 2019
  end-page: 1301
  article-title: Hierarchical normalized completely random measures for robust graphical modeling
  publication-title: Bayesian Anal
– volume: 13
  start-page: 559
  issue: 2
  year: 2018
  end-page: 626
  article-title: Bayesian cluster analysis: point estimation and credible balls (with discussion)
  publication-title: Bayesian Anal
– volume: 66
  start-page: 688
  issue: 5
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
– volume: 113
  start-page: 1228
  issue: 523
  year: 2018
  end-page: 1242
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J Am Stat Assoc
– ident: e_1_2_11_23_1
  doi: 10.1080/01621459.2016.1167694
– ident: e_1_2_11_16_1
– ident: e_1_2_11_12_1
  doi: 10.1198/10618600152627924
– ident: e_1_2_11_52_1
  doi: 10.1371/journal.pgen.0030161
– ident: e_1_2_11_35_1
  doi: 10.1214/19-STS721
– ident: e_1_2_11_37_1
  doi: 10.1214/aos/1035844981
– ident: e_1_2_11_13_1
  doi: 10.1037/h0037350
– ident: e_1_2_11_51_1
  doi: 10.1214/13-STS416
– ident: e_1_2_11_32_1
  doi: 10.1198/016214504000001880
– ident: e_1_2_11_39_1
  doi: 10.1093/biomet/ast043
– ident: e_1_2_11_3_1
  doi: 10.1093/bioinformatics/btp543
– ident: e_1_2_11_9_1
  doi: 10.1214/13-BA811
– ident: e_1_2_11_54_1
  doi: 10.1214/15-AOS1411
– ident: e_1_2_11_4_1
  doi: 10.1093/bioinformatics/btx174
– ident: e_1_2_11_41_1
  doi: 10.1016/j.jspi.2012.02.013
– ident: e_1_2_11_44_1
  doi: 10.1093/biomet/65.1.31
– ident: e_1_2_11_24_1
  doi: 10.1080/01621459.2017.1389739
– ident: e_1_2_11_20_1
  doi: 10.1214/21-BA1260
– ident: e_1_2_11_45_1
  doi: 10.1016/j.jmva.2006.11.013
– ident: e_1_2_11_10_1
  doi: 10.1214/18-AOS1689
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.1510489113
– ident: e_1_2_11_43_1
  doi: 10.1214/17-BA1073
– ident: e_1_2_11_11_1
  doi: 10.1080/03610910601096262
– ident: e_1_2_11_40_1
  doi: 10.1080/01621459.1995.10476550
– ident: e_1_2_11_15_1
  doi: 10.1080/01621459.2017.1319839
– ident: e_1_2_11_27_1
  doi: 10.1093/acprof:oso/9780199694587.003.0010
– volume: 13
  start-page: 2409
  issue: 1
  year: 2012
  ident: e_1_2_11_55_1
  article-title: Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
  publication-title: J Mach Learn Res
– ident: e_1_2_11_19_1
  doi: 10.1111/biom.13281
– ident: e_1_2_11_28_1
  doi: 10.1111/biom.12791
– volume-title: Causality: Models, Reasoning, and Inference
  year: 2000
  ident: e_1_2_11_7_1
– ident: e_1_2_11_25_1
  doi: 10.1214/11-EJS634
– start-page: 5541
  volume-title: Proceedings of the 35th International Conference on Machine Learning. Volume 80 of Proceedings of Machine Learning Research
  year: 2018
  ident: e_1_2_11_56_1
– ident: e_1_2_11_26_1
  doi: 10.1002/sta4.49
– ident: e_1_2_11_42_1
  doi: 10.1080/10618600.2022.2069779
– ident: e_1_2_11_47_1
  doi: 10.3390/ijms21082907
– ident: e_1_2_11_53_1
  doi: 10.1080/01621459.2018.1434531
– ident: e_1_2_11_30_1
  doi: 10.1214/13-BA856
– ident: e_1_2_11_33_1
  doi: 10.1093/biostatistics/kxw029
– ident: e_1_2_11_5_1
  doi: 10.1182/blood-2007-10-119438
– ident: e_1_2_11_48_1
  doi: 10.1038/s41375-020-01094-0
– ident: e_1_2_11_21_1
  doi: 10.1080/01621459.2014.896806
– ident: e_1_2_11_38_1
  doi: 10.1214/10-AOS792
– ident: e_1_2_11_18_1
– volume: 12
  start-page: 1170
  issue: 1
  year: 2012
  ident: e_1_2_11_50_1
  article-title: PTEN tumor suppressor network in PI3K‐Akt pathway control
  publication-title: Genes Cancer
– ident: e_1_2_11_2_1
  doi: 10.1093/bioinformatics/btq170
– ident: e_1_2_11_17_1
  doi: 10.1214/19-BA1195
– ident: e_1_2_11_34_1
  doi: 10.1111/biom.13244
– ident: e_1_2_11_31_1
  doi: 10.1214/19-BA1153
– ident: e_1_2_11_49_1
  doi: 10.1073/pnas.96.8.4240
– volume: 21
  start-page: 1
  issue: 246
  year: 2020
  ident: e_1_2_11_36_1
  article-title: On efficient adjustment in causal graphs
  publication-title: J Mach Learn Res
– volume-title: Graphical Models
  year: 1996
  ident: e_1_2_11_6_1
  doi: 10.1093/oso/9780198522195.001.0001
– start-page: 387
  volume-title: Handbook of Big Data
  year: 2016
  ident: e_1_2_11_8_1
– ident: e_1_2_11_46_1
  doi: 10.1093/nar/gkr988
– ident: e_1_2_11_22_1
  doi: 10.1002/sim.8751
– ident: e_1_2_11_29_1
  doi: 10.1214/10-AOAS410
SSID ssj0011527
Score 2.4143069
Snippet There is a growing interest in current medical research to develop personalized treatments using a molecular‐based approach. The broad goal is to implement a...
There is a growing interest in current medical research to develop personalized treatments using a molecular-based approach. The broad goal is to implement a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Bayes Theorem
Blood cancer
Causality
Cell cycle
Chemotherapy
directed acyclic graph
Dirichlet process mixture
Humans
Leukemia, Myeloid, Acute - etiology
Leukemia, Myeloid, Acute - genetics
Normal Distribution
personalized treatment
subject‐specific graph
tumor heterogeneity
Title Bayesian graphical modeling for heterogeneous causal effects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9599
https://www.ncbi.nlm.nih.gov/pubmed/36317356
https://www.proquest.com/docview/2756872494
https://www.proquest.com/docview/2731055004
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KH0pgrGu6j2xt8WBsT04iS_6CvrSlJR1kD9sCgT0YSTnR0jUZc_yw_vW9s2yXbiuUPhns85d00v2ku_sdwAey0SLJnAqVs2modIohgXoX0nl0cmyVTThRePolmczU53k8b6IqORfG80N0G248Mur5mge4NuXojjS0vLwe5nHOuXscqsV46GvHHCXaaq3soUxSEbe8s-No1N543xL9Ay_vo9Xa3Jxtw4_2Q32UydWwWpuhvfmLw_Fpf_ICnjcoNDjyarMDG7jsw9a08bP34ZnfzQt8klIfeoxJPaXzLhwe6z_IuZdBzXbNvRzUBXXICgaEgYMLDrFZkWbiqioDq6uSJJrAkZcwOzv9fjIJmyIMoZW0Ggojy_4Tq3Vq0BgdCRSOOfwQVZwrJzC2WWQxVTpxErWTGeapUSgzLcdugfIVbC5XS3wDgcCUyedlbpRRpAZGxM7xbKwypplfDOBT2yGFbRjKuVDGz8JzK0cFtVTBLTWA953kL8_K8R-ZvbZPi2ZclgWT3WcpLTkVPaK7TCOK3SS6bhaSkVw1lGaPAbz2utC9RCaEt2ScDOBj3aMPvr34dj7l49vHCr6DHley590dEe_B5vp3hfuEd9bmoNbsWy7G-3I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYoSC1SVWALdCmFVEJwyrKTmbzUXgAVLY_lwEPigBTNDB61atmtursH-PXYmSSIR6Wqp0iJ8xrbY489_gywQTZaJJlToXI2DZVOMSSn3oV0Hp3sWmUTLhTunyS9C3V4GV9OwZe6FsbjQzQBN9aMcr5mBeeA9PYDaujox00nj_P8FcxwQ-9yPXXaYEeJul8r5yiTVMQ18mw32q7vfGyLnjmYj_3V0uDsz8FV_al-n8nPzmRsOvbuCYrjf_7LPLyrHNFgx0vOAkzhoAWv-1WqvQVvfUAv8HVKLZhlt9SjOr-Hr7v6Frn8MigBr5nRQdlThwxhQG5w8J132QxJOHE4GQVWT0ZEUe0dWYSL_W_ne72w6sMQWkkLojCynEKxWqcGjdGRQOEYxg9RxblyAmObRRZTpRMnUTuZYZ4ahTLTsuuuUS7B9GA4wA8QCEwZf17mRhlFkmBE7BxPyCpjpPnrNmzVHClsBVLOvTJ-FR5eOSpopAoeqTZ8bih_e2COF2hWa6YWlWqOCsa7z1JadSp6RHOZlIozJbocFqKR3DiUJpA2LHthaF4iE3K5ZJy0YbNk6V_fXpwd9Pm48q-E6_Cmd94_Lo4PTo4-wiw3tudgj4hXYXr8Z4KfyP0Zm7VSzO8B3eL_jQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxxBDA9WQQRRe_bjqtYVxD7tebMz-wW--NFD255IW0HwYZmZy6BY76R399D-9SY7uyvWFopPC7vZr0kyyUySXwC2yUaLJHMqVM6modIphuTUu5DOo5Ndq2zChcL90-T4XH26iC-qrEquhfH4EM2GG2tGOV-zgt8N3O4DaOj4-raTx3n-AuZU0s1Yoo--NtBRom7XyiHKJBVxDTzbjXbrOx-boif-5WN3tbQ3vWW4rL_Up5ncdKYT07G__wBxfN6vrMBS5YYG-15uXsIMDlsw368C7S1Y9Nt5ga9SasECO6Ue03kV9g70L-Tiy6CEu2Y2B2VHHTKDATnBwRXn2IxINHE0HQdWT8dEUWWOvILz3sfvh8dh1YUhtJKWQ2FkOYBitU4NGqMjgcIxiB-iinPlBMY2iyymSidOonYywzw1CmWmZdcNUL6G2eFoiG8hEJgy-rzMjTKK5MCI2DmejlXGOPODNnyoGVLYCqKcO2X8KDy4clTQSBU8Um3YaijvPCzHX2jWa54WlWKOC0a7z1Jacyp6RHOZVIrjJLocFqKR3DaUpo82vPGy0LxEJuRwyThpw07J0X--vfh20ufju_8l3IT5s6Ne8eXk9PMaLHBXe97pEfE6zE5-TnGDfJ-JeV8K-T3_Av5F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+graphical+modeling+for+heterogeneous+causal+effects&rft.jtitle=Statistics+in+medicine&rft.au=Castelletti%2C+Federico&rft.au=Consonni%2C+Guido&rft.date=2023-01-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=1&rft.spage=15&rft.epage=32&rft_id=info:doi/10.1002%2Fsim.9599&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon