Spontaneous Electric Polarization in Graphene Polytypes

Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 5
Main Authors Atri, Simon Salleh, Cao, Wei, Alon, Bar, Roy, Nirmal, Stern, Maayan Vizner, Falko, Vladimir, Goldstein, Moshe, Kronik, Leeor, Urbakh, Michael, Hod, Oded, Ben Shalom, Moshe
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.05.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional  architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields. Internal electric polarization in a periodic crystal requires a non‐centrosymmetric unit cell. Usually, the different atomic species in each cell break the symmetry and polarize the inter‐atomic bonds, thus hiding the purely geometrical contribution of the atomic positions. The current report reveals a room‐temperature polarization in elemental layered crystals of carbon atoms only. It explores fascinating electronic distributions in such metastable van der Waals polytypes of various structural configurations and symmetries.
AbstractList Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional  architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields. Internal electric polarization in a periodic crystal requires a non‐centrosymmetric unit cell. Usually, the different atomic species in each cell break the symmetry and polarize the inter‐atomic bonds, thus hiding the purely geometrical contribution of the atomic positions. The current report reveals a room‐temperature polarization in elemental layered crystals of carbon atoms only. It explores fascinating electronic distributions in such metastable van der Waals polytypes of various structural configurations and symmetries.
Abstract Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional  architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields.
Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional  architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields.
Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields.
Author Goldstein, Moshe
Kronik, Leeor
Roy, Nirmal
Alon, Bar
Urbakh, Michael
Cao, Wei
Atri, Simon Salleh
Ben Shalom, Moshe
Falko, Vladimir
Hod, Oded
Stern, Maayan Vizner
Author_xml – sequence: 1
  givenname: Simon Salleh
  surname: Atri
  fullname: Atri, Simon Salleh
  organization: Tel Aviv University
– sequence: 2
  givenname: Wei
  surname: Cao
  fullname: Cao, Wei
  organization: Tel Aviv University
– sequence: 3
  givenname: Bar
  surname: Alon
  fullname: Alon, Bar
  organization: Tel Aviv University
– sequence: 4
  givenname: Nirmal
  surname: Roy
  fullname: Roy, Nirmal
  organization: Tel Aviv University
– sequence: 5
  givenname: Maayan Vizner
  surname: Stern
  fullname: Stern, Maayan Vizner
  organization: Tel Aviv University
– sequence: 6
  givenname: Vladimir
  surname: Falko
  fullname: Falko, Vladimir
  organization: University of Manchester
– sequence: 7
  givenname: Moshe
  surname: Goldstein
  fullname: Goldstein, Moshe
  organization: Tel Aviv University
– sequence: 8
  givenname: Leeor
  surname: Kronik
  fullname: Kronik, Leeor
  organization: Weizmann Institute of Science
– sequence: 9
  givenname: Michael
  surname: Urbakh
  fullname: Urbakh, Michael
  organization: Tel Aviv University
– sequence: 10
  givenname: Oded
  surname: Hod
  fullname: Hod, Oded
  organization: Tel Aviv University
– sequence: 11
  givenname: Moshe
  orcidid: 0000-0001-5781-0037
  surname: Ben Shalom
  fullname: Ben Shalom, Moshe
  email: moshebs@tauex.tau.ac.il
  organization: Tel Aviv University
BookMark eNqFkM1LAzEQxYNUsNZePS943ppMkk1yLKVqoWDxA7yFNJvVlHWzZrdo_evdtioiiKcZZt57PH7HqFeFyiF0SvCIYAznpn6LI8BAMcaKH6A-CE5SAhj3fuxHaNg0q04CUhHKSB-J2zpUralcWDfJtHS2jd4mi1Ca6N9N60OV-Cq5jKZ-cpXbPjbtpnbNCTosTNm44eccoPuL6d3kKp1fX84m43lqKVMydcICGFpkUvHCUI6tZRTLrqNwOJeEMCmMzMERJUBQxjmnubDGCoEhYwUdoNk-Nw9mpevon03c6GC83h1CfNQmtt6WTitKsQNaKLJUbJkVkua5Y6AUy8wyy0SXdbbPqmN4Wbum1auwjlVXX1OiAIBwzDsV26tsDE0TXaGtb3ck2mh8qQnWW-J6S1x_E-9so1-2r7J_Gvje8OpLt_lHrceLhxsCREj6AU1akpk
CitedBy_id crossref_primary_10_1038_s41467_024_52011_3
crossref_primary_10_1103_PhysRevResearch_6_043324
crossref_primary_10_1038_s41467_025_56073_9
crossref_primary_10_1103_PhysRevB_109_235426
crossref_primary_10_1002_adfm_202404665
crossref_primary_10_1021_acs_nanolett_4c01880
crossref_primary_10_1021_acs_jpcc_4c01207
crossref_primary_10_1038_s42254_024_00781_6
crossref_primary_10_1002_adma_202408060
crossref_primary_10_1016_j_carbon_2024_119608
crossref_primary_10_1002_pssr_202400189
crossref_primary_10_1038_s41524_024_01511_3
crossref_primary_10_1038_s41586_024_08380_2
crossref_primary_10_1002_adma_202400750
crossref_primary_10_1063_5_0255501
crossref_primary_10_1021_acs_nanolett_4c05062
crossref_primary_10_1063_5_0250451
crossref_primary_10_1103_PhysRevB_110_L201113
crossref_primary_10_1103_PhysRevMaterials_8_044001
Cites_doi 10.1038/nmat3965
10.1038/s41467-020-20667-2
10.1021/nl1032827
10.1103/PhysRevB.107.104502
10.1021/acs.nanolett.1c00609
10.1021/acsnano.7b02756
10.1021/acs.nanolett.9b05092
10.1038/s41586-021-03938-w
10.1038/s41586-022-05341-5
10.1021/acsnano.2c06053
10.1093/acprof:oso/9780198507789.001.0001
10.1038/nature26160
10.1143/PTPS.176.227
10.1126/science.1102896
10.1038/s41586-020-2568-2
10.1038/s41565-022-01072-w
10.1021/cm980140w
10.1016/j.surfrep.2010.10.001
10.1103/PhysRevLett.97.036803
10.1126/sciadv.aax5080
10.1103/PhysRevB.73.245426
10.1038/s41586-022-05521-3
10.1080/00018738100101367
10.1038/s41586-018-0336-3
10.1107/S0108767384000842
10.1126/science.abd3230
10.1021/nl901572a
10.1007/978-3-540-34591-6_2
10.1038/s41467-021-25587-3
10.1103/PhysRevResearch.6.L012003
10.1021/acs.nanolett.2c04723
10.1038/358136a0
10.1103/PhysRev.17.475
10.1038/s41567-019-0427-6
10.1103/PhysRevLett.131.096801
10.1038/s41586-021-03926-0
10.1103/PhysRevB.87.045420
10.1038/s41565-017-0042-6
10.1126/science.abe8177
10.1016/j.ssc.2007.02.013
10.1038/s41586-023-05848-5
10.1002/adma.202204697
10.1103/PhysRevLett.127.087601
10.1038/s41565-022-01248-4
10.1016/j.apsusc.2006.03.052
10.1103/PhysRevB.87.235305
ContentType Journal Article
Copyright 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202300095
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Titles
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_9330e23f91b94b6f83dde429946ab667
10_1002_apxr_202300095
APXR12178
Genre article
GrantInformation_xml – fundername: United States‐Israel Binational Science Foundation
  funderid: 2020072
– fundername: Israel Science Foundation
  funderid: 1141/18; 3427/21; 3191/19; 1586/17; 391/22; 3623/21
– fundername: European Union’s Horizon 2020
  funderid: 852925
– fundername: Ministry of Science and Technology of Israel
  funderid: 3–16244
– fundername: Graphene Flagship
  funderid: EC‐FETCore3
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c3498-e7c22a3f6895fa350cc43080097e0d811487a8d2e19727345553d7cac770264f3
IEDL.DBID 24P
ISSN 2751-1200
IngestDate Wed Aug 27 01:32:09 EDT 2025
Wed Aug 13 07:18:09 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 02:33:00 EDT 2025
Wed Jan 22 17:20:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3498-e7c22a3f6895fa350cc43080097e0d811487a8d2e19727345553d7cac770264f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5781-0037
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300095
PQID 3192221505
PQPubID 6852862
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_9330e23f91b94b6f83dde429946ab667
proquest_journals_3192221505
crossref_citationtrail_10_1002_apxr_202300095
crossref_primary_10_1002_apxr_202300095
wiley_primary_10_1002_apxr_202300095_APXR12178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2018; 560
1984; 40
2021; 21
2006; 97
2007; 105
2006; 73
2019; 5
2020; 20
2013; 87
2019; 1
2021; 127
2007; 142
2011; 11
2006; 252
2020; 584
2023; 107
2004; 306
2022; 612
2021; 12
2023; 23
2001
2023
2018; 556
2021; 598
2017; 11
1921; 17
1992; 358
2022; 34
2022; 13
2011; 66
2009; 9
2014; 13
2021; 372
2023; 613
1998; 10
2008; 176
1981; 30
2023; 617
2022; 16
2022; 17
2018; 13
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
Meng P. (e_1_2_6_15_1) 2022; 13
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 13
  start-page: 786
  year: 2014
  publication-title: Nat. Mater.
– volume: 358
  start-page: 136
  year: 1992
  publication-title: Nature
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 13
  start-page: 7
  year: 2022
  publication-title: Nat. Commun.
– volume: 11
  start-page: 164
  year: 2011
  publication-title: Nano Lett.
– volume: 17
  start-page: 475
  year: 1921
  publication-title: Phys. Rev.
– year: 2001
– volume: 23
  start-page: 4120
  year: 2023
  publication-title: Nano Lett.
– volume: 176
  start-page: 227
  year: 2008
  publication-title: Prog. Theor. Phys.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 372
  start-page: 1458
  year: 2021
  publication-title: Science
– volume: 613
  start-page: 48
  year: 2023
  publication-title: Nature
– volume: 20
  start-page: 3106
  year: 2020
  publication-title: Nano Lett.
– volume: 598
  start-page: 429
  year: 2021
  publication-title: Nature
– volume: 66
  start-page: 1
  year: 2011
  publication-title: Surf. Sci. Rep.
– volume: 584
  start-page: 210
  year: 2020
  publication-title: Nature
– volume: 30
  start-page: 139
  year: 1981
  publication-title: Adv. Phys.
– volume: 11
  start-page: 6382
  year: 2017
  publication-title: ACS Nano
– volume: 142
  start-page: 123
  year: 2007
  publication-title: Solid State Commun.
– volume: 21
  start-page: 3280
  year: 2021
  publication-title: Nano Lett.
– volume: 105
  start-page: 31
  year: 2007
  publication-title: Top. Appl. Phys.
– volume: 17
  start-page: 390
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 437
  year: 2019
  publication-title: Nat. Phys.
– volume: 40
  start-page: 399
  year: 1984
  publication-title: Acta Cryst.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 598
  start-page: 434
  year: 2021
  publication-title: Nature
– volume: 612
  start-page: 465
  year: 2022
  publication-title: Nature
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 204
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 1272
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 560
  start-page: 336
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 347
  year: 2021
  publication-title: Nat. Commun.
– volume: 372
  start-page: 142
  year: 2021
  publication-title: Science
– volume: 9
  start-page: 3430
  year: 2009
  publication-title: Nano Lett.
– volume: 10
  start-page: 2753
  year: 1998
  publication-title: Chem. Mater.
– year: 2023
– volume: 617
  start-page: 67
  year: 2023
  publication-title: Nature
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 252
  start-page: 7608
  year: 2006
  publication-title: Appl. Surf. Sci.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. B
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B – Condens. Matter Mater. Phys.
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 5298
  year: 2021
  publication-title: Nat. Commun.
– ident: e_1_2_6_19_1
  doi: 10.1038/nmat3965
– ident: e_1_2_6_9_1
  doi: 10.1038/s41467-020-20667-2
– ident: e_1_2_6_18_1
  doi: 10.1021/nl1032827
– ident: e_1_2_6_29_1
  doi: 10.1103/PhysRevB.107.104502
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.nanolett.1c00609
– ident: e_1_2_6_7_1
  doi: 10.1021/acsnano.7b02756
– ident: e_1_2_6_23_1
  doi: 10.1021/acs.nanolett.9b05092
– ident: e_1_2_6_28_1
  doi: 10.1038/s41586-021-03938-w
– ident: e_1_2_6_14_1
  doi: 10.1038/s41586-022-05341-5
– ident: e_1_2_6_38_1
  doi: 10.1021/acsnano.2c06053
– ident: e_1_2_6_16_1
  doi: 10.1093/acprof:oso/9780198507789.001.0001
– ident: e_1_2_6_20_1
  doi: 10.1038/nature26160
– ident: e_1_2_6_36_1
  doi: 10.1143/PTPS.176.227
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1102896
– ident: e_1_2_6_26_1
  doi: 10.1038/s41586-020-2568-2
– ident: e_1_2_6_12_1
  doi: 10.1038/s41565-022-01072-w
– ident: e_1_2_6_5_1
  doi: 10.1021/cm980140w
– ident: e_1_2_6_39_1
  doi: 10.1016/j.surfrep.2010.10.001
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevLett.97.036803
– ident: e_1_2_6_42_1
  doi: 10.1126/sciadv.aax5080
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevB.73.245426
– ident: e_1_2_6_44_1
  doi: 10.1038/s41586-022-05521-3
– ident: e_1_2_6_47_1
  doi: 10.1080/00018738100101367
– ident: e_1_2_6_8_1
  doi: 10.1038/s41586-018-0336-3
– ident: e_1_2_6_1_1
  doi: 10.1107/S0108767384000842
– volume: 13
  start-page: 7
  year: 2022
  ident: e_1_2_6_15_1
  publication-title: Nat. Commun.
– ident: e_1_2_6_11_1
  doi: 10.1126/science.abd3230
– ident: e_1_2_6_40_1
  doi: 10.1021/nl901572a
– ident: e_1_2_6_6_1
  doi: 10.1007/978-3-540-34591-6_2
– ident: e_1_2_6_43_1
  doi: 10.1038/s41467-021-25587-3
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevResearch.6.L012003
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.nanolett.2c04723
– ident: e_1_2_6_2_1
– ident: e_1_2_6_4_1
  doi: 10.1038/358136a0
– ident: e_1_2_6_3_1
  doi: 10.1103/PhysRev.17.475
– ident: e_1_2_6_22_1
  doi: 10.1038/s41567-019-0427-6
– ident: e_1_2_6_32_1
  doi: 10.1103/PhysRevLett.131.096801
– ident: e_1_2_6_27_1
  doi: 10.1038/s41586-021-03926-0
– ident: e_1_2_6_37_1
  doi: 10.1103/PhysRevB.87.045420
– ident: e_1_2_6_21_1
  doi: 10.1038/s41565-017-0042-6
– ident: e_1_2_6_10_1
  doi: 10.1126/science.abe8177
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ssc.2007.02.013
– ident: e_1_2_6_25_1
  doi: 10.1038/s41586-023-05848-5
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.202204697
– ident: e_1_2_6_48_1
  doi: 10.1103/PhysRevLett.127.087601
– ident: e_1_2_6_13_1
  doi: 10.1038/s41565-022-01248-4
– ident: e_1_2_6_45_1
  doi: 10.1016/j.apsusc.2006.03.052
– ident: e_1_2_6_46_1
  doi: 10.1103/PhysRevB.87.235305
SSID ssj0002891341
Score 2.389209
Snippet Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with...
Abstract Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Broken symmetry
Charge transfer
Crystals
Doping
Electric polarization
Electrons
First principles
Graphene
graphene polytypes
interfacial ferroelectricity
Polarization
Polytypes
Room temperature
Symmetry
Unit cell
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykxdRVJxO6UHwFNfmd45TNoegDHWwW0jSFCbSDTdB_3vz2m5sB9nFaxva8F7z3vc1ed9D6DoTOSEydZj74DCTVGPlrcI-FZp64SyRUOD89CyGY_Y44ZONVl9wJqyWB64N1wXCHQgtdOY0c6JQNC5ICKJMWCdEVUcec94GmXqvt89AqWyl0piSrp1_g_xnRNyAKrayUCXWv4UwN3FqlWgGh-igQYhJr57ZEdoL5TGSr_NZGXFciEQ96Veta6Y-GQEvbQopk2mZPID6dAxecOMHfq4uTtB40H-7H-Km5wH2lGmFg_SEWFoIpXlhKU-9ZxRQnZYhzRWwF2lVTgK0C5OUcc5pLr31UkY2xQp6ilrlrAxnKOFE5txxbWXOWKRxOhRcWOmDzEghU9VGeGUD4xtBcOhL8WFqKWNiwGZmbbM2ulmPn9dSGH-OvAOTrkeBhHV1ITrWNI41uxzbRp2VQ0yzrhYmBowIaCKIje-4rZy0YyqmN5q8ZJF3qfP_mNQF2o-PZvWJxw5qLT-_wmVEJUt3VX2Av6so2lM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA66XryIouL6ogfBU7TNa5KTqKyKoCw-YG8hTVMRpLu6CvrvzXSzqx7Ua5uWMpnOfDNJvo-QvUJVjEFeUulDSQVwQ7V3mvpcGe5V6RjgAeera3VxLy4HcpAabuO0rXIaE9tAXQ099sgPo6vEVBbhizwaPVNUjcLV1SShMU8WYgjWukMWTnrX_ZtZl4XhKlwrX8lAFrSIPjFlbszZoRu9IyVoROGINH5kppbA_wfq_I5d2-RztkyWEmrMjifTvELmQrNK4HY0bCK2C7F4z3qtnM2jz_pYq6bDldljk50jI3UMaHjjAxuu4zVyf9a7O72gSQeBei6MpgE8Y47XShtZOy5z7wVHpGcg5JXGigacrlhACTHgQkrJK_DOA8QKS9R8nXSaYRM2SCYZVLKUxkElRCztTKilcuADFKyGXHcJndrA-kQSjloVT3ZCb8ws2szObNYl-7Pxowk9xq8jT9Cks1FIa91eGL482PSXWOyuBMZrU5RGlKrWPEZfzJhCuVIp6JLt6YTY9K-N7ZdndMlBO0n_fIo97g9uiliL6c2_37dFFuNDYrK_cZt0Xl_ewk7EIK_lbnK0T3IL1W8
  priority: 102
  providerName: ProQuest
Title Spontaneous Electric Polarization in Graphene Polytypes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300095
https://www.proquest.com/docview/3192221505
https://doaj.org/article/9330e23f91b94b6f83dde429946ab667
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La-MwEBZtc-ml7LItTbcbfCjsScTWa6RjuyQNhZbQB-QmJFkugeKEpgu7_341tuNtDsvSiw-ybIuRZvTNWPMNIReFKhmD3FMZoqcCuKE6OE1DrgwPyjsGmOB8e6dmT-JmIRfvsvhbfog-4Iaa0dhrVHDnN-O_pKFu_Qv5PBOERpiwTwaYX4uH-piY91EWhn_hmvKVDGRBi7QmtsyNORvvvmJnZ2oI_HdQ53vs2mw-00_kqEON2WU7zZ_JXqy_EHhYr-qE7WJy3rNJU85mGbI5-qpdcmW2rLNrZKROBg1v_MaA6-aYPE0njz9mtKuDQAMXRtMIgTHHK6WNrByXeQiCI9IzEPNSo0cDTpcsYgkx4EJKyUsILgAkD0tU_IQc1Ks6npJMMiill8ZBKURy7UyspHIQIhSsglwPCd3KwIaOJBxrVbzYlt6YWZSZ7WU2JN_7_uuWHuOfPa9QpH0vpLVuGlavz7bTEovRlch4ZQpvhFeV5sn64o4plPNKwZCcbyfEdrq2scmIJJCTgG36Rrti_jMUezlf3BfJF9NnH33gKzlMraI98XhODt5ef8ZvCZW8-VGz8NJVT69HZHA1uZvfjxoP_w85r9qH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKgLElrbkAOJkmvg18aFCBbrd0ocqaKW9GcdxUCWUbLutoH-K31hPHgs9AKdeE8uyxuOZb8ae-QBeZbrkHNOCKR8KJlEYlnuXM59qI7wuHEcqcD480pNT-Wmqpkvwa6iFoWeVg01sDXXZeMqRb0ZVia4swhf1bnbOiDWKblcHCo1OLfbD9Y8Yss239j7G_X3N-Xjn5MOE9awCzAtpchbQc-5EpXOjKidU6r0UhJsMhrTMKT5Al5c8ECEXCqmUEiV65xFjvCIrEee9B_eliJ6cKtPHu4ucDqc7v5Ysk6PKWBY1cOgTmfJNN_tJDUgj5idcc8sPtnQBtzDun0i5dXXjFXjUY9Rku1Oqx7AU6ieAX2ZNHZFkaK7myU5LnnPmk2OKjPtSzuSsTnap_3U0n_TjmtK786dweifyeQbLdVOH55AojqUqlHFYShkDSRMqpR36gBmvMM1HwAYZWN-3JCdmjO-2a6bMLcnMLmQ2gjeL8bOuGcdfR74nkS5GURPt9kNz8c32Z9JSLidwUZmsMLLQVS6irSf_LLUrtMYRrA0bYvuTPbe_9XAEb9tN-s9S7Pbx9HMWI7989d_zvYQHk5PDA3uwd7T_Ah7GCWT3snINli8vrsJ6RD-XxUarcgl8vWsdvwEJPQ4i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbaRap6QUWlYimFHCpxskj8Gvu4FJZHAa2ARSsuluM4aKUqu-Ihwb-vJ8kG9lChXpPJQ2PPzDeTzDeE_MxUwRikOZU-5FQAN1R7p6lPleFe5Y4BNjifX6jjsTidyMmbLv6GH6IruKFl1P4aDXxelHuvpKFu_ox8nhFCI0z4SFZkDE1pj6wMbsa3467OwvA7XD3AkoHMaBZ3xYK7MWV7yzdZik01hf8S7nyLXuvwM_xCVlvcmAyahV4jH0L1lcDVfFZFdBdi-p4c1gNtpj4ZYbbatlcm0yo5Qk7q6NLwxAuWXB_WyXh4eP3rmLaTEKjnwmgawDPmeKm0kaXjMvVecMR6BkJaaMxpwOmCBRwiBlxIKXkB3nmAmGOJkn8jvWpWhQ2SSAaFzKVxUAgRkzsTSqkc-AAZKyHVfUIXOrC-pQnHaRV_bENwzCzqzHY665PdTn7eEGT8U3IfVdpJIbF1fWB2f2dbO7FYXwmMlybLjchVqXn0vxgzhXK5UtAnW4sFsa21PdjoRiLMidA2PqPZM--8ih2MJpdZzMb05v9esEM-jQ6G9uzk4vd38jkKiOb3xy3Se7x_Cj8iRHnMt9td-BfmW9tt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Electric+Polarization+in+Graphene+Polytypes&rft.jtitle=Advanced+Physics+Research&rft.au=Atri%2C+Simon+Salleh&rft.au=Cao%2C+Wei&rft.au=Alon%2C+Bar&rft.au=Roy%2C+Nirmal&rft.date=2024-05-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202300095&rft.externalDBID=10.1002%252Fapxr.202300095&rft.externalDocID=APXR12178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon