Comparison of ultrasound scanning for scoliosis assessment: Robotic versus manual
Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Methods Twenty three scoliosis patients were scanned w...
Saved in:
Published in | The international journal of medical robotics + computer assisted surgery Vol. 19; no. 2; pp. e2468 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1478-5951 1478-596X 1478-596X |
DOI | 10.1002/rcs.2468 |
Cover
Abstract | Background
Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.
Methods
Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.
Results
The robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.
Conclusions
This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning. |
---|---|
AbstractList | Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.
Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.
The robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.
This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning. BackgroundUltrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.MethodsTwenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.ResultsThe robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.ConclusionsThis study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning. Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.BACKGROUNDUltrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.METHODSTwenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.The robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.RESULTSThe robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.CONCLUSIONSThis study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning. Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Methods Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images. Results The robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles. Conclusions This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning. |
Author | Victorova, Maria Navarro‐Alarcon, David Lee, Timothy Tin‐Yan Zheng, Yongping Lau, Heidi Hin Ting |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0002-1655-1953 surname: Victorova fullname: Victorova, Maria email: maria.victorova@connect.polyu.hk organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Heidi Hin Ting surname: Lau fullname: Lau, Heidi Hin Ting organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Timothy Tin‐Yan surname: Lee fullname: Lee, Timothy Tin‐Yan organization: The Hong Kong Polytechnic University – sequence: 4 givenname: David orcidid: 0000-0002-3426-6638 surname: Navarro‐Alarcon fullname: Navarro‐Alarcon, David organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Yongping surname: Zheng fullname: Zheng, Yongping organization: The Hong Kong Polytechnic University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36289008$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd9LwzAQx4NMnJuCf4EUfPFlM0nTNvVNir9gIE4F30qWJpLRJjPXKvvvzdycMPTp7rjP3X257wD1rLMKoROCxwRjeuEljClL-R46JCzjoyRPX3vbPCF9NACYY8wSlrID1I9TynOM-SF6LFyzEN6As5HTUVe3XoDrbBWBFNYa-xZp50PhauPAQCQAFECjbHsZTd3MtUZGH8pDB1EjbCfqI7SvRQ3qeBOH6OXm-rm4G00ebu-Lq8lIxiwPstIKZ7FKM8JzUs1UjEleYZlTQrWgM0w5rWKtRcw5k4nMkkrxTAscOiwUOh6i8_XehXfvnYK2bAxIVdfCKtdBSTOaJ5TSnAX0bAedu87boC5QnAQFnJJAnW6obtaoqlx40wi_LH-e9XtRegfgld4iBJcrH8rgQ7nyIaDjHVSaVrTG2fBfU_81MFoPfJpaLf9dXE6Lp2_-C7t0mBY |
CitedBy_id | crossref_primary_10_1002_rcs_2590 crossref_primary_10_3390_robotics13110164 crossref_primary_10_1007_s11914_023_00845_z crossref_primary_10_1016_j_ultrasmedbio_2023_12_015 crossref_primary_10_3390_jimaging9120265 |
Cites_doi | 10.1016/j.bspc.2016.02.006 10.1109/TMI.2015.2390233 10.1093/jnci/81.17.1307 10.1109/TCST.2014.2309659 10.1109/ROBOT.2005.1570091 10.1016/j.spinee.2017.10.012 10.1016/0268‐0033(87)90039‐8 10.1109/IROS.2011.6094641 10.1109/lra.2020.3009069 10.1089/tmj.2008.0079 10.1007/978-3-030-01231-1_29 10.1371/journal.pone.0135264 10.4236/oja.2012.23011 10.1109/tmrb.2021.3072190 10.1186/s13013‐016‐0074‐y 10.1007/s11517‐019‐02015‐9 10.1097/00004032‐199406000‐00002 10.1109/CVPR.2016.90 10.1007/s00586‐013‐2693‐9 10.1109/IRC.2019.00049 10.1109/access.2022.3165936 10.3934/mbe.2019051 10.3389/frobt.2016.00001 10.1109/TIM.2021.3085110 10.1016/j.spinee.2010.02.020 10.1016/j.ijnurstu.2011.01.016 10.1109/IROS.2016.7759101 10.1016/j.jcm.2016.02.012 10.3390/s21082858 10.1007/s00586‐011‐2029‐6 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 JQ2 K9. L7M L~C L~D 7X8 |
DOI | 10.1002/rcs.2468 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1478-596X |
EndPage | n/a |
ExternalDocumentID | 36289008 10_1002_rcs_2468 RCS2468 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The Hong Kong Polytechnic University through the Intra‐Faculty Interdisciplinary Project funderid: ZVVR – fundername: The Hong Kong Polytechnic University through the Intra-Faculty Interdisciplinary Project grantid: ZVVR |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SJN SUPJJ SV3 TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WQJ WRC WVDHM WXI WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 K9. L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c3498-56d073e671891dbe3019d0c9212fa2b0282d3ffa3884c5c75de87fa0b02475df3 |
IEDL.DBID | DR2 |
ISSN | 1478-5951 1478-596X |
IngestDate | Fri Jul 11 09:45:31 EDT 2025 Fri Jul 25 12:14:47 EDT 2025 Wed Feb 19 02:24:44 EST 2025 Tue Jul 01 00:56:12 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Wed Jan 22 16:14:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ultrasound imaging spine medical robotics scoliosis |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3498-56d073e671891dbe3019d0c9212fa2b0282d3ffa3884c5c75de87fa0b02475df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1655-1953 0000-0002-3426-6638 |
PMID | 36289008 |
PQID | 2781189821 |
PQPubID | 1026349 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2729522294 proquest_journals_2781189821 pubmed_primary_36289008 crossref_primary_10_1002_rcs_2468 crossref_citationtrail_10_1002_rcs_2468 wiley_primary_10_1002_rcs_2468_RCS2468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 2023-Apr 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hamilton |
PublicationTitle | The international journal of medical robotics + computer assisted surgery |
PublicationTitleAlternate | Int J Med Robot |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 34 1987; 2 2010; 10 2021; 21 2021; 3 2013; 22 2011 2019; 57 1989; 81 2015; 10 1994; 66 2019; 16 2009; 892 2005 2016; 15 2014; 22 2021; 70 2016; 11 2018; 18 2020; 5 2012; 2 2016; 3 1948; 5 2021 2019 2018 2016 2015 2022; 10 2011; 48 2012; 25 2016; 27 2012; 21 2009; 15 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Ioffe S (e_1_2_8_25_1) 2015 e_1_2_8_27_1 Cobb J (e_1_2_8_2_1) 1948; 5 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Krizhevsky A (e_1_2_8_26_1) 2012; 25 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 3 start-page: 510 issue: 2 year: 2021 end-page: 524 article-title: An overview of systems and techniques for autonomous robotic ultrasound acquisitions publication-title: IEEE Trans Med Robot Bionics – volume: 66 start-page: 621 issue: 6 year: 1994 end-page: 633 article-title: Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis publication-title: Health Phys – volume: 10 start-page: 769 issue: 9 year: 2010 end-page: 774 article-title: Reliability assessment of Cobb angle measurements using manual and digital methods publication-title: Spine J – volume: 15 start-page: 155 issue: 2 year: 2016 end-page: 163 article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research publication-title: J Chiropr Med – start-page: 770 year: 2016 end-page: 778 – volume: 57 start-page: 2115 issue: 10 year: 2019 end-page: 2128 article-title: A semi‐automatic 3D ultrasound reconstruction method to assess the true severity of adolescent idiopathic scoliosis publication-title: Med Biol Eng Comput – year: 2021 – volume: 21 issue: 8 year: 2021 article-title: Validation of Scolioscan air‐portable radiation‐free three‐dimensional ultrasound imaging assessment system for scoliosis publication-title: Sensors – start-page: 24 year: 2005 end-page: 29 – volume: 34 start-page: 1760 issue: 8 year: 2015 end-page: 1768 article-title: Ultrasound volume projection imaging for assessment of scoliosis publication-title: IEEE Trans Med Imaging – volume: 11 start-page: 1 year: 2016 end-page: 15 article-title: A reliability and validity study for Scolioscan: a radiation‐free scoliosis assessment system using 3D ultrasound imaging publication-title: Scoliosis Spinal Disord – volume: 70 start-page: 1 year: 2021 end-page: 13 article-title: Automatic 3‐D imaging and measurement of human spines with a robotic ultrasound system publication-title: IEEE Trans Instrum Meas – start-page: 466 year: 2018 end-page: 481 – volume: 15 start-page: 142 issue: 2 year: 2009 end-page: 147 article-title: Remote‐controlled robotic arm for real‐time echocardiography: the diagnostic future for patients in rural areas? publication-title: Telemed e‐Health – volume: 5 start-page: 5661 issue: 4 year: 2020 end-page: 5668 article-title: Force‐ultrasound fusion: bringing spine robotic‐us to the next “level” publication-title: IEEE Rob Autom Lett – volume: 2 start-page: 7 issue: 1 year: 1987 end-page: 13 article-title: Analysis of Cobb angle measurements in scoliosis publication-title: Clin BioMech – volume: 2 start-page: 95 issue: 3 year: 2012 end-page: 103 article-title: Ultrasound imaging of spinal vertebrae to study scoliosis publication-title: Open J Acoust – volume: 5 start-page: 261 year: 1948 end-page: 275 article-title: Outline for the study of scoliosis publication-title: Instr Course Lect AAOS – volume: 81 start-page: 1307 issue: 17 year: 1989 end-page: 1312 article-title: Breast cancer in women with scoliosis exposed to multiple diagnostic x rays publication-title: JNCI (J Natl Cancer Inst) – start-page: 508 year: 2016 end-page: 513 – volume: 16 start-page: 1067 issue: 3 year: 2019 end-page: 1081 article-title: A fast 3‐D ultrasound projection imaging method for scoliosis assessment publication-title: Math Biosci Eng – volume: 27 start-page: 145 year: 2016 end-page: 154 article-title: Review of medical image quality assessment publication-title: Biomed Signal Process Control – volume: 10 issue: 8 year: 2015 article-title: Reliability and validity study of clinical ultrasound imaging on lateral curvature of adolescent idiopathic scoliosis publication-title: PLoS One – volume: 3 year: 2016 article-title: An ultrasound robotic system using the commercial robot UR5 publication-title: Front Robot AI – volume: 21 start-page: 1007 issue: 5 year: 2012 end-page: 1012 article-title: Spinous process morphology: the effect of ageing through adulthood on spinous process size and relationship to sagittal alignment publication-title: Eur Spine J – start-page: 4222 year: 2011 end-page: 4228 – start-page: 262 year: 2019 end-page: 265 – volume: 10 start-page: 40216 year: 2022 end-page: 40229 article-title: Follow the curve: robotic ultrasound navigation with learning‐based localization of spinous processes for scoliosis assessment publication-title: IEEE Access – volume: 48 start-page: 661 issue: 6 year: 2011 end-page: 671 article-title: Guidelines for reporting reliability and agreement studies (GRRAS) were proposed publication-title: Int J Nurs Stud – volume: 25 start-page: 1097 year: 2012 end-page: 1105 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 22 start-page: 2360 issue: 11 year: 2013 end-page: 2371 article-title: Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review publication-title: Eur Spine J – volume: 22 start-page: 2376 issue: 6 year: 2014 end-page: 2383 article-title: Energy shaping methods for asymptotic force regulation of compliant mechanical systems publication-title: IEEE Trans Control Syst Technol – start-page: 448 year: 2015 end-page: 456 – volume: 892 start-page: 11 year: 2009 end-page: 15 – volume: 18 start-page: 979 issue: 6 year: 2018 end-page: 985 article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis publication-title: Spine J – ident: e_1_2_8_35_1 doi: 10.1016/j.bspc.2016.02.006 – ident: e_1_2_8_10_1 doi: 10.1109/TMI.2015.2390233 – ident: e_1_2_8_3_1 doi: 10.1093/jnci/81.17.1307 – ident: e_1_2_8_23_1 doi: 10.1109/TCST.2014.2309659 – ident: e_1_2_8_18_1 doi: 10.1109/ROBOT.2005.1570091 – ident: e_1_2_8_7_1 doi: 10.1016/j.spinee.2017.10.012 – ident: e_1_2_8_33_1 doi: 10.1016/0268‐0033(87)90039‐8 – ident: e_1_2_8_22_1 doi: 10.1109/IROS.2011.6094641 – ident: e_1_2_8_14_1 doi: 10.1109/lra.2020.3009069 – ident: e_1_2_8_20_1 doi: 10.1089/tmj.2008.0079 – ident: e_1_2_8_27_1 doi: 10.1007/978-3-030-01231-1_29 – volume: 5 start-page: 261 year: 1948 ident: e_1_2_8_2_1 article-title: Outline for the study of scoliosis publication-title: Instr Course Lect AAOS – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0135264 – ident: e_1_2_8_8_1 doi: 10.4236/oja.2012.23011 – ident: e_1_2_8_36_1 doi: 10.1109/tmrb.2021.3072190 – ident: e_1_2_8_5_1 doi: 10.1186/s13013‐016‐0074‐y – ident: e_1_2_8_12_1 doi: 10.1007/s11517‐019‐02015‐9 – ident: e_1_2_8_4_1 doi: 10.1097/00004032‐199406000‐00002 – start-page: 448 volume-title: International Conference on Machine Learning year: 2015 ident: e_1_2_8_25_1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_24_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_31_1 doi: 10.1007/s00586‐013‐2693‐9 – ident: e_1_2_8_13_1 doi: 10.1109/IRC.2019.00049 – ident: e_1_2_8_17_1 doi: 10.1109/access.2022.3165936 – volume: 25 start-page: 1097 year: 2012 ident: e_1_2_8_26_1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – ident: e_1_2_8_11_1 doi: 10.3934/mbe.2019051 – ident: e_1_2_8_30_1 – ident: e_1_2_8_19_1 doi: 10.3389/frobt.2016.00001 – ident: e_1_2_8_15_1 doi: 10.1109/TIM.2021.3085110 – ident: e_1_2_8_34_1 doi: 10.1016/j.spinee.2010.02.020 – ident: e_1_2_8_32_1 doi: 10.1016/j.ijnurstu.2011.01.016 – ident: e_1_2_8_21_1 doi: 10.1109/IROS.2016.7759101 – ident: e_1_2_8_29_1 doi: 10.1016/j.jcm.2016.02.012 – ident: e_1_2_8_9_1 doi: 10.3390/s21082858 – ident: e_1_2_8_28_1 doi: 10.1007/s00586‐011‐2029‐6 |
SSID | ssj0045464 |
Score | 2.3454514 |
Snippet | Background
Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a... Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature... BackgroundUltrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2468 |
SubjectTerms | Humans medical robotics Reproducibility of Results Robotic Surgical Procedures Robotics Scanning Scoliosis Scoliosis - diagnostic imaging Spinal curvature spine Spine - diagnostic imaging Ultrasonic imaging Ultrasonography - methods ultrasound imaging |
Title | Comparison of ultrasound scanning for scoliosis assessment: Robotic versus manual |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.2468 https://www.ncbi.nlm.nih.gov/pubmed/36289008 https://www.proquest.com/docview/2781189821 https://www.proquest.com/docview/2729522294 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78_phOiSB66tYmadd4k-kYHgSng4GHkqQtDOcq63rxr_e9fun8APFUQl6TNi8v76V9-f0IOfOMdiLbV5aytbGEFNzS3DBLspgr4yNoWZ4ge-cNRuJ27I7LrEo8C1PgQ9Qf3NAy8vUaDVzptPMBGjo3aZsJD8_5OtxD2PzrYY0cJVyRI0c5AjZJLkQRFe6szTrVjcue6Ft4uRyt5u6mv0Geqgctskye29lCt83bFwzH_73JJlkvo1B6VUybLbISzbbJ2idswh1y36sZCmkS02y6mKsUOZhoagqeIwrxLhSS6SRJJylVNcbnJR0mOoGmKeZ8ZCl9UQh8uktG_ZvH3sAq-Rcsw4WEcfNCWAAiD9yXdEIdwVogQ9tI8HaxYhp3ayGPY8V9XxjXdN0w8rsxKB38PhRivkcas2QWHRDqdpkydgi7M8URMU0r3QW_KJQT255UpkkuKl0EpgQnR46MaVDAKrMABinAQWqS01rytQDk-EGmVakzKE0SKvBMrS995kATdTUYE_4hUbMoyVCGSRcZzkWT7BfToO4EPL0vIWJqkvNcmb_2Hgx7D3g9_KvgEVlFEvsiH6hFGot5Fh1DqLPQJ_mkfgenovrK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED918LDxAOyTQLd50rQ9pSSOk9rwhApVt7FK61qJB6TIdhIJURrUNC_89dwlTTb2IU17iqxc7MTn8_3OsX8H8D6yxk89qV3tGesKJQLXBJa7imeBtpJIy6oNsuNoNBOfL8KLDhw3Z2Fqfoh2wY0so5qvycBpQfrwB2vo0hY9LiL5CDYF4gyKvE4nLXeUCEXFHeULDJNCxBEN86zHD5snH_qi3wDmQ7xaOZzhDlw2r1rvM7nulSvTs3e_sDj-57fswvYaiLKTeuQ8hU66eAZbP9ETPodvgzZJIcszVs5XS11QGiZW2DrVEUPIi4V8fpUXVwXTLc3nEZvkJseqGW37KAt2o4n79AXMhmfTwchdp2BwbSAUdlyU4ByQRujBlJ-YFKcDlXhWocPLNDcUsCVBlulASmFD2w-TVPYz1Du6fixkwUvYWOSLdA9Y2OfaegkGaDog0jSjTR9do9B-5kVKWwc-NsqI7ZqfnNJkzOOaWZnH2EkxdZID71rJ25qT4w8y3Uaf8doq8QYdq5VKch-raG-jPdFPEr1I85JkuAopyblw4FU9DtpG0NlLhaDJgQ-VNv_aejwZfKfr_r8KvoXHo-nX8_j80_jLATyhnPb19qAubKyWZfoakc_KvKlG-D1Uzf7p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlXlQEtfLI_iSlU5ZUkcJ2v3hhZWvITabZGQOES2E0uIZYM2mwu_npm8gBakqqfI8sROPB7P52T8DcDX2Jog86X2tG-sJ5QIPRNa7inuQm0lkZZVAbKn8cGZODqPzpuoSjoLU_NDdB_cyDKq9ZoM_CZ1O_ekoTNb9LmI5Qt4KWIEEgSIxh11lIhERR0VCNwlRQgjWuJZn--0dz52RX_hy8dwtfI3ozdw0T5pHWZy1S_npm9v_yBx_L9XeQvLDQxlu_W8WYGFbPoOlh6QE76Hn8MuRSHLHSsn85kuKAkTK2yd6Igh4MVCPrnMi8uC6Y7k8zsb5ybHphkFfZQFu9bEfPoBzkb7v4cHXpOAwbOhUDhucYorQBaj_1JBajJcDFTqW4XuzmluaLuWhs7pUEphIzuI0kwOHGodHT8WXPgRFqf5NFsFFg24tn6K2zMdEmWa0WaAjlHowPmx0rYH260uEtuwk1OSjElS8yrzBAcpoUHqwZdO8qZm5HhCZqNVZ9LYJFbQoVqpJA-wia4arYl-kehplpckw1VEKc5FDz7V06DrBF29VAiZevCtUuazvSfj4S-6rv2r4Ba8-rE3Sk4OT4_X4TUltK9jgzZgcT4rs02EPXPzuZrfd2D0_Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+ultrasound+scanning+for+scoliosis+assessment%3A+Robotic+versus+manual&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Victorova%2C+Maria&rft.au=Lau%2C+Heidi+Hin+Ting&rft.au=Lee%2C+Timothy+Tin-Yan&rft.au=Navarro-Alarcon%2C+David&rft.date=2023-04-01&rft.issn=1478-596X&rft.eissn=1478-596X&rft.volume=19&rft.issue=2&rft.spage=e2468&rft_id=info:doi/10.1002%2Frcs.2468&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon |