Application of Machine Learning to Predict Dietary Lapses During Weight Loss

Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a va...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes science and technology Vol. 12; no. 5; pp. 1045 - 1052
Main Authors Goldstein, Stephanie P., Zhang, Fengqing, Thomas, John G., Butryn, Meghan L., Herbert, James D., Forman, Evan M.
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. Methods: The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. Results: WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. Conclusions: The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
AbstractList Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. Methods: The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. Results: WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. Conclusions: The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a “lapse.” There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. Methods: The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. Results: WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. Conclusions: The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a "lapse." There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
Author Goldstein, Stephanie P.
Thomas, John G.
Butryn, Meghan L.
Herbert, James D.
Forman, Evan M.
Zhang, Fengqing
AuthorAffiliation 2 Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
3 Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, USA
4 President’s Office, University of New England, Biddeford, ME, USA
1 Center for Weight, Eating, and Lifestyle Science and Department of Psychology, Drexel University, Philadelphia, PA, USA
AuthorAffiliation_xml – name: 3 Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, The Miriam Hospital Weight Control and Diabetes Research Center, Providence, RI, USA
– name: 1 Center for Weight, Eating, and Lifestyle Science and Department of Psychology, Drexel University, Philadelphia, PA, USA
– name: 2 Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
– name: 4 President’s Office, University of New England, Biddeford, ME, USA
Author_xml – sequence: 1
  givenname: Stephanie P.
  surname: Goldstein
  fullname: Goldstein, Stephanie P.
– sequence: 2
  givenname: Fengqing
  surname: Zhang
  fullname: Zhang, Fengqing
– sequence: 3
  givenname: John G.
  surname: Thomas
  fullname: Thomas, John G.
– sequence: 4
  givenname: Meghan L.
  surname: Butryn
  fullname: Butryn, Meghan L.
– sequence: 5
  givenname: James D.
  surname: Herbert
  fullname: Herbert, James D.
– sequence: 6
  givenname: Evan M.
  surname: Forman
  fullname: Forman, Evan M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29792067$$D View this record in MEDLINE/PubMed
BookMark eNp1UE1LxDAQDaK4H3r3JPkD1Xy0SXsRll2_oKIHxWNI07SbZTcpSVfw35uyuqyCzGGGN--9Gd4EHFtnNQAXGF1hzPk1LighBctxznkW6wiMBygZsOODeQQmIawQytJIPAUjUvCCIMbHoJx13doo2RtnoWvgk1RLYzUstfTW2Bb2Dr54XRvVw4XRvfSfsJRd0AEutn4gvGvTLntYuhDOwEkj10Gff_cpeLu7fZ0_JOXz_eN8ViaKpgVP6oawiquU0ryoK1ZTyfMsk5QzTnHDCilRrqqaMC1VQ5SucyUJ1RWRhFeVwnQKbna-3bba6Fpp23u5Fp03m_ifcNKI3xtrlqJ1H4JhmjKURwO0M1A-vu11s9diJIZkxd9ko-Ty8OZe8BNlJCQ7QpCtFiu39TZm8L_hF6QQhGM
CitedBy_id crossref_primary_10_1016_j_pcad_2024_03_002
crossref_primary_10_1017_S1368980021000598
crossref_primary_10_1093_ntr_ntad051
crossref_primary_10_1002_osp4_587
crossref_primary_10_1093_tbm_ibz137
crossref_primary_10_3934_aci_2022002
crossref_primary_10_1007_s10865_021_00264_4
crossref_primary_10_1038_s41746_020_0234_6
crossref_primary_10_1016_j_jnutbio_2024_109592
crossref_primary_10_2196_47098
crossref_primary_10_1016_j_appet_2020_104698
crossref_primary_10_1016_j_jss_2023_05_015
crossref_primary_10_1016_j_appet_2022_106090
crossref_primary_10_1016_j_appet_2021_105440
crossref_primary_10_1177_2055207620988212
crossref_primary_10_1002_oby_23923
crossref_primary_10_3389_fdgth_2023_1163386
crossref_primary_10_1177_20551029231214058
crossref_primary_10_1177_1460458220902330
crossref_primary_10_1093_tbm_ibaa097
crossref_primary_10_1146_annurev_nutr_061121_090535
crossref_primary_10_1016_j_array_2021_100090
crossref_primary_10_2196_13672
crossref_primary_10_1093_tbm_ibab123
crossref_primary_10_1017_S0033291724000862
crossref_primary_10_1136_bmjopen_2022_064394
crossref_primary_10_1186_s13690_021_00770_6
crossref_primary_10_2196_33568
crossref_primary_10_3390_nu13020422
crossref_primary_10_1038_s41366_022_01070_x
crossref_primary_10_2196_46779
Cites_doi 10.1007/s12160-017-9897-x
10.1109/MPRV.2014.46
10.1002/eat.2260150411
10.1037/0022-006X.72.2.341
10.1017/S1481803500013336
10.1016/S0005-7894(00)80009-X
10.1146/annurev.clinpsy.3.022806.091415
10.1016/j.neuroimage.2008.11.007
10.1007/s00134-003-1761-8
10.24251/HICSS.2017.436
10.1001/jama.293.1.43
10.1016/S1471-0153(01)00037-X
10.1186/1471-2105-12-77
10.1007/s12160-014-9625-8
10.1093/abm/16.3.199
10.1007/s12160-014-9594-y
10.1111/bdi.12332
10.1016/j.brat.2007.04.004
10.1016/j.aca.2012.11.007
10.1007/s00779-014-0829-5
10.1007/s12529-016-9627-y
10.1016/j.appet.2009.05.016
10.1037/prj0000130
ContentType Journal Article
Copyright 2018 Diabetes Technology Society
2018 Diabetes Technology Society 2018 Diabetes Technology Society
Copyright_xml – notice: 2018 Diabetes Technology Society
– notice: 2018 Diabetes Technology Society 2018 Diabetes Technology Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1177/1932296818775757
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1932-2968
1932-3107
EndPage 1052
ExternalDocumentID 10_1177_1932296818775757
29792067
10.1177_1932296818775757
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Obesity Society/Weight Watchers Karen Miller-Kovach Research Grant
  grantid: N/A
– fundername: APAGS/Psi Chi Junior Scientist Fellowship
  grantid: N/A
– fundername: ;
  grantid: N/A
GroupedDBID ---
-TM
0R~
53G
54M
AABMB
AACMV
AACTG
AADCB
AADUE
AAEWN
AAGMC
AAJPV
AAKGS
AANEX
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABEIX
ABFWQ
ABJIS
ABJNI
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABVFX
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFO
ACGFS
ACGZU
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDVE
ADRRZ
ADZZY
AECGH
AEDTQ
AEKYL
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AIOMO
AJUZI
AJXAJ
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ALTZF
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
C45
CDWPY
CFDXU
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EJD
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
HYE
J8X
JCYGO
K.F
M4V
O9-
OK1
OVD
P2P
P6G
ROL
RPM
SCNPE
SFC
SFH
SHG
SJN
SPQ
SPV
TEORI
TR2
ZONMY
ZPPRI
ZRKOI
ZSSAH
ACJER
ALKWR
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c3497-df26b7c43389db6d3a7855a376731f69aa08cbd26eacf2ced8ca23eb2a27bbc13
IEDL.DBID RPM
ISSN 1932-2968
IngestDate Tue Sep 17 21:15:24 EDT 2024
Wed Oct 02 15:02:59 EDT 2024
Wed Oct 16 00:51:22 EDT 2024
Tue Jul 16 20:49:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords diet
machine learning
obesity
ecological momentary assessment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3497-df26b7c43389db6d3a7855a376731f69aa08cbd26eacf2ced8ca23eb2a27bbc13
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1932296818775757
PMID 29792067
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6134608
crossref_primary_10_1177_1932296818775757
pubmed_primary_29792067
sage_journals_10_1177_1932296818775757
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Journal of diabetes science and technology
PublicationTitleAlternate J Diabetes Sci Technol
PublicationYear 2018
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Spruijt-Metz, Nilsen 2014; 13
Robin, Turck, Hainard 2011; 12
Ben-Zeev, Scherer, Wang, Xie, Campbell 2015; 38
Dansinger, Gleason, Griffith, Selker, Schaefer 2005; 293
Clark, Marcus, Pera, Niaura 1994; 15
Cepeda-Benito, Gleaves, Williams, Erath 2001; 31
Shiffman, Stone, Hufford 2008; 4
Gravenhorst, Muaremi, Bardram 2015; 19
Fan, Upadhye, Worster 2006; 8
Forman, Hoffman, McGrath, Herbert, Brandsma, Lowe 2007; 45
Ding, Simonoff 2010; 11
Fischer, Bachmann, Jaeschke 2003; 29
Carels, Hoffman, Collins, Raber, Cacciapaglia, O’Brien 2002; 2
Beleites, Neugebauer, Bocklitz, Krafft, Popp 2013; 760
McKee, Ntoumanis, Taylor 2014; 48
Stone, Shiffman 1994; 16
Faurholt-Jepsen, Vinberg, Frost, Christensen, Bardram, Kessing 2015; 17
Goldstein, Evans, Flack, Juarascio, Manasse, Zhang 2017; 24
Lowe, Butryn, Didie 2009; 53
Forman, Schumacher, Crosby 2017; 51
Hofmann, Dohle 2014; 48
Carels, Douglass, Cacciapaglia, O’Brien 2004; 72
Pereira, Mitchell, Botvinick 2009; 45
bibr2-1932296818775757
Witten IH (bibr31-1932296818775757) 2005
Fisher SRA (bibr10-1932296818775757) 1960
Ling CX (bibr29-1932296818775757); 2011
bibr37-1932296818775757
Ding Y (bibr25-1932296818775757) 2010; 11
Mohri C (bibr27-1932296818775757); 2005
Swets J (bibr9-1932296818775757) 2012
bibr23-1932296818775757
Lee JH (bibr32-1932296818775757) 2011
bibr7-1932296818775757
Ziegler ML (bibr33-1932296818775757) 2006
bibr19-1932296818775757
bibr1-1932296818775757
bibr20-1932296818775757
Lunardon N (bibr24-1932296818775757) 2015
bibr15-1932296818775757
bibr6-1932296818775757
bibr11-1932296818775757
Wong JHK (bibr16-1932296818775757) 2012
bibr28-1932296818775757
Stunkard AJ (bibr18-1932296818775757) 1988
bibr21-1932296818775757
bibr34-1932296818775757
bibr35-1932296818775757
bibr5-1932296818775757
bibr14-1932296818775757
bibr12-1932296818775757
bibr3-1932296818775757
Luxton DD (bibr36-1932296818775757) 2015
bibr22-1932296818775757
bibr4-1932296818775757
bibr30-1932296818775757
bibr17-1932296818775757
bibr26-1932296818775757
bibr8-1932296818775757
bibr13-1932296818775757
References_xml – volume: 24
  start-page: 673
  issue: 5
  year: 2017
  end-page: 682
  article-title: Return of the JITAI: applying a just-in-time adaptive intervention framework to the development of m-health solutions for addictive behaviors
  publication-title: Int J Behav Med
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 218
  issue: 3
  year: 2015
  end-page: 226
  article-title: Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health
  publication-title: Psychiatr Rehabil J
  contributor:
    fullname: Campbell
– volume: 45
  start-page: 2372
  issue: 10
  year: 2007
  end-page: 2386
  article-title: A comparison of acceptance-and control-based strategies for coping with food cravings: an analog study
  publication-title: Behav Res Ther
  contributor:
    fullname: Lowe
– volume: 11
  start-page: 131
  year: 2010
  end-page: 170
  article-title: An investigation of missing data methods for classification trees applied to binary response data
  publication-title: J Mach Learn Res
  contributor:
    fullname: Simonoff
– volume: 19
  start-page: 335
  issue: 2
  year: 2015
  end-page: 353
  article-title: Mobile phones as medical devices in mental disorder treatment: an overview
  publication-title: Pers Ubiquitous Comput
  contributor:
    fullname: Bardram
– volume: 15
  start-page: 401
  issue: 4
  year: 1994
  end-page: 405
  article-title: Changes in eating inventory scores following obesity treatment
  publication-title: Int J Eat Disord
  contributor:
    fullname: Niaura
– volume: 72
  start-page: 341
  issue: 2
  year: 2004
  end-page: 348
  article-title: An ecological momentary assessment of relapse crises in dieting
  publication-title: J Consult Clin Psychol
  contributor:
    fullname: O’Brien
– volume: 8
  start-page: 19
  issue: 1
  year: 2006
  end-page: 20
  article-title: Understanding receiver operating characteristic (ROC) curves
  publication-title: CJEM
  contributor:
    fullname: Worster
– volume: 760
  start-page: 25
  year: 2013
  end-page: 33
  article-title: Sample size planning for classification models
  publication-title: Anal Chim Acta
  contributor:
    fullname: Popp
– volume: 51
  start-page: 741
  issue: 5
  year: 2017
  end-page: 753
  article-title: Ecological momentary assessment of dietary lapses across behavioral weight loss treatment: characteristics, predictors, and relationships with weight change
  publication-title: Ann Behav Med
  contributor:
    fullname: Crosby
– volume: 293
  start-page: 43
  issue: 1
  year: 2005
  end-page: 53
  article-title: Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial
  publication-title: JAMA
  contributor:
    fullname: Schaefer
– volume: 48
  start-page: 300
  issue: 3
  year: 2014
  end-page: 310
  article-title: An ecological momentary assessment of lapse occurrences in dieters
  publication-title: Ann Behav Med
  contributor:
    fullname: Taylor
– volume: 48
  start-page: 289
  issue: 3
  year: 2014
  end-page: 290
  article-title: Capturing eating behavior where the action takes place: a comment on McKee et al
  publication-title: Ann Behav Med
  contributor:
    fullname: Dohle
– volume: 4
  start-page: 1
  year: 2008
  end-page: 32
  article-title: Ecological momentary assessment
  publication-title: Annu Rev Clin Psychol
  contributor:
    fullname: Hufford
– volume: 45
  start-page: S199
  issue: 1
  year: 2009
  end-page: S209
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: NeuroImage
  contributor:
    fullname: Botvinick
– volume: 51
  start-page: 1
  issue: 5
  year: 2017
  end-page: 13
  article-title: Ecological momentary assessment of dietary lapses across behavioral weight loss treatment: characteristics, predictors, and relationships with weight change
  publication-title: Ann Behav Med
  contributor:
    fullname: Crosby
– volume: 13
  start-page: 13
  issue: 3
  year: 2014
  end-page: 17
  article-title: Dynamic models of behavior for just-in-time adaptive interventions
  publication-title: IEEE Pervasive Comput
  contributor:
    fullname: Nilsen
– volume: 16
  start-page: 199
  year: 1994
  end-page: 202
  article-title: Ecological momentary assessment (EMA) in behavioral medicine
  publication-title: Ann Behav Med
  contributor:
    fullname: Shiffman
– volume: 31
  start-page: 151
  issue: 1
  year: 2001
  end-page: 173
  article-title: The development and validation of the state and trait food-cravings questionnaires
  publication-title: Behav Ther
  contributor:
    fullname: Erath
– volume: 53
  start-page: 114
  issue: 1
  year: 2009
  end-page: 118
  article-title: The Power of Food Scale. A new measure of the psychological influence of the food environment
  publication-title: Appetite
  contributor:
    fullname: Didie
– volume: 29
  start-page: 1043
  issue: 7
  year: 2003
  end-page: 1051
  article-title: A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis
  publication-title: Intensive Care Med
  contributor:
    fullname: Jaeschke
– volume: 17
  start-page: 715
  issue: 7
  year: 2015
  end-page: 728
  article-title: Smartphone data as an electronic biomarker of illness activity in bipolar disorder
  publication-title: Bipolar Disord
  contributor:
    fullname: Kessing
– volume: 2
  start-page: 307
  issue: 4
  year: 2002
  end-page: 321
  article-title: Ecological momentary assessment of temptation and lapse in dieting
  publication-title: Eat Behav
  contributor:
    fullname: O’Brien
– volume: 12
  start-page: 77
  year: 2011
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  contributor:
    fullname: Hainard
– ident: bibr1-1932296818775757
  doi: 10.1007/s12160-017-9897-x
– ident: bibr6-1932296818775757
  doi: 10.1109/MPRV.2014.46
– ident: bibr19-1932296818775757
  doi: 10.1002/eat.2260150411
– ident: bibr3-1932296818775757
  doi: 10.1037/0022-006X.72.2.341
– volume: 2011
  start-page: 231
  volume-title: Encyclopedia of Machine Learning
  ident: bibr29-1932296818775757
  contributor:
    fullname: Ling CX
– ident: bibr11-1932296818775757
  doi: 10.1017/S1481803500013336
– ident: bibr13-1932296818775757
– ident: bibr22-1932296818775757
  doi: 10.1016/S0005-7894(00)80009-X
– ident: bibr14-1932296818775757
  doi: 10.1146/annurev.clinpsy.3.022806.091415
– ident: bibr23-1932296818775757
  doi: 10.1016/j.neuroimage.2008.11.007
– volume-title: Eating Inventory: Manual
  year: 1988
  ident: bibr18-1932296818775757
  contributor:
    fullname: Stunkard AJ
– volume-title: ROSE: A Package for Binary Imbalanced Learning
  year: 2015
  ident: bibr24-1932296818775757
  contributor:
    fullname: Lunardon N
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2005
  ident: bibr31-1932296818775757
  contributor:
    fullname: Witten IH
– volume-title: Evaluation of Diagnostic Systems
  year: 2012
  ident: bibr9-1932296818775757
  contributor:
    fullname: Swets J
– volume-title: Capturing the Dynamics of a Work Day: Ecological Momentary Assessment of Work Stressors on the Health of Long-Term Caregivers
  year: 2012
  ident: bibr16-1932296818775757
  contributor:
    fullname: Wong JHK
– ident: bibr28-1932296818775757
  doi: 10.1007/s00134-003-1761-8
– start-page: 137
  volume-title: Artificial Intelligence in Behavioral and Mental Health Care
  year: 2015
  ident: bibr36-1932296818775757
  contributor:
    fullname: Luxton DD
– ident: bibr7-1932296818775757
  doi: 10.24251/HICSS.2017.436
– volume-title: Variable Selection When Confronted With Missing Data
  year: 2006
  ident: bibr33-1932296818775757
  contributor:
    fullname: Ziegler ML
– volume-title: United Kingdom Stata Users’ Group Meetings 2011
  year: 2011
  ident: bibr32-1932296818775757
  contributor:
    fullname: Lee JH
– volume: 2005
  start-page: 305
  volume-title: NIPS’04 Proceedings of the 17th International Conference on Neural Information Processing Systems
  ident: bibr27-1932296818775757
  contributor:
    fullname: Mohri C
– volume-title: The Design of Experiments
  year: 1960
  ident: bibr10-1932296818775757
  contributor:
    fullname: Fisher SRA
– volume: 11
  start-page: 131
  year: 2010
  ident: bibr25-1932296818775757
  publication-title: J Mach Learn Res
  contributor:
    fullname: Ding Y
– ident: bibr12-1932296818775757
  doi: 10.1001/jama.293.1.43
– ident: bibr4-1932296818775757
  doi: 10.1016/S1471-0153(01)00037-X
– ident: bibr8-1932296818775757
  doi: 10.1007/s12160-017-9897-x
– ident: bibr26-1932296818775757
  doi: 10.1186/1471-2105-12-77
– ident: bibr5-1932296818775757
  doi: 10.1007/s12160-014-9625-8
– ident: bibr15-1932296818775757
  doi: 10.1093/abm/16.3.199
– ident: bibr2-1932296818775757
  doi: 10.1007/s12160-014-9594-y
– ident: bibr35-1932296818775757
  doi: 10.1111/bdi.12332
– ident: bibr21-1932296818775757
  doi: 10.1016/j.brat.2007.04.004
– ident: bibr30-1932296818775757
  doi: 10.1016/j.aca.2012.11.007
– ident: bibr37-1932296818775757
  doi: 10.1007/s00779-014-0829-5
– ident: bibr17-1932296818775757
  doi: 10.1007/s12529-016-9627-y
– ident: bibr20-1932296818775757
  doi: 10.1016/j.appet.2009.05.016
– ident: bibr34-1932296818775757
  doi: 10.1037/prj0000130
SSID ssj0054877
Score 2.3854198
Snippet Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any...
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from...
Background: Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any...
SourceID pubmedcentral
crossref
pubmed
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1045
SubjectTerms Adult
Algorithms
Diet, Reducing - methods
Ecological Momentary Assessment
Female
Humans
Machine Learning
Male
Mobile Applications
Obesity - diet therapy
Obesity Technology
Overweight - diet therapy
Patient Compliance
Smartphone
Weight Reduction Programs - methods
Title Application of Machine Learning to Predict Dietary Lapses During Weight Loss
URI https://journals.sagepub.com/doi/full/10.1177/1932296818775757
https://www.ncbi.nlm.nih.gov/pubmed/29792067
https://pubmed.ncbi.nlm.nih.gov/PMC6134608
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VBsSCeBNe8oCQGEIbx4ntseKhCjWIgQq2ynZsqETTqg0D_x7bSVqKxMKcU2zdOb7vcp8_A1zk0tgkoU2IFZYhocqEQlAexk77jBDNiBerzh7T3oA8vCavLUiaszCetK_k6Lr4GF8Xo3fPrZyOVbvhibWfshv7dpJ2WHsN1uwCbUr0avt1CJwu-5FtB1AwT21eotRCE3fpHuaUO9XylVS0yD-_uZE_CF4-59xvw1YNFlG3mtQOtHSxCxtZ3Q7fg3532X5GE4Myz4zUqBZNfUPlBD3NnHmJbke6FLMv1BfTuZ6jW388Eb34P6Oob-e3D4P7u-ebXlhfjxCqmHAa5gankipii0yeyzSPBWVJIpw8SxyZlAvRYUrmOLV7q8FK50wJHNtKWmAqpYriA1gvJoU-AqRtYaENtwUrZcQkijGheR5zzaJIyQ4J4Krx1HBaqWAMo1oo_LeDAzisPLiwbPwdAF3x7cLASVyvPrGR91LXdaQDuHRRGNbf1_zPwY__PcQJbFosxCr62Cmsl7NPfWbxRinP_fr6BhEN0qg
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5iTGJcYGP86IDNhwlph7SN48T2EfFDZUsQB9i4VbZjQwVNqzYc4K-f7SSFVuIAZz_FcT7b7728z58BfubSWCehTYAVlgGhygRCUB5ETvuMEM2IF6vOzpPeFfl9HV8vQdychfGkfSUH7eJ-2C4Gt55bOR6qTsMT61xkR_bpJOmyzgf4aNdrlzRJerUBuxicPlckOy5EwTyxnolSG5y4a_cwp9zpls85o5kHWmRHvqB4ea9zug5_m_etyCZ37YdSttXTgpTjmwf0GdbqOBQdVs1fYEkXG7CS1ZX2r5AePle20cigzJMuNar1WG9QOUIXE2deouOBLsXkEaViPNVTdOxPPqJ__qcrSu3AN-Hq9OTyqBfUNy8EKiKcBrnBiaSK2PyV5zLJI0FZHAun_BKFJuFCdJmSOU7stm2w0jlTAkc2SReYSqnCaAuWi1GhdwBpm7Now20uTBkxsWJMaJ5HXLMwVLJLWvCrgaA_rgQ2-mGtQb6IXAu2K2hmlg2QLaBzoM0MnHr2fIvFwKto19-8BQcO3n69dKevdv7t3V38gE-9yyztp2fnf3Zh1YZcrGKp7cFyOXnQ-zasKeV3P4n_A-fL9Jo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB2xIKG98M1SvtYHtBKHNI3jxvYRUSpgW9TDIhCXynbspYKmVRsO8OuxnaTQSlw4ZxTHebFnJvP8BuAklcY6CW0CrLAMCFUmEILyIHbaZ4RoRrxYdfcmubwl1_fN-0-tvjxpX8lBPXse1rPBo-dWjocqrHhiYa97bu9OkgYLx6kJf8CKXbONpErUi03YxeH0oyoZujAF88R6J0ptgOJa72FOudMun3NIMy-0yJD8RPPynqe9Dg_VMxeEk6f6Sy7r6m1BzvFbk9qAtTIeRWeFySYs6WwLVrtlxX0bOmcfFW40MqjryZcalbqs_1E-Qr2JM89Ra6BzMXlFHTGe6ilq-ROQ6M7_fEUdO_kduG1f_Du_DMoODIGKCadBanAiqSI2j-WpTNJYUNZsCqcAE0cm4UI0mJIpTuz2bbDSKVMCxzZZF5hKqaJ4F5azUab3AGmbu2jDbU5MGTFNxZjQPI25ZlGkZIPU4LSCoT8uhDb6UalFvoheDX4V8MwsKzBrQOeAmxk4Fe35KxYHr6Zdvvca_HEQ98slPP1y8P1vD_EbVnutdr9zdfP3AH7ayIsVZLVDWM4nL_rIRje5PPbf8Tu6zfca
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+to+Predict+Dietary+Lapses+During+Weight+Loss&rft.jtitle=Journal+of+diabetes+science+and+technology&rft.au=Goldstein%2C+Stephanie+P.&rft.au=Zhang%2C+Fengqing&rft.au=Thomas%2C+John+G.&rft.au=Butryn%2C+Meghan+L.&rft.date=2018-09-01&rft.pub=SAGE+Publications&rft.eissn=1932-3107&rft.volume=12&rft.issue=5&rft.spage=1045&rft.epage=1052&rft_id=info:doi/10.1177%2F1932296818775757&rft_id=info%3Apmid%2F29792067&rft.externalDBID=PMC6134608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-2968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-2968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-2968&client=summon