Comparison of ultrasound scanning for scoliosis assessment: Robotic versus manual

Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Methods Twenty three scoliosis patients were scanned w...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of medical robotics + computer assisted surgery Vol. 19; no. 2; pp. e2468 - n/a
Main Authors Victorova, Maria, Lau, Heidi Hin Ting, Lee, Timothy Tin‐Yan, Navarro‐Alarcon, David, Zheng, Yongping
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN1478-5951
1478-596X
1478-596X
DOI10.1002/rcs.2468

Cover

Abstract Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Methods Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images. Results The robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles. Conclusions This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.
AbstractList Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images. The robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles. This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.
BackgroundUltrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.MethodsTwenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.ResultsThe robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.ConclusionsThis study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.
Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.BACKGROUNDUltrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back.Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.METHODSTwenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images.The robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.RESULTSThe robotic method showed high intra- (ICC > 0.85) and inter-rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra-rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles.This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.CONCLUSIONSThis study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.
Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal curvature with deep learning and apply consistent forces to the patient's back. Methods Twenty three scoliosis patients were scanned with US device both, robotically and manually. Two human raters measured each subject's spinous process angles on robotic and manual coronal images. Results The robotic method showed high intra‐ (ICC > 0.85) and inter‐rater (ICC > 0.77) reliabilities. Compared with the manual method, the robotic approach showed no significant difference (p < 0.05) when measuring coronal deformity angles. The mean absolute deviation for intra‐rater analysis lies within an acceptable range from 0 to 5° for the minimum of 86% and maximum 97% of a total number of the measured angles. Conclusions This study demonstrated that scoliosis deformity angles measured on ultrasound images obtained with robotic scanning are comparable to those obtained by manual scanning.
Author Victorova, Maria
Navarro‐Alarcon, David
Lee, Timothy Tin‐Yan
Zheng, Yongping
Lau, Heidi Hin Ting
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0002-1655-1953
  surname: Victorova
  fullname: Victorova, Maria
  email: maria.victorova@connect.polyu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Heidi Hin Ting
  surname: Lau
  fullname: Lau, Heidi Hin Ting
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Timothy Tin‐Yan
  surname: Lee
  fullname: Lee, Timothy Tin‐Yan
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: David
  orcidid: 0000-0002-3426-6638
  surname: Navarro‐Alarcon
  fullname: Navarro‐Alarcon, David
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Yongping
  surname: Zheng
  fullname: Zheng, Yongping
  organization: The Hong Kong Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36289008$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9LwzAQx4NMnJuCf4EUfPFlM0nTNvVNir9gIE4F30qWJpLRJjPXKvvvzdycMPTp7rjP3X257wD1rLMKoROCxwRjeuEljClL-R46JCzjoyRPX3vbPCF9NACYY8wSlrID1I9TynOM-SF6LFyzEN6As5HTUVe3XoDrbBWBFNYa-xZp50PhauPAQCQAFECjbHsZTd3MtUZGH8pDB1EjbCfqI7SvRQ3qeBOH6OXm-rm4G00ebu-Lq8lIxiwPstIKZ7FKM8JzUs1UjEleYZlTQrWgM0w5rWKtRcw5k4nMkkrxTAscOiwUOh6i8_XehXfvnYK2bAxIVdfCKtdBSTOaJ5TSnAX0bAedu87boC5QnAQFnJJAnW6obtaoqlx40wi_LH-e9XtRegfgld4iBJcrH8rgQ7nyIaDjHVSaVrTG2fBfU_81MFoPfJpaLf9dXE6Lp2_-C7t0mBY
CitedBy_id crossref_primary_10_1002_rcs_2590
crossref_primary_10_3390_robotics13110164
crossref_primary_10_1007_s11914_023_00845_z
crossref_primary_10_1016_j_ultrasmedbio_2023_12_015
crossref_primary_10_3390_jimaging9120265
Cites_doi 10.1016/j.bspc.2016.02.006
10.1109/TMI.2015.2390233
10.1093/jnci/81.17.1307
10.1109/TCST.2014.2309659
10.1109/ROBOT.2005.1570091
10.1016/j.spinee.2017.10.012
10.1016/0268‐0033(87)90039‐8
10.1109/IROS.2011.6094641
10.1109/lra.2020.3009069
10.1089/tmj.2008.0079
10.1007/978-3-030-01231-1_29
10.1371/journal.pone.0135264
10.4236/oja.2012.23011
10.1109/tmrb.2021.3072190
10.1186/s13013‐016‐0074‐y
10.1007/s11517‐019‐02015‐9
10.1097/00004032‐199406000‐00002
10.1109/CVPR.2016.90
10.1007/s00586‐013‐2693‐9
10.1109/IRC.2019.00049
10.1109/access.2022.3165936
10.3934/mbe.2019051
10.3389/frobt.2016.00001
10.1109/TIM.2021.3085110
10.1016/j.spinee.2010.02.020
10.1016/j.ijnurstu.2011.01.016
10.1109/IROS.2016.7759101
10.1016/j.jcm.2016.02.012
10.3390/s21082858
10.1007/s00586‐011‐2029‐6
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
DOI 10.1002/rcs.2468
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-596X
EndPage n/a
ExternalDocumentID 36289008
10_1002_rcs_2468
RCS2468
Genre article
Journal Article
GrantInformation_xml – fundername: The Hong Kong Polytechnic University through the Intra‐Faculty Interdisciplinary Project
  funderid: ZVVR
– fundername: The Hong Kong Polytechnic University through the Intra-Faculty Interdisciplinary Project
  grantid: ZVVR
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SJN
SUPJJ
SV3
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3498-56d073e671891dbe3019d0c9212fa2b0282d3ffa3884c5c75de87fa0b02475df3
IEDL.DBID DR2
ISSN 1478-5951
1478-596X
IngestDate Fri Jul 11 09:45:31 EDT 2025
Fri Jul 25 12:14:47 EDT 2025
Wed Feb 19 02:24:44 EST 2025
Tue Jul 01 00:56:12 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Wed Jan 22 16:14:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ultrasound imaging
spine
medical robotics
scoliosis
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3498-56d073e671891dbe3019d0c9212fa2b0282d3ffa3884c5c75de87fa0b02475df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1655-1953
0000-0002-3426-6638
PMID 36289008
PQID 2781189821
PQPubID 1026349
PageCount 13
ParticipantIDs proquest_miscellaneous_2729522294
proquest_journals_2781189821
pubmed_primary_36289008
crossref_primary_10_1002_rcs_2468
crossref_citationtrail_10_1002_rcs_2468
wiley_primary_10_1002_rcs_2468_RCS2468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
2023-Apr
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hamilton
PublicationTitle The international journal of medical robotics + computer assisted surgery
PublicationTitleAlternate Int J Med Robot
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 34
1987; 2
2010; 10
2021; 21
2021; 3
2013; 22
2011
2019; 57
1989; 81
2015; 10
1994; 66
2019; 16
2009; 892
2005
2016; 15
2014; 22
2021; 70
2016; 11
2018; 18
2020; 5
2012; 2
2016; 3
1948; 5
2021
2019
2018
2016
2015
2022; 10
2011; 48
2012; 25
2016; 27
2012; 21
2009; 15
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Ioffe S (e_1_2_8_25_1) 2015
e_1_2_8_27_1
Cobb J (e_1_2_8_2_1) 1948; 5
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Krizhevsky A (e_1_2_8_26_1) 2012; 25
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 3
  start-page: 510
  issue: 2
  year: 2021
  end-page: 524
  article-title: An overview of systems and techniques for autonomous robotic ultrasound acquisitions
  publication-title: IEEE Trans Med Robot Bionics
– volume: 66
  start-page: 621
  issue: 6
  year: 1994
  end-page: 633
  article-title: Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis
  publication-title: Health Phys
– volume: 10
  start-page: 769
  issue: 9
  year: 2010
  end-page: 774
  article-title: Reliability assessment of Cobb angle measurements using manual and digital methods
  publication-title: Spine J
– volume: 15
  start-page: 155
  issue: 2
  year: 2016
  end-page: 163
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: J Chiropr Med
– start-page: 770
  year: 2016
  end-page: 778
– volume: 57
  start-page: 2115
  issue: 10
  year: 2019
  end-page: 2128
  article-title: A semi‐automatic 3D ultrasound reconstruction method to assess the true severity of adolescent idiopathic scoliosis
  publication-title: Med Biol Eng Comput
– year: 2021
– volume: 21
  issue: 8
  year: 2021
  article-title: Validation of Scolioscan air‐portable radiation‐free three‐dimensional ultrasound imaging assessment system for scoliosis
  publication-title: Sensors
– start-page: 24
  year: 2005
  end-page: 29
– volume: 34
  start-page: 1760
  issue: 8
  year: 2015
  end-page: 1768
  article-title: Ultrasound volume projection imaging for assessment of scoliosis
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 1
  year: 2016
  end-page: 15
  article-title: A reliability and validity study for Scolioscan: a radiation‐free scoliosis assessment system using 3D ultrasound imaging
  publication-title: Scoliosis Spinal Disord
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Automatic 3‐D imaging and measurement of human spines with a robotic ultrasound system
  publication-title: IEEE Trans Instrum Meas
– start-page: 466
  year: 2018
  end-page: 481
– volume: 15
  start-page: 142
  issue: 2
  year: 2009
  end-page: 147
  article-title: Remote‐controlled robotic arm for real‐time echocardiography: the diagnostic future for patients in rural areas?
  publication-title: Telemed e‐Health
– volume: 5
  start-page: 5661
  issue: 4
  year: 2020
  end-page: 5668
  article-title: Force‐ultrasound fusion: bringing spine robotic‐us to the next “level”
  publication-title: IEEE Rob Autom Lett
– volume: 2
  start-page: 7
  issue: 1
  year: 1987
  end-page: 13
  article-title: Analysis of Cobb angle measurements in scoliosis
  publication-title: Clin BioMech
– volume: 2
  start-page: 95
  issue: 3
  year: 2012
  end-page: 103
  article-title: Ultrasound imaging of spinal vertebrae to study scoliosis
  publication-title: Open J Acoust
– volume: 5
  start-page: 261
  year: 1948
  end-page: 275
  article-title: Outline for the study of scoliosis
  publication-title: Instr Course Lect AAOS
– volume: 81
  start-page: 1307
  issue: 17
  year: 1989
  end-page: 1312
  article-title: Breast cancer in women with scoliosis exposed to multiple diagnostic x rays
  publication-title: JNCI (J Natl Cancer Inst)
– start-page: 508
  year: 2016
  end-page: 513
– volume: 16
  start-page: 1067
  issue: 3
  year: 2019
  end-page: 1081
  article-title: A fast 3‐D ultrasound projection imaging method for scoliosis assessment
  publication-title: Math Biosci Eng
– volume: 27
  start-page: 145
  year: 2016
  end-page: 154
  article-title: Review of medical image quality assessment
  publication-title: Biomed Signal Process Control
– volume: 10
  issue: 8
  year: 2015
  article-title: Reliability and validity study of clinical ultrasound imaging on lateral curvature of adolescent idiopathic scoliosis
  publication-title: PLoS One
– volume: 3
  year: 2016
  article-title: An ultrasound robotic system using the commercial robot UR5
  publication-title: Front Robot AI
– volume: 21
  start-page: 1007
  issue: 5
  year: 2012
  end-page: 1012
  article-title: Spinous process morphology: the effect of ageing through adulthood on spinous process size and relationship to sagittal alignment
  publication-title: Eur Spine J
– start-page: 4222
  year: 2011
  end-page: 4228
– start-page: 262
  year: 2019
  end-page: 265
– volume: 10
  start-page: 40216
  year: 2022
  end-page: 40229
  article-title: Follow the curve: robotic ultrasound navigation with learning‐based localization of spinous processes for scoliosis assessment
  publication-title: IEEE Access
– volume: 48
  start-page: 661
  issue: 6
  year: 2011
  end-page: 671
  article-title: Guidelines for reporting reliability and agreement studies (GRRAS) were proposed
  publication-title: Int J Nurs Stud
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 22
  start-page: 2360
  issue: 11
  year: 2013
  end-page: 2371
  article-title: Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review
  publication-title: Eur Spine J
– volume: 22
  start-page: 2376
  issue: 6
  year: 2014
  end-page: 2383
  article-title: Energy shaping methods for asymptotic force regulation of compliant mechanical systems
  publication-title: IEEE Trans Control Syst Technol
– start-page: 448
  year: 2015
  end-page: 456
– volume: 892
  start-page: 11
  year: 2009
  end-page: 15
– volume: 18
  start-page: 979
  issue: 6
  year: 2018
  end-page: 985
  article-title: A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis
  publication-title: Spine J
– ident: e_1_2_8_35_1
  doi: 10.1016/j.bspc.2016.02.006
– ident: e_1_2_8_10_1
  doi: 10.1109/TMI.2015.2390233
– ident: e_1_2_8_3_1
  doi: 10.1093/jnci/81.17.1307
– ident: e_1_2_8_23_1
  doi: 10.1109/TCST.2014.2309659
– ident: e_1_2_8_18_1
  doi: 10.1109/ROBOT.2005.1570091
– ident: e_1_2_8_7_1
  doi: 10.1016/j.spinee.2017.10.012
– ident: e_1_2_8_33_1
  doi: 10.1016/0268‐0033(87)90039‐8
– ident: e_1_2_8_22_1
  doi: 10.1109/IROS.2011.6094641
– ident: e_1_2_8_14_1
  doi: 10.1109/lra.2020.3009069
– ident: e_1_2_8_20_1
  doi: 10.1089/tmj.2008.0079
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-030-01231-1_29
– volume: 5
  start-page: 261
  year: 1948
  ident: e_1_2_8_2_1
  article-title: Outline for the study of scoliosis
  publication-title: Instr Course Lect AAOS
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0135264
– ident: e_1_2_8_8_1
  doi: 10.4236/oja.2012.23011
– ident: e_1_2_8_36_1
  doi: 10.1109/tmrb.2021.3072190
– ident: e_1_2_8_5_1
  doi: 10.1186/s13013‐016‐0074‐y
– ident: e_1_2_8_12_1
  doi: 10.1007/s11517‐019‐02015‐9
– ident: e_1_2_8_4_1
  doi: 10.1097/00004032‐199406000‐00002
– start-page: 448
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_8_25_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_24_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_31_1
  doi: 10.1007/s00586‐013‐2693‐9
– ident: e_1_2_8_13_1
  doi: 10.1109/IRC.2019.00049
– ident: e_1_2_8_17_1
  doi: 10.1109/access.2022.3165936
– volume: 25
  start-page: 1097
  year: 2012
  ident: e_1_2_8_26_1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_11_1
  doi: 10.3934/mbe.2019051
– ident: e_1_2_8_30_1
– ident: e_1_2_8_19_1
  doi: 10.3389/frobt.2016.00001
– ident: e_1_2_8_15_1
  doi: 10.1109/TIM.2021.3085110
– ident: e_1_2_8_34_1
  doi: 10.1016/j.spinee.2010.02.020
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ijnurstu.2011.01.016
– ident: e_1_2_8_21_1
  doi: 10.1109/IROS.2016.7759101
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jcm.2016.02.012
– ident: e_1_2_8_9_1
  doi: 10.3390/s21082858
– ident: e_1_2_8_28_1
  doi: 10.1007/s00586‐011‐2029‐6
SSID ssj0045464
Score 2.3454514
Snippet Background Ultrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a...
Ultrasound (US) imaging for scoliosis assessment is challenging for a non-experienced operator. The robotic scanning was developed to follow a spinal curvature...
BackgroundUltrasound (US) imaging for scoliosis assessment is challenging for a non‐experienced operator. The robotic scanning was developed to follow a spinal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2468
SubjectTerms Humans
medical robotics
Reproducibility of Results
Robotic Surgical Procedures
Robotics
Scanning
Scoliosis
Scoliosis - diagnostic imaging
Spinal curvature
spine
Spine - diagnostic imaging
Ultrasonic imaging
Ultrasonography - methods
ultrasound imaging
Title Comparison of ultrasound scanning for scoliosis assessment: Robotic versus manual
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.2468
https://www.ncbi.nlm.nih.gov/pubmed/36289008
https://www.proquest.com/docview/2781189821
https://www.proquest.com/docview/2729522294
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78_phOiSB66tYmadd4k-kYHgSng4GHkqQtDOcq63rxr_e9fun8APFUQl6TNi8v76V9-f0IOfOMdiLbV5aytbGEFNzS3DBLspgr4yNoWZ4ge-cNRuJ27I7LrEo8C1PgQ9Qf3NAy8vUaDVzptPMBGjo3aZsJD8_5OtxD2PzrYY0cJVyRI0c5AjZJLkQRFe6szTrVjcue6Ft4uRyt5u6mv0Geqgctskye29lCt83bFwzH_73JJlkvo1B6VUybLbISzbbJ2idswh1y36sZCmkS02y6mKsUOZhoagqeIwrxLhSS6SRJJylVNcbnJR0mOoGmKeZ8ZCl9UQh8uktG_ZvH3sAq-Rcsw4WEcfNCWAAiD9yXdEIdwVogQ9tI8HaxYhp3ayGPY8V9XxjXdN0w8rsxKB38PhRivkcas2QWHRDqdpkydgi7M8URMU0r3QW_KJQT255UpkkuKl0EpgQnR46MaVDAKrMABinAQWqS01rytQDk-EGmVakzKE0SKvBMrS995kATdTUYE_4hUbMoyVCGSRcZzkWT7BfToO4EPL0vIWJqkvNcmb_2Hgx7D3g9_KvgEVlFEvsiH6hFGot5Fh1DqLPQJ_mkfgenovrK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED918LDxAOyTQLd50rQ9pSSOk9rwhApVt7FK61qJB6TIdhIJURrUNC_89dwlTTb2IU17iqxc7MTn8_3OsX8H8D6yxk89qV3tGesKJQLXBJa7imeBtpJIy6oNsuNoNBOfL8KLDhw3Z2Fqfoh2wY0so5qvycBpQfrwB2vo0hY9LiL5CDYF4gyKvE4nLXeUCEXFHeULDJNCxBEN86zHD5snH_qi3wDmQ7xaOZzhDlw2r1rvM7nulSvTs3e_sDj-57fswvYaiLKTeuQ8hU66eAZbP9ETPodvgzZJIcszVs5XS11QGiZW2DrVEUPIi4V8fpUXVwXTLc3nEZvkJseqGW37KAt2o4n79AXMhmfTwchdp2BwbSAUdlyU4ByQRujBlJ-YFKcDlXhWocPLNDcUsCVBlulASmFD2w-TVPYz1Du6fixkwUvYWOSLdA9Y2OfaegkGaDog0jSjTR9do9B-5kVKWwc-NsqI7ZqfnNJkzOOaWZnH2EkxdZID71rJ25qT4w8y3Uaf8doq8QYdq5VKch-raG-jPdFPEr1I85JkuAopyblw4FU9DtpG0NlLhaDJgQ-VNv_aejwZfKfr_r8KvoXHo-nX8_j80_jLATyhnPb19qAubKyWZfoakc_KvKlG-D1Uzf7p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlXlQEtfLI_iSlU5ZUkcJ2v3hhZWvITabZGQOES2E0uIZYM2mwu_npm8gBakqqfI8sROPB7P52T8DcDX2Jog86X2tG-sJ5QIPRNa7inuQm0lkZZVAbKn8cGZODqPzpuoSjoLU_NDdB_cyDKq9ZoM_CZ1O_ekoTNb9LmI5Qt4KWIEEgSIxh11lIhERR0VCNwlRQgjWuJZn--0dz52RX_hy8dwtfI3ozdw0T5pHWZy1S_npm9v_yBx_L9XeQvLDQxlu_W8WYGFbPoOlh6QE76Hn8MuRSHLHSsn85kuKAkTK2yd6Igh4MVCPrnMi8uC6Y7k8zsb5ybHphkFfZQFu9bEfPoBzkb7v4cHXpOAwbOhUDhucYorQBaj_1JBajJcDFTqW4XuzmluaLuWhs7pUEphIzuI0kwOHGodHT8WXPgRFqf5NFsFFg24tn6K2zMdEmWa0WaAjlHowPmx0rYH260uEtuwk1OSjElS8yrzBAcpoUHqwZdO8qZm5HhCZqNVZ9LYJFbQoVqpJA-wia4arYl-kehplpckw1VEKc5FDz7V06DrBF29VAiZevCtUuazvSfj4S-6rv2r4Ba8-rE3Sk4OT4_X4TUltK9jgzZgcT4rs02EPXPzuZrfd2D0_Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+ultrasound+scanning+for+scoliosis+assessment%3A+Robotic+versus+manual&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Victorova%2C+Maria&rft.au=Lau%2C+Heidi+Hin+Ting&rft.au=Lee%2C+Timothy+Tin-Yan&rft.au=Navarro-Alarcon%2C+David&rft.date=2023-04-01&rft.issn=1478-596X&rft.eissn=1478-596X&rft.volume=19&rft.issue=2&rft.spage=e2468&rft_id=info:doi/10.1002%2Frcs.2468&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon