Application of Machine Learning to Predict Dietary Lapses During Weight Loss
Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a va...
Saved in:
Published in | Journal of diabetes science and technology Vol. 12; no. 5; pp. 1045 - 1052 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background:
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction.
Methods:
The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers.
Results:
WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance.
Conclusions:
The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses. |
---|---|
AbstractList | Background:
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction.
Methods:
The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers.
Results:
WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance.
Conclusions:
The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses. Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. Methods: The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. Results: WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. Conclusions: The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses. Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a "lapse." There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses. |
Author | Goldstein, Stephanie P. Thomas, John G. Butryn, Meghan L. Herbert, James D. Forman, Evan M. Zhang, Fengqing |
AuthorAffiliation | 2 Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA 3 Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, USA 4 President’s Office, University of New England, Biddeford, ME, USA 1 Center for Weight, Eating, and Lifestyle Science and Department of Psychology, Drexel University, Philadelphia, PA, USA |
AuthorAffiliation_xml | – name: 3 Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, USA – name: 1 Center for Weight, Eating, and Lifestyle Science and Department of Psychology, Drexel University, Philadelphia, PA, USA – name: 2 Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA – name: 4 President’s Office, University of New England, Biddeford, ME, USA |
Author_xml | – sequence: 1 givenname: Stephanie P. surname: Goldstein fullname: Goldstein, Stephanie P. – sequence: 2 givenname: Fengqing surname: Zhang fullname: Zhang, Fengqing – sequence: 3 givenname: John G. surname: Thomas fullname: Thomas, John G. – sequence: 4 givenname: Meghan L. surname: Butryn fullname: Butryn, Meghan L. – sequence: 5 givenname: James D. surname: Herbert fullname: Herbert, James D. – sequence: 6 givenname: Evan M. surname: Forman fullname: Forman, Evan M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29792067$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UE1LxDAQDaK4H3r3JPkD1Xy0SXsRll2_oKIHxWNI07SbZTcpSVfw35uyuqyCzGGGN--9Gd4EHFtnNQAXGF1hzPk1LighBctxznkW6wiMBygZsOODeQQmIawQytJIPAUjUvCCIMbHoJx13doo2RtnoWvgk1RLYzUstfTW2Bb2Dr54XRvVw4XRvfSfsJRd0AEutn4gvGvTLntYuhDOwEkj10Gff_cpeLu7fZ0_JOXz_eN8ViaKpgVP6oawiquU0ryoK1ZTyfMsk5QzTnHDCilRrqqaMC1VQ5SucyUJ1RWRhFeVwnQKbna-3bba6Fpp23u5Fp03m_ifcNKI3xtrlqJ1H4JhmjKURwO0M1A-vu11s9diJIZkxd9ko-Ty8OZe8BNlJCQ7QpCtFiu39TZm8L_hF6QQhGM |
CitedBy_id | crossref_primary_10_1016_j_pcad_2024_03_002 crossref_primary_10_1017_S1368980021000598 crossref_primary_10_1093_ntr_ntad051 crossref_primary_10_1002_osp4_587 crossref_primary_10_1093_tbm_ibz137 crossref_primary_10_3934_aci_2022002 crossref_primary_10_1007_s10865_021_00264_4 crossref_primary_10_1038_s41746_020_0234_6 crossref_primary_10_1016_j_jnutbio_2024_109592 crossref_primary_10_2196_47098 crossref_primary_10_1016_j_appet_2020_104698 crossref_primary_10_1016_j_jss_2023_05_015 crossref_primary_10_1016_j_appet_2022_106090 crossref_primary_10_1016_j_appet_2021_105440 crossref_primary_10_1177_2055207620988212 crossref_primary_10_1002_oby_23923 crossref_primary_10_3389_fdgth_2023_1163386 crossref_primary_10_1177_20551029231214058 crossref_primary_10_1177_1460458220902330 crossref_primary_10_1093_tbm_ibaa097 crossref_primary_10_1146_annurev_nutr_061121_090535 crossref_primary_10_1016_j_array_2021_100090 crossref_primary_10_2196_13672 crossref_primary_10_1093_tbm_ibab123 crossref_primary_10_1017_S0033291724000862 crossref_primary_10_1136_bmjopen_2022_064394 crossref_primary_10_1186_s13690_021_00770_6 crossref_primary_10_2196_33568 crossref_primary_10_3390_nu13020422 crossref_primary_10_1038_s41366_022_01070_x crossref_primary_10_2196_46779 |
Cites_doi | 10.1007/s12160-017-9897-x 10.1109/MPRV.2014.46 10.1002/eat.2260150411 10.1037/0022-006X.72.2.341 10.1017/S1481803500013336 10.1016/S0005-7894(00)80009-X 10.1146/annurev.clinpsy.3.022806.091415 10.1016/j.neuroimage.2008.11.007 10.1007/s00134-003-1761-8 10.24251/HICSS.2017.436 10.1001/jama.293.1.43 10.1016/S1471-0153(01)00037-X 10.1186/1471-2105-12-77 10.1007/s12160-014-9625-8 10.1093/abm/16.3.199 10.1007/s12160-014-9594-y 10.1111/bdi.12332 10.1016/j.brat.2007.04.004 10.1016/j.aca.2012.11.007 10.1007/s00779-014-0829-5 10.1007/s12529-016-9627-y 10.1016/j.appet.2009.05.016 10.1037/prj0000130 |
ContentType | Journal Article |
Copyright | 2018 Diabetes Technology Society 2018 Diabetes Technology Society 2018 Diabetes Technology Society |
Copyright_xml | – notice: 2018 Diabetes Technology Society – notice: 2018 Diabetes Technology Society 2018 Diabetes Technology Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1177/1932296818775757 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1932-2968 1932-3107 |
EndPage | 1052 |
ExternalDocumentID | 10_1177_1932296818775757 29792067 10.1177_1932296818775757 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The Obesity Society/Weight Watchers Karen Miller-Kovach Research Grant grantid: N/A – fundername: APAGS/Psi Chi Junior Scientist Fellowship grantid: N/A – fundername: ; grantid: N/A |
GroupedDBID | --- -TM 0R~ 53G 54M AABMB AACMV AACTG AADCB AADUE AAEWN AAGMC AAJPV AAKGS AANEX AARDL AARIX AATAA AATBZ AAUAS ABAWP ABCCA ABEIX ABFWQ ABJIS ABJNI ABKRH ABLUO ABPNF ABQXT ABRHV ABVFX ACARO ACDSZ ACDXX ACFEJ ACGFO ACGFS ACGZU ACJTF ACLFY ACLZU ACOFE ACOXC ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ACXMB ADBBV ADDVE ADRRZ ADZZY AECGH AEDTQ AEKYL AEPTA AEQLS AERKM AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AIOMO AJUZI AJXAJ ALJHS ALMA_UNASSIGNED_HOLDINGS ALTZF AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBRGL BDDNI BKIIM BKSCU BPACV BSEHC BWJAD C45 CDWPY CFDXU DC- DC. DIK DOPDO DV7 E3Z EBS EJD F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 HYE J8X JCYGO K.F M4V O9- OK1 OVD P2P P6G ROL RPM SCNPE SFC SFH SHG SJN SPQ SPV TEORI TR2 ZONMY ZPPRI ZRKOI ZSSAH ACJER ALKWR CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c3497-df26b7c43389db6d3a7855a376731f69aa08cbd26eacf2ced8ca23eb2a27bbc13 |
IEDL.DBID | RPM |
ISSN | 1932-2968 |
IngestDate | Tue Sep 17 21:15:24 EDT 2024 Wed Oct 02 15:02:59 EDT 2024 Wed Oct 16 00:51:22 EDT 2024 Tue Jul 16 20:49:15 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | diet machine learning obesity ecological momentary assessment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3497-df26b7c43389db6d3a7855a376731f69aa08cbd26eacf2ced8ca23eb2a27bbc13 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1177/1932296818775757 |
PMID | 29792067 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6134608 crossref_primary_10_1177_1932296818775757 pubmed_primary_29792067 sage_journals_10_1177_1932296818775757 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Sage CA: Los Angeles, CA |
PublicationTitle | Journal of diabetes science and technology |
PublicationTitleAlternate | J Diabetes Sci Technol |
PublicationYear | 2018 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Spruijt-Metz, Nilsen 2014; 13 Robin, Turck, Hainard 2011; 12 Ben-Zeev, Scherer, Wang, Xie, Campbell 2015; 38 Dansinger, Gleason, Griffith, Selker, Schaefer 2005; 293 Clark, Marcus, Pera, Niaura 1994; 15 Cepeda-Benito, Gleaves, Williams, Erath 2001; 31 Shiffman, Stone, Hufford 2008; 4 Gravenhorst, Muaremi, Bardram 2015; 19 Fan, Upadhye, Worster 2006; 8 Forman, Hoffman, McGrath, Herbert, Brandsma, Lowe 2007; 45 Ding, Simonoff 2010; 11 Fischer, Bachmann, Jaeschke 2003; 29 Carels, Hoffman, Collins, Raber, Cacciapaglia, O’Brien 2002; 2 Beleites, Neugebauer, Bocklitz, Krafft, Popp 2013; 760 McKee, Ntoumanis, Taylor 2014; 48 Stone, Shiffman 1994; 16 Faurholt-Jepsen, Vinberg, Frost, Christensen, Bardram, Kessing 2015; 17 Goldstein, Evans, Flack, Juarascio, Manasse, Zhang 2017; 24 Lowe, Butryn, Didie 2009; 53 Forman, Schumacher, Crosby 2017; 51 Hofmann, Dohle 2014; 48 Carels, Douglass, Cacciapaglia, O’Brien 2004; 72 Pereira, Mitchell, Botvinick 2009; 45 bibr2-1932296818775757 Witten IH (bibr31-1932296818775757) 2005 Fisher SRA (bibr10-1932296818775757) 1960 Ling CX (bibr29-1932296818775757); 2011 bibr37-1932296818775757 Ding Y (bibr25-1932296818775757) 2010; 11 Mohri C (bibr27-1932296818775757); 2005 Swets J (bibr9-1932296818775757) 2012 bibr23-1932296818775757 Lee JH (bibr32-1932296818775757) 2011 bibr7-1932296818775757 Ziegler ML (bibr33-1932296818775757) 2006 bibr19-1932296818775757 bibr1-1932296818775757 bibr20-1932296818775757 Lunardon N (bibr24-1932296818775757) 2015 bibr15-1932296818775757 bibr6-1932296818775757 bibr11-1932296818775757 Wong JHK (bibr16-1932296818775757) 2012 bibr28-1932296818775757 Stunkard AJ (bibr18-1932296818775757) 1988 bibr21-1932296818775757 bibr34-1932296818775757 bibr35-1932296818775757 bibr5-1932296818775757 bibr14-1932296818775757 bibr12-1932296818775757 bibr3-1932296818775757 Luxton DD (bibr36-1932296818775757) 2015 bibr22-1932296818775757 bibr4-1932296818775757 bibr30-1932296818775757 bibr17-1932296818775757 bibr26-1932296818775757 bibr8-1932296818775757 bibr13-1932296818775757 |
References_xml | – volume: 24 start-page: 673 issue: 5 year: 2017 end-page: 682 article-title: Return of the JITAI: applying a just-in-time adaptive intervention framework to the development of m-health solutions for addictive behaviors publication-title: Int J Behav Med contributor: fullname: Zhang – volume: 38 start-page: 218 issue: 3 year: 2015 end-page: 226 article-title: Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health publication-title: Psychiatr Rehabil J contributor: fullname: Campbell – volume: 45 start-page: 2372 issue: 10 year: 2007 end-page: 2386 article-title: A comparison of acceptance-and control-based strategies for coping with food cravings: an analog study publication-title: Behav Res Ther contributor: fullname: Lowe – volume: 11 start-page: 131 year: 2010 end-page: 170 article-title: An investigation of missing data methods for classification trees applied to binary response data publication-title: J Mach Learn Res contributor: fullname: Simonoff – volume: 19 start-page: 335 issue: 2 year: 2015 end-page: 353 article-title: Mobile phones as medical devices in mental disorder treatment: an overview publication-title: Pers Ubiquitous Comput contributor: fullname: Bardram – volume: 15 start-page: 401 issue: 4 year: 1994 end-page: 405 article-title: Changes in eating inventory scores following obesity treatment publication-title: Int J Eat Disord contributor: fullname: Niaura – volume: 72 start-page: 341 issue: 2 year: 2004 end-page: 348 article-title: An ecological momentary assessment of relapse crises in dieting publication-title: J Consult Clin Psychol contributor: fullname: O’Brien – volume: 8 start-page: 19 issue: 1 year: 2006 end-page: 20 article-title: Understanding receiver operating characteristic (ROC) curves publication-title: CJEM contributor: fullname: Worster – volume: 760 start-page: 25 year: 2013 end-page: 33 article-title: Sample size planning for classification models publication-title: Anal Chim Acta contributor: fullname: Popp – volume: 51 start-page: 741 issue: 5 year: 2017 end-page: 753 article-title: Ecological momentary assessment of dietary lapses across behavioral weight loss treatment: characteristics, predictors, and relationships with weight change publication-title: Ann Behav Med contributor: fullname: Crosby – volume: 293 start-page: 43 issue: 1 year: 2005 end-page: 53 article-title: Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial publication-title: JAMA contributor: fullname: Schaefer – volume: 48 start-page: 300 issue: 3 year: 2014 end-page: 310 article-title: An ecological momentary assessment of lapse occurrences in dieters publication-title: Ann Behav Med contributor: fullname: Taylor – volume: 48 start-page: 289 issue: 3 year: 2014 end-page: 290 article-title: Capturing eating behavior where the action takes place: a comment on McKee et al publication-title: Ann Behav Med contributor: fullname: Dohle – volume: 4 start-page: 1 year: 2008 end-page: 32 article-title: Ecological momentary assessment publication-title: Annu Rev Clin Psychol contributor: fullname: Hufford – volume: 45 start-page: S199 issue: 1 year: 2009 end-page: S209 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: NeuroImage contributor: fullname: Botvinick – volume: 51 start-page: 1 issue: 5 year: 2017 end-page: 13 article-title: Ecological momentary assessment of dietary lapses across behavioral weight loss treatment: characteristics, predictors, and relationships with weight change publication-title: Ann Behav Med contributor: fullname: Crosby – volume: 13 start-page: 13 issue: 3 year: 2014 end-page: 17 article-title: Dynamic models of behavior for just-in-time adaptive interventions publication-title: IEEE Pervasive Comput contributor: fullname: Nilsen – volume: 16 start-page: 199 year: 1994 end-page: 202 article-title: Ecological momentary assessment (EMA) in behavioral medicine publication-title: Ann Behav Med contributor: fullname: Shiffman – volume: 31 start-page: 151 issue: 1 year: 2001 end-page: 173 article-title: The development and validation of the state and trait food-cravings questionnaires publication-title: Behav Ther contributor: fullname: Erath – volume: 53 start-page: 114 issue: 1 year: 2009 end-page: 118 article-title: The Power of Food Scale. A new measure of the psychological influence of the food environment publication-title: Appetite contributor: fullname: Didie – volume: 29 start-page: 1043 issue: 7 year: 2003 end-page: 1051 article-title: A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis publication-title: Intensive Care Med contributor: fullname: Jaeschke – volume: 17 start-page: 715 issue: 7 year: 2015 end-page: 728 article-title: Smartphone data as an electronic biomarker of illness activity in bipolar disorder publication-title: Bipolar Disord contributor: fullname: Kessing – volume: 2 start-page: 307 issue: 4 year: 2002 end-page: 321 article-title: Ecological momentary assessment of temptation and lapse in dieting publication-title: Eat Behav contributor: fullname: O’Brien – volume: 12 start-page: 77 year: 2011 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics contributor: fullname: Hainard – ident: bibr1-1932296818775757 doi: 10.1007/s12160-017-9897-x – ident: bibr6-1932296818775757 doi: 10.1109/MPRV.2014.46 – ident: bibr19-1932296818775757 doi: 10.1002/eat.2260150411 – ident: bibr3-1932296818775757 doi: 10.1037/0022-006X.72.2.341 – volume: 2011 start-page: 231 volume-title: Encyclopedia of Machine Learning ident: bibr29-1932296818775757 contributor: fullname: Ling CX – ident: bibr11-1932296818775757 doi: 10.1017/S1481803500013336 – ident: bibr13-1932296818775757 – ident: bibr22-1932296818775757 doi: 10.1016/S0005-7894(00)80009-X – ident: bibr14-1932296818775757 doi: 10.1146/annurev.clinpsy.3.022806.091415 – ident: bibr23-1932296818775757 doi: 10.1016/j.neuroimage.2008.11.007 – volume-title: Eating Inventory: Manual year: 1988 ident: bibr18-1932296818775757 contributor: fullname: Stunkard AJ – volume-title: ROSE: A Package for Binary Imbalanced Learning year: 2015 ident: bibr24-1932296818775757 contributor: fullname: Lunardon N – volume-title: Data mining: practical machine learning tools and techniques year: 2005 ident: bibr31-1932296818775757 contributor: fullname: Witten IH – volume-title: Evaluation of Diagnostic Systems year: 2012 ident: bibr9-1932296818775757 contributor: fullname: Swets J – volume-title: Capturing the Dynamics of a Work Day: Ecological Momentary Assessment of Work Stressors on the Health of Long-Term Caregivers year: 2012 ident: bibr16-1932296818775757 contributor: fullname: Wong JHK – ident: bibr28-1932296818775757 doi: 10.1007/s00134-003-1761-8 – start-page: 137 volume-title: Artificial Intelligence in Behavioral and Mental Health Care year: 2015 ident: bibr36-1932296818775757 contributor: fullname: Luxton DD – ident: bibr7-1932296818775757 doi: 10.24251/HICSS.2017.436 – volume-title: Variable Selection When Confronted With Missing Data year: 2006 ident: bibr33-1932296818775757 contributor: fullname: Ziegler ML – volume-title: United Kingdom Stata Users’ Group Meetings 2011 year: 2011 ident: bibr32-1932296818775757 contributor: fullname: Lee JH – volume: 2005 start-page: 305 volume-title: NIPS’04 Proceedings of the 17th International Conference on Neural Information Processing Systems ident: bibr27-1932296818775757 contributor: fullname: Mohri C – volume-title: The Design of Experiments year: 1960 ident: bibr10-1932296818775757 contributor: fullname: Fisher SRA – volume: 11 start-page: 131 year: 2010 ident: bibr25-1932296818775757 publication-title: J Mach Learn Res contributor: fullname: Ding Y – ident: bibr12-1932296818775757 doi: 10.1001/jama.293.1.43 – ident: bibr4-1932296818775757 doi: 10.1016/S1471-0153(01)00037-X – ident: bibr8-1932296818775757 doi: 10.1007/s12160-017-9897-x – ident: bibr26-1932296818775757 doi: 10.1186/1471-2105-12-77 – ident: bibr5-1932296818775757 doi: 10.1007/s12160-014-9625-8 – ident: bibr15-1932296818775757 doi: 10.1093/abm/16.3.199 – ident: bibr2-1932296818775757 doi: 10.1007/s12160-014-9594-y – ident: bibr35-1932296818775757 doi: 10.1111/bdi.12332 – ident: bibr21-1932296818775757 doi: 10.1016/j.brat.2007.04.004 – ident: bibr30-1932296818775757 doi: 10.1016/j.aca.2012.11.007 – ident: bibr37-1932296818775757 doi: 10.1007/s00779-014-0829-5 – ident: bibr17-1932296818775757 doi: 10.1007/s12529-016-9627-y – ident: bibr20-1932296818775757 doi: 10.1016/j.appet.2009.05.016 – ident: bibr34-1932296818775757 doi: 10.1037/prj0000130 |
SSID | ssj0054877 |
Score | 2.3854198 |
Snippet | Background:
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any... Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from... Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any... |
SourceID | pubmedcentral crossref pubmed sage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1045 |
SubjectTerms | Adult Algorithms Diet, Reducing - methods Ecological Momentary Assessment Female Humans Machine Learning Male Mobile Applications Obesity - diet therapy Obesity Technology Overweight - diet therapy Patient Compliance Smartphone Weight Reduction Programs - methods |
Title | Application of Machine Learning to Predict Dietary Lapses During Weight Loss |
URI | https://journals.sagepub.com/doi/full/10.1177/1932296818775757 https://www.ncbi.nlm.nih.gov/pubmed/29792067 https://pubmed.ncbi.nlm.nih.gov/PMC6134608 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VBsSCeBNe8oCQGEIbx4ntseKhCjWIgQq2ynZsqETTqg0D_x7bSVqKxMKcU2zdOb7vcp8_A1zk0tgkoU2IFZYhocqEQlAexk77jBDNiBerzh7T3oA8vCavLUiaszCetK_k6Lr4GF8Xo3fPrZyOVbvhibWfshv7dpJ2WHsN1uwCbUr0avt1CJwu-5FtB1AwT21eotRCE3fpHuaUO9XylVS0yD-_uZE_CF4-59xvw1YNFlG3mtQOtHSxCxtZ3Q7fg3532X5GE4Myz4zUqBZNfUPlBD3NnHmJbke6FLMv1BfTuZ6jW388Eb34P6Oob-e3D4P7u-ebXlhfjxCqmHAa5gankipii0yeyzSPBWVJIpw8SxyZlAvRYUrmOLV7q8FK50wJHNtKWmAqpYriA1gvJoU-AqRtYaENtwUrZcQkijGheR5zzaJIyQ4J4Krx1HBaqWAMo1oo_LeDAzisPLiwbPwdAF3x7cLASVyvPrGR91LXdaQDuHRRGNbf1_zPwY__PcQJbFosxCr62Cmsl7NPfWbxRinP_fr6BhEN0qg |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iTGJcYGP86IDNhwlph7SN48T2EfFDZUsQB9i4VbZjQwVNqzYc4K-f7SSFVuIAZz_FcT7b7728z58BfubSWCehTYAVlgGhygRCUB5ETvuMEM2IF6vOzpPeFfl9HV8vQdychfGkfSUH7eJ-2C4Gt55bOR6qTsMT61xkR_bpJOmyzgf4aNdrlzRJerUBuxicPlckOy5EwTyxnolSG5y4a_cwp9zpls85o5kHWmRHvqB4ea9zug5_m_etyCZ37YdSttXTgpTjmwf0GdbqOBQdVs1fYEkXG7CS1ZX2r5AePle20cigzJMuNar1WG9QOUIXE2deouOBLsXkEaViPNVTdOxPPqJ__qcrSu3AN-Hq9OTyqBfUNy8EKiKcBrnBiaSK2PyV5zLJI0FZHAun_BKFJuFCdJmSOU7stm2w0jlTAkc2SReYSqnCaAuWi1GhdwBpm7Now20uTBkxsWJMaJ5HXLMwVLJLWvCrgaA_rgQ2-mGtQb6IXAu2K2hmlg2QLaBzoM0MnHr2fIvFwKto19-8BQcO3n69dKevdv7t3V38gE-9yyztp2fnf3Zh1YZcrGKp7cFyOXnQ-zasKeV3P4n_A-fL9Jo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB2xIKG98M1SvtYHtBKHNI3jxvYRUSpgW9TDIhCXynbspYKmVRsO8OuxnaTQSlw4ZxTHebFnJvP8BuAklcY6CW0CrLAMCFUmEILyIHbaZ4RoRrxYdfcmubwl1_fN-0-tvjxpX8lBPXse1rPBo-dWjocqrHhiYa97bu9OkgYLx6kJf8CKXbONpErUi03YxeH0oyoZujAF88R6J0ptgOJa72FOudMun3NIMy-0yJD8RPPynqe9Dg_VMxeEk6f6Sy7r6m1BzvFbk9qAtTIeRWeFySYs6WwLVrtlxX0bOmcfFW40MqjryZcalbqs_1E-Qr2JM89Ra6BzMXlFHTGe6ilq-ROQ6M7_fEUdO_kduG1f_Du_DMoODIGKCadBanAiqSI2j-WpTNJYUNZsCqcAE0cm4UI0mJIpTuz2bbDSKVMCxzZZF5hKqaJ4F5azUab3AGmbu2jDbU5MGTFNxZjQPI25ZlGkZIPU4LSCoT8uhDb6UalFvoheDX4V8MwsKzBrQOeAmxk4Fe35KxYHr6Zdvvca_HEQ98slPP1y8P1vD_EbVnutdr9zdfP3AH7ayIsVZLVDWM4nL_rIRje5PPbf8Tu6zfca |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+to+Predict+Dietary+Lapses+During+Weight+Loss&rft.jtitle=Journal+of+diabetes+science+and+technology&rft.au=Goldstein%2C+Stephanie+P.&rft.au=Zhang%2C+Fengqing&rft.au=Thomas%2C+John+G.&rft.au=Butryn%2C+Meghan+L.&rft.date=2018-09-01&rft.pub=SAGE+Publications&rft.eissn=1932-3107&rft.volume=12&rft.issue=5&rft.spage=1045&rft.epage=1052&rft_id=info:doi/10.1177%2F1932296818775757&rft_id=info%3Apmid%2F29792067&rft.externalDBID=PMC6134608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-2968&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-2968&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-2968&client=summon |