Spontaneous Electric Polarization in Graphene Polytypes
Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.05.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields.
Internal electric polarization in a periodic crystal requires a non‐centrosymmetric unit cell. Usually, the different atomic species in each cell break the symmetry and polarize the inter‐atomic bonds, thus hiding the purely geometrical contribution of the atomic positions. The current report reveals a room‐temperature polarization in elemental layered crystals of carbon atoms only. It explores fascinating electronic distributions in such metastable van der Waals polytypes of various structural configurations and symmetries. |
---|---|
AbstractList | Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields.
Internal electric polarization in a periodic crystal requires a non‐centrosymmetric unit cell. Usually, the different atomic species in each cell break the symmetry and polarize the inter‐atomic bonds, thus hiding the purely geometrical contribution of the atomic positions. The current report reveals a room‐temperature polarization in elemental layered crystals of carbon atoms only. It explores fascinating electronic distributions in such metastable van der Waals polytypes of various structural configurations and symmetries. Abstract Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields. Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields. Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with two or more constituent species, or non‐centrosymmetric intra‐layer atom displacement in single‐atom‐species materials. Here, it is shown that even elemental crystals, consisting of one type of atom and composed of non‐polar and centrosymmetric layers, exhibit electric polarization if arranged in an appropriate three‐dimensional architecture. This concept is demonstrated here for mixed‐stacking tetra‐layer polytypes of non‐polar graphene sheets. Surprisingly, it is find that the room temperature out‐of‐plane electric polarization increases with external electrostatic hole doping, rather than decreases with it owing to screening. Using first‐principles calculations, as well as a self‐consistent tight‐binding model, the emergence of polarization is explain in terms of inter‐layer charge rearrangement and the doping dependence in terms of gating‐induced inter‐layer charge transfer. This newly discovered intrinsic polarization may therefore offer new venues for designing the electronic response of graphene‐based polytypes to external fields. |
Author | Goldstein, Moshe Kronik, Leeor Roy, Nirmal Alon, Bar Urbakh, Michael Cao, Wei Atri, Simon Salleh Ben Shalom, Moshe Falko, Vladimir Hod, Oded Stern, Maayan Vizner |
Author_xml | – sequence: 1 givenname: Simon Salleh surname: Atri fullname: Atri, Simon Salleh organization: Tel Aviv University – sequence: 2 givenname: Wei surname: Cao fullname: Cao, Wei organization: Tel Aviv University – sequence: 3 givenname: Bar surname: Alon fullname: Alon, Bar organization: Tel Aviv University – sequence: 4 givenname: Nirmal surname: Roy fullname: Roy, Nirmal organization: Tel Aviv University – sequence: 5 givenname: Maayan Vizner surname: Stern fullname: Stern, Maayan Vizner organization: Tel Aviv University – sequence: 6 givenname: Vladimir surname: Falko fullname: Falko, Vladimir organization: University of Manchester – sequence: 7 givenname: Moshe surname: Goldstein fullname: Goldstein, Moshe organization: Tel Aviv University – sequence: 8 givenname: Leeor surname: Kronik fullname: Kronik, Leeor organization: Weizmann Institute of Science – sequence: 9 givenname: Michael surname: Urbakh fullname: Urbakh, Michael organization: Tel Aviv University – sequence: 10 givenname: Oded surname: Hod fullname: Hod, Oded organization: Tel Aviv University – sequence: 11 givenname: Moshe orcidid: 0000-0001-5781-0037 surname: Ben Shalom fullname: Ben Shalom, Moshe email: moshebs@tauex.tau.ac.il organization: Tel Aviv University |
BookMark | eNqFkM1LAzEQxYNUsNZePS943ppMkk1yLKVqoWDxA7yFNJvVlHWzZrdo_evdtioiiKcZZt57PH7HqFeFyiF0SvCIYAznpn6LI8BAMcaKH6A-CE5SAhj3fuxHaNg0q04CUhHKSB-J2zpUralcWDfJtHS2jd4mi1Ca6N9N60OV-Cq5jKZ-cpXbPjbtpnbNCTosTNm44eccoPuL6d3kKp1fX84m43lqKVMydcICGFpkUvHCUI6tZRTLrqNwOJeEMCmMzMERJUBQxjmnubDGCoEhYwUdoNk-Nw9mpevon03c6GC83h1CfNQmtt6WTitKsQNaKLJUbJkVkua5Y6AUy8wyy0SXdbbPqmN4Wbum1auwjlVXX1OiAIBwzDsV26tsDE0TXaGtb3ck2mh8qQnWW-J6S1x_E-9so1-2r7J_Gvje8OpLt_lHrceLhxsCREj6AU1akpk |
CitedBy_id | crossref_primary_10_1038_s41467_024_52011_3 crossref_primary_10_1103_PhysRevResearch_6_043324 crossref_primary_10_1038_s41467_025_56073_9 crossref_primary_10_1103_PhysRevB_109_235426 crossref_primary_10_1002_adfm_202404665 crossref_primary_10_1021_acs_nanolett_4c01880 crossref_primary_10_1021_acs_jpcc_4c01207 crossref_primary_10_1038_s42254_024_00781_6 crossref_primary_10_1002_adma_202408060 crossref_primary_10_1016_j_carbon_2024_119608 crossref_primary_10_1002_pssr_202400189 crossref_primary_10_1038_s41524_024_01511_3 crossref_primary_10_1038_s41586_024_08380_2 crossref_primary_10_1002_adma_202400750 crossref_primary_10_1063_5_0255501 crossref_primary_10_1021_acs_nanolett_4c05062 crossref_primary_10_1063_5_0250451 crossref_primary_10_1103_PhysRevB_110_L201113 crossref_primary_10_1103_PhysRevMaterials_8_044001 |
Cites_doi | 10.1038/nmat3965 10.1038/s41467-020-20667-2 10.1021/nl1032827 10.1103/PhysRevB.107.104502 10.1021/acs.nanolett.1c00609 10.1021/acsnano.7b02756 10.1021/acs.nanolett.9b05092 10.1038/s41586-021-03938-w 10.1038/s41586-022-05341-5 10.1021/acsnano.2c06053 10.1093/acprof:oso/9780198507789.001.0001 10.1038/nature26160 10.1143/PTPS.176.227 10.1126/science.1102896 10.1038/s41586-020-2568-2 10.1038/s41565-022-01072-w 10.1021/cm980140w 10.1016/j.surfrep.2010.10.001 10.1103/PhysRevLett.97.036803 10.1126/sciadv.aax5080 10.1103/PhysRevB.73.245426 10.1038/s41586-022-05521-3 10.1080/00018738100101367 10.1038/s41586-018-0336-3 10.1107/S0108767384000842 10.1126/science.abd3230 10.1021/nl901572a 10.1007/978-3-540-34591-6_2 10.1038/s41467-021-25587-3 10.1103/PhysRevResearch.6.L012003 10.1021/acs.nanolett.2c04723 10.1038/358136a0 10.1103/PhysRev.17.475 10.1038/s41567-019-0427-6 10.1103/PhysRevLett.131.096801 10.1038/s41586-021-03926-0 10.1103/PhysRevB.87.045420 10.1038/s41565-017-0042-6 10.1126/science.abe8177 10.1016/j.ssc.2007.02.013 10.1038/s41586-023-05848-5 10.1002/adma.202204697 10.1103/PhysRevLett.127.087601 10.1038/s41565-022-01248-4 10.1016/j.apsusc.2006.03.052 10.1103/PhysRevB.87.235305 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202300095 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Titles url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9330e23f91b94b6f83dde429946ab667 10_1002_apxr_202300095 APXR12178 |
Genre | article |
GrantInformation_xml | – fundername: United States‐Israel Binational Science Foundation funderid: 2020072 – fundername: Israel Science Foundation funderid: 1141/18; 3427/21; 3191/19; 1586/17; 391/22; 3623/21 – fundername: European Union’s Horizon 2020 funderid: 852925 – fundername: Ministry of Science and Technology of Israel funderid: 3–16244 – fundername: Graphene Flagship funderid: EC‐FETCore3 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c3498-e7c22a3f6895fa350cc43080097e0d811487a8d2e19727345553d7cac770264f3 |
IEDL.DBID | 24P |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Wed Aug 13 07:18:09 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 02:33:00 EDT 2025 Wed Jan 22 17:20:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3498-e7c22a3f6895fa350cc43080097e0d811487a8d2e19727345553d7cac770264f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5781-0037 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300095 |
PQID | 3192221505 |
PQPubID | 6852862 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9330e23f91b94b6f83dde429946ab667 proquest_journals_3192221505 crossref_citationtrail_10_1002_apxr_202300095 crossref_primary_10_1002_apxr_202300095 wiley_primary_10_1002_apxr_202300095_APXR12178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 20240501 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2018; 560 1984; 40 2021; 21 2006; 97 2007; 105 2006; 73 2019; 5 2020; 20 2013; 87 2019; 1 2021; 127 2007; 142 2011; 11 2006; 252 2020; 584 2023; 107 2004; 306 2022; 612 2021; 12 2023; 23 2001 2023 2018; 556 2021; 598 2017; 11 1921; 17 1992; 358 2022; 34 2022; 13 2011; 66 2009; 9 2014; 13 2021; 372 2023; 613 1998; 10 2008; 176 1981; 30 2023; 617 2022; 16 2022; 17 2018; 13 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 Meng P. (e_1_2_6_15_1) 2022; 13 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 13 start-page: 786 year: 2014 publication-title: Nat. Mater. – volume: 358 start-page: 136 year: 1992 publication-title: Nature – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 13 start-page: 7 year: 2022 publication-title: Nat. Commun. – volume: 11 start-page: 164 year: 2011 publication-title: Nano Lett. – volume: 17 start-page: 475 year: 1921 publication-title: Phys. Rev. – year: 2001 – volume: 23 start-page: 4120 year: 2023 publication-title: Nano Lett. – volume: 176 start-page: 227 year: 2008 publication-title: Prog. Theor. Phys. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 372 start-page: 1458 year: 2021 publication-title: Science – volume: 613 start-page: 48 year: 2023 publication-title: Nature – volume: 20 start-page: 3106 year: 2020 publication-title: Nano Lett. – volume: 598 start-page: 429 year: 2021 publication-title: Nature – volume: 66 start-page: 1 year: 2011 publication-title: Surf. Sci. Rep. – volume: 584 start-page: 210 year: 2020 publication-title: Nature – volume: 30 start-page: 139 year: 1981 publication-title: Adv. Phys. – volume: 11 start-page: 6382 year: 2017 publication-title: ACS Nano – volume: 142 start-page: 123 year: 2007 publication-title: Solid State Commun. – volume: 21 start-page: 3280 year: 2021 publication-title: Nano Lett. – volume: 105 start-page: 31 year: 2007 publication-title: Top. Appl. Phys. – volume: 17 start-page: 390 year: 2022 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 437 year: 2019 publication-title: Nat. Phys. – volume: 40 start-page: 399 year: 1984 publication-title: Acta Cryst. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 598 start-page: 434 year: 2021 publication-title: Nature – volume: 612 start-page: 465 year: 2022 publication-title: Nature – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 204 year: 2018 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 1272 year: 2022 publication-title: Nat. Nanotechnol. – volume: 73 year: 2006 publication-title: Phys. Rev. B – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 560 start-page: 336 year: 2018 publication-title: Nature – volume: 12 start-page: 347 year: 2021 publication-title: Nat. Commun. – volume: 372 start-page: 142 year: 2021 publication-title: Science – volume: 9 start-page: 3430 year: 2009 publication-title: Nano Lett. – volume: 10 start-page: 2753 year: 1998 publication-title: Chem. Mater. – year: 2023 – volume: 617 start-page: 67 year: 2023 publication-title: Nature – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 252 start-page: 7608 year: 2006 publication-title: Appl. Surf. Sci. – volume: 107 year: 2023 publication-title: Phys. Rev. B – volume: 87 year: 2013 publication-title: Phys. Rev. B – Condens. Matter Mater. Phys. – volume: 556 start-page: 43 year: 2018 publication-title: Nature – volume: 12 start-page: 5298 year: 2021 publication-title: Nat. Commun. – ident: e_1_2_6_19_1 doi: 10.1038/nmat3965 – ident: e_1_2_6_9_1 doi: 10.1038/s41467-020-20667-2 – ident: e_1_2_6_18_1 doi: 10.1021/nl1032827 – ident: e_1_2_6_29_1 doi: 10.1103/PhysRevB.107.104502 – ident: e_1_2_6_41_1 doi: 10.1021/acs.nanolett.1c00609 – ident: e_1_2_6_7_1 doi: 10.1021/acsnano.7b02756 – ident: e_1_2_6_23_1 doi: 10.1021/acs.nanolett.9b05092 – ident: e_1_2_6_28_1 doi: 10.1038/s41586-021-03938-w – ident: e_1_2_6_14_1 doi: 10.1038/s41586-022-05341-5 – ident: e_1_2_6_38_1 doi: 10.1021/acsnano.2c06053 – ident: e_1_2_6_16_1 doi: 10.1093/acprof:oso/9780198507789.001.0001 – ident: e_1_2_6_20_1 doi: 10.1038/nature26160 – ident: e_1_2_6_36_1 doi: 10.1143/PTPS.176.227 – ident: e_1_2_6_17_1 doi: 10.1126/science.1102896 – ident: e_1_2_6_26_1 doi: 10.1038/s41586-020-2568-2 – ident: e_1_2_6_12_1 doi: 10.1038/s41565-022-01072-w – ident: e_1_2_6_5_1 doi: 10.1021/cm980140w – ident: e_1_2_6_39_1 doi: 10.1016/j.surfrep.2010.10.001 – ident: e_1_2_6_35_1 doi: 10.1103/PhysRevLett.97.036803 – ident: e_1_2_6_42_1 doi: 10.1126/sciadv.aax5080 – ident: e_1_2_6_34_1 doi: 10.1103/PhysRevB.73.245426 – ident: e_1_2_6_44_1 doi: 10.1038/s41586-022-05521-3 – ident: e_1_2_6_47_1 doi: 10.1080/00018738100101367 – ident: e_1_2_6_8_1 doi: 10.1038/s41586-018-0336-3 – ident: e_1_2_6_1_1 doi: 10.1107/S0108767384000842 – volume: 13 start-page: 7 year: 2022 ident: e_1_2_6_15_1 publication-title: Nat. Commun. – ident: e_1_2_6_11_1 doi: 10.1126/science.abd3230 – ident: e_1_2_6_40_1 doi: 10.1021/nl901572a – ident: e_1_2_6_6_1 doi: 10.1007/978-3-540-34591-6_2 – ident: e_1_2_6_43_1 doi: 10.1038/s41467-021-25587-3 – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevResearch.6.L012003 – ident: e_1_2_6_31_1 doi: 10.1021/acs.nanolett.2c04723 – ident: e_1_2_6_2_1 – ident: e_1_2_6_4_1 doi: 10.1038/358136a0 – ident: e_1_2_6_3_1 doi: 10.1103/PhysRev.17.475 – ident: e_1_2_6_22_1 doi: 10.1038/s41567-019-0427-6 – ident: e_1_2_6_32_1 doi: 10.1103/PhysRevLett.131.096801 – ident: e_1_2_6_27_1 doi: 10.1038/s41586-021-03926-0 – ident: e_1_2_6_37_1 doi: 10.1103/PhysRevB.87.045420 – ident: e_1_2_6_21_1 doi: 10.1038/s41565-017-0042-6 – ident: e_1_2_6_10_1 doi: 10.1126/science.abe8177 – ident: e_1_2_6_33_1 doi: 10.1016/j.ssc.2007.02.013 – ident: e_1_2_6_25_1 doi: 10.1038/s41586-023-05848-5 – ident: e_1_2_6_24_1 doi: 10.1002/adma.202204697 – ident: e_1_2_6_48_1 doi: 10.1103/PhysRevLett.127.087601 – ident: e_1_2_6_13_1 doi: 10.1038/s41565-022-01248-4 – ident: e_1_2_6_45_1 doi: 10.1016/j.apsusc.2006.03.052 – ident: e_1_2_6_46_1 doi: 10.1103/PhysRevB.87.235305 |
SSID | ssj0002891341 |
Score | 2.389209 |
Snippet | Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit cell with... Abstract Spontaneous electric polarization is recently observed in multilayered van der Waals stacked materials, arising from a symmetry breaking in a unit... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Broken symmetry Charge transfer Crystals Doping Electric polarization Electrons First principles Graphene graphene polytypes interfacial ferroelectricity Polarization Polytypes Room temperature Symmetry Unit cell |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykxdRVJxO6UHwFNfmd45TNoegDHWwW0jSFCbSDTdB_3vz2m5sB9nFaxva8F7z3vc1ed9D6DoTOSEydZj74DCTVGPlrcI-FZp64SyRUOD89CyGY_Y44ZONVl9wJqyWB64N1wXCHQgtdOY0c6JQNC5ICKJMWCdEVUcec94GmXqvt89AqWyl0piSrp1_g_xnRNyAKrayUCXWv4UwN3FqlWgGh-igQYhJr57ZEdoL5TGSr_NZGXFciEQ96Veta6Y-GQEvbQopk2mZPID6dAxecOMHfq4uTtB40H-7H-Km5wH2lGmFg_SEWFoIpXlhKU-9ZxRQnZYhzRWwF2lVTgK0C5OUcc5pLr31UkY2xQp6ilrlrAxnKOFE5txxbWXOWKRxOhRcWOmDzEghU9VGeGUD4xtBcOhL8WFqKWNiwGZmbbM2ulmPn9dSGH-OvAOTrkeBhHV1ITrWNI41uxzbRp2VQ0yzrhYmBowIaCKIje-4rZy0YyqmN5q8ZJF3qfP_mNQF2o-PZvWJxw5qLT-_wmVEJUt3VX2Av6so2lM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA66XryIouL6ogfBU7TNa5KTqKyKoCw-YG8hTVMRpLu6CvrvzXSzqx7Ua5uWMpnOfDNJvo-QvUJVjEFeUulDSQVwQ7V3mvpcGe5V6RjgAeera3VxLy4HcpAabuO0rXIaE9tAXQ099sgPo6vEVBbhizwaPVNUjcLV1SShMU8WYgjWukMWTnrX_ZtZl4XhKlwrX8lAFrSIPjFlbszZoRu9IyVoROGINH5kppbA_wfq_I5d2-RztkyWEmrMjifTvELmQrNK4HY0bCK2C7F4z3qtnM2jz_pYq6bDldljk50jI3UMaHjjAxuu4zVyf9a7O72gSQeBei6MpgE8Y47XShtZOy5z7wVHpGcg5JXGigacrlhACTHgQkrJK_DOA8QKS9R8nXSaYRM2SCYZVLKUxkElRCztTKilcuADFKyGXHcJndrA-kQSjloVT3ZCb8ws2szObNYl-7Pxowk9xq8jT9Cks1FIa91eGL482PSXWOyuBMZrU5RGlKrWPEZfzJhCuVIp6JLt6YTY9K-N7ZdndMlBO0n_fIo97g9uiliL6c2_37dFFuNDYrK_cZt0Xl_ewk7EIK_lbnK0T3IL1W8 priority: 102 providerName: ProQuest |
Title | Spontaneous Electric Polarization in Graphene Polytypes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300095 https://www.proquest.com/docview/3192221505 https://doaj.org/article/9330e23f91b94b6f83dde429946ab667 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La-MwEBZtc-ml7LItTbcbfCjsScTWa6RjuyQNhZbQB-QmJFkugeKEpgu7_341tuNtDsvSiw-ybIuRZvTNWPMNIReFKhmD3FMZoqcCuKE6OE1DrgwPyjsGmOB8e6dmT-JmIRfvsvhbfog-4Iaa0dhrVHDnN-O_pKFu_Qv5PBOERpiwTwaYX4uH-piY91EWhn_hmvKVDGRBi7QmtsyNORvvvmJnZ2oI_HdQ53vs2mw-00_kqEON2WU7zZ_JXqy_EHhYr-qE7WJy3rNJU85mGbI5-qpdcmW2rLNrZKROBg1v_MaA6-aYPE0njz9mtKuDQAMXRtMIgTHHK6WNrByXeQiCI9IzEPNSo0cDTpcsYgkx4EJKyUsILgAkD0tU_IQc1Ks6npJMMiill8ZBKURy7UyspHIQIhSsglwPCd3KwIaOJBxrVbzYlt6YWZSZ7WU2JN_7_uuWHuOfPa9QpH0vpLVuGlavz7bTEovRlch4ZQpvhFeV5sn64o4plPNKwZCcbyfEdrq2scmIJJCTgG36Rrti_jMUezlf3BfJF9NnH33gKzlMraI98XhODt5ef8ZvCZW8-VGz8NJVT69HZHA1uZvfjxoP_w85r9qH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKgLElrbkAOJkmvg18aFCBbrd0ocqaKW9GcdxUCWUbLutoH-K31hPHgs9AKdeE8uyxuOZb8ae-QBeZbrkHNOCKR8KJlEYlnuXM59qI7wuHEcqcD480pNT-Wmqpkvwa6iFoWeVg01sDXXZeMqRb0ZVia4swhf1bnbOiDWKblcHCo1OLfbD9Y8Yss239j7G_X3N-Xjn5MOE9awCzAtpchbQc-5EpXOjKidU6r0UhJsMhrTMKT5Al5c8ECEXCqmUEiV65xFjvCIrEee9B_eliJ6cKtPHu4ucDqc7v5Ysk6PKWBY1cOgTmfJNN_tJDUgj5idcc8sPtnQBtzDun0i5dXXjFXjUY9Rku1Oqx7AU6ieAX2ZNHZFkaK7myU5LnnPmk2OKjPtSzuSsTnap_3U0n_TjmtK786dweifyeQbLdVOH55AojqUqlHFYShkDSRMqpR36gBmvMM1HwAYZWN-3JCdmjO-2a6bMLcnMLmQ2gjeL8bOuGcdfR74nkS5GURPt9kNz8c32Z9JSLidwUZmsMLLQVS6irSf_LLUrtMYRrA0bYvuTPbe_9XAEb9tN-s9S7Pbx9HMWI7989d_zvYQHk5PDA3uwd7T_Ah7GCWT3snINli8vrsJ6RD-XxUarcgl8vWsdvwEJPQ4i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbaRap6QUWlYimFHCpxskj8Gvu4FJZHAa2ARSsuluM4aKUqu-Ihwb-vJ8kG9lChXpPJQ2PPzDeTzDeE_MxUwRikOZU-5FQAN1R7p6lPleFe5Y4BNjifX6jjsTidyMmbLv6GH6IruKFl1P4aDXxelHuvpKFu_ox8nhFCI0z4SFZkDE1pj6wMbsa3467OwvA7XD3AkoHMaBZ3xYK7MWV7yzdZik01hf8S7nyLXuvwM_xCVlvcmAyahV4jH0L1lcDVfFZFdBdi-p4c1gNtpj4ZYbbatlcm0yo5Qk7q6NLwxAuWXB_WyXh4eP3rmLaTEKjnwmgawDPmeKm0kaXjMvVecMR6BkJaaMxpwOmCBRwiBlxIKXkB3nmAmGOJkn8jvWpWhQ2SSAaFzKVxUAgRkzsTSqkc-AAZKyHVfUIXOrC-pQnHaRV_bENwzCzqzHY665PdTn7eEGT8U3IfVdpJIbF1fWB2f2dbO7FYXwmMlybLjchVqXn0vxgzhXK5UtAnW4sFsa21PdjoRiLMidA2PqPZM--8ih2MJpdZzMb05v9esEM-jQ6G9uzk4vd38jkKiOb3xy3Se7x_Cj8iRHnMt9td-BfmW9tt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+Electric+Polarization+in+Graphene+Polytypes&rft.jtitle=Advanced+Physics+Research&rft.au=Atri%2C+Simon+Salleh&rft.au=Cao%2C+Wei&rft.au=Alon%2C+Bar&rft.au=Roy%2C+Nirmal&rft.date=2024-05-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202300095&rft.externalDBID=10.1002%252Fapxr.202300095&rft.externalDocID=APXR12178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |