Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering
Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the conte...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.11.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.
Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. Additionally, the integration of metasurfaces within microfluidic systems leads to novel functionalities. Microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as EM absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. |
---|---|
AbstractList | Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations. Abstract Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations. Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. Additionally, the integration of metasurfaces within microfluidic systems leads to novel functionalities. Microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as EM absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. |
Author | Jiang, Shibin Li, Shibin Qin, Jin He, Shaowei Zhu, Weiming |
Author_xml | – sequence: 1 givenname: Jin surname: Qin fullname: Qin, Jin organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Shibin surname: Jiang fullname: Jiang, Shibin organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Shibin surname: Li fullname: Li, Shibin organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Shaowei surname: He fullname: He, Shaowei email: heshaowei@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 5 givenname: Weiming orcidid: 0000-0001-9974-017X surname: Zhu fullname: Zhu, Weiming email: zhuweiming@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BookMark | eNqFUVFrGzEMNqOFdl1f-3yw52SWbF_ivYWSboVmG6WlfTM6ny44XO3Md2nXfz93GWUMxvQiIX3fJ6HvrTiIKbIQZyCnICV-oO2PPEWJWkpp7BtxjDMDE0ApD_6oj8TpMGwKBOcWlIZjsVoFn1PX70IbfLXikYZd7sjz8LFaVF_4qbrIKY6BcxVitezZjzk90DryWPB39MjVMq5DZM4hrt-Jw476gU9_5xNxe7G8Of88ufr66fJ8cTXxStt6YjWojhVSZ-puTrXV0ttuhrplaOoZKoOggcl4Taol3zQEvi1DmhO20KgTcbnXbRNt3DaHB8rPLlFwvxoprx3lcmDPTlpuWGmjkVDXjbcK2holGwbTWvJF6_1ea5vT9x0Po9ukXY7lfKfAYom51gU13aPKt4Yhc_e6FaR7ccC9OOBeHSgE_RfBh5HGUJ6ZKfT_ppk97Sn0_PyfJW7x7f4aEFWtfgLO9Jw2 |
CitedBy_id | crossref_primary_10_1016_j_saa_2025_125996 crossref_primary_10_1002_admt_202401857 crossref_primary_10_1021_acsami_4c21081 |
Cites_doi | 10.1038/s41467-021-23257-y 10.1364/OE.420660 10.1038/s41467-018-03155-6 10.1038/s41598-022-06687-6 10.1002/advs.202101212 10.1038/s41377-019-0178-2 10.1002/adfm.201808489 10.1038/s41928-021-00554-4 10.1002/adom.202201478 10.1038/srep14018 10.1021/acsphotonics.3c01592 10.3390/app131910590 10.1002/adom.202100297 10.1038/s41467-022-29798-0 10.1088/1361-6463/ab3129 10.1021/acs.nanolett.8b01570 10.1109/TAP.2021.3060022 10.1002/smll.202206319 10.1038/s41563-021-00991-8 10.1021/acs.nanolett.9b05053 10.1021/acsnano.1c10100 10.1021/acsphotonics.1c00124 10.1109/JSTQE.2010.2049096 10.3390/mi12030243 10.1002/adom.201601103 10.1186/s43074-023-00116-1 10.1364/CLEO_QELS.2015.FTu1C.3 10.1002/lpor.202400184 10.1038/s41377-020-0335-7 10.3390/ijms22042011 10.1002/adom.202301268 10.1038/s41467-024-47229-0 10.1002/adma.201501943 10.1364/AOP.11.000380 10.1021/acs.nanolett.6b00618 10.1002/adom.201902182 10.1021/acsnano.9b09277 10.1109/TAP.2012.2189698 10.1039/C6RA11777E 10.1038/srep19885 10.1109/TAP.2019.2916761 10.1021/acs.nanolett.8b03567 10.1038/s41377-018-0078-x 10.1038/s41598-023-33693-z 10.1021/acsnano.0c07295 10.1038/s41467-021-24749-7 10.1126/science.1210713 10.1063/1.4862272 10.1002/admt.201900334 10.1038/s41467-019-08305-y 10.1021/acs.nanolett.3c02168 10.1038/s41377-018-0091-0 10.1021/acsami.2c20191 10.1080/23746149.2017.1417055 10.1515/nanoph-2020-0550 10.1038/s41467-020-17015-9 10.1002/adom.202202130 10.1109/ACCESS.2021.3100144 10.1109/LAWP.2018.2872108 10.1038/s41598-019-45091-5 10.1109/JQE.2015.2509242 10.1364/OE.27.023282 10.1002/advs.201903382 10.1364/OPTICA.4.000625 10.1002/adma.201700412 10.1038/s41427-018-0082-x 10.3390/s16040521 10.1021/acs.nanolett.6b03626 10.1002/lpor.202200597 10.1016/j.eml.2020.100998 10.1002/adma.202006054 10.1016/j.rinp.2020.102937 10.1038/s41928-019-0236-z 10.1088/2040-8986/abcc52 10.1063/5.0091280 10.1038/s41565-017-0034-6 10.1016/j.rinp.2022.105587 10.1038/s41598-023-45351-5 10.1063/1.3268448 10.1021/acsami.3c11252 10.1021/acsphotonics.1c01005 10.1016/j.sna.2019.111592 10.1016/j.ijsolstr.2019.12.015 10.1038/s41598-020-72874-y 10.1038/s41563-021-00939-y 10.1021/acs.nanolett.6b02326 10.1364/AO.58.001460 10.1002/andp.202100402 10.1103/PhysRevLett.85.3966 10.1038/s41377-022-00972-9 10.1038/s41377-022-00806-8 10.1063/1.4983782 10.1002/adom.202300644 10.1364/OE.382719 10.1039/D2LC00141A 10.1038/s41565-022-01197-y 10.1109/TAP.2020.2972650 10.1063/1.4985288 10.1038/s41598-017-11953-z 10.1109/IRMMW-THz50926.2021.9566971 10.1038/srep38314 10.1002/adfm.202103379 10.1002/adma.201907160 10.1038/nmat2033 10.1002/smll.202002484 10.1109/OJCOMS.2023.3349155 10.1021/acsphotonics.1c00836 10.1002/lpor.201600064 10.1002/adma.202106080 10.1002/adfm.202213818 10.3390/s151128154 10.1021/acs.nanolett.2c01692 10.1021/acsnano.9b08228 10.1364/AO.58.002687 10.1126/sciadv.abe3778 10.1002/lpor.202100591 10.1021/acs.nanolett.6b00555 10.1016/j.matlet.2017.02.087 10.1021/acsnano.2c03310 10.1002/adma.202101258 10.1109/LAWP.2019.2922695 10.1109/TAP.2015.2484419 10.1002/advs.202300542 10.1063/1.4978012 10.1021/acs.nanolett.9b04107 10.1002/lpor.201600106 10.1002/adom.202100024 10.1021/acsnano.7b07121 10.1002/lpor.202000116 10.1038/s41598-019-40226-0 10.1039/C6LC00579A 10.1002/adom.202300685 10.1002/adom.201901169 10.1063/1.5084329 10.1021/acsphotonics.7b01073 10.1109/TAP.2016.2536160 10.1007/s10854-020-04459-4 10.1002/adma.201200674 10.1063/1.5023778 10.1088/0022-3727/41/23/232004 10.1021/acsphotonics.2c01986 10.1002/adom.202202658 10.1063/1.4978205 10.1364/OE.405375 10.1038/s41565-017-0052-4 10.1021/acsphotonics.9b01532 10.1063/1.4955272 10.1002/adma.201805033 10.1038/nnano.2015.2 10.1002/lpor.202100396 10.1021/acs.nanolett.2c02283 10.1038/s41377-023-01218-y 10.1038/s41598-020-79945-0 10.1021/acs.jpcc.0c03023 10.1126/science.aac9411 10.1126/science.1076996 10.1364/PRJ.476100 10.1109/TRANSDUCERS.2015.7181344 10.1021/acsami.0c21984 10.1038/s41377-018-0052-7 10.1002/adma.201907308 10.1021/acsphotonics.0c01599 10.1109/TAP.2021.3137217 10.1002/adom.201600938 10.3390/nano12091395 10.1002/adma.201004341 10.1038/srep31823 10.1038/s42005-019-0232-7 10.1126/science.1096796 10.1002/lpor.201500314 10.1021/acs.nanolett.1c00720 10.1063/1.4983364 10.1002/adfm.202109544 10.1002/adom.201900379 10.1002/adpr.202100199 10.1021/acs.nanolett.3c02595 10.1002/adom.201701346 10.1002/adma.201802721 10.1016/j.physb.2021.413030 10.1002/adom.201800728 10.1109/PIERS53385.2021.9695015 10.1038/s41467-019-11598-8 10.1021/acsphotonics.9b00678 10.1021/acsphotonics.2c00439 10.1016/j.jallcom.2020.157168 10.1021/acsnano.2c02500 10.1002/adom.202300130 10.1038/s41377-023-01169-4 10.1109/MEMSYS.2014.6765580 10.1038/srep23731 10.1038/s41566-020-00750-2 10.1038/s41467-018-07011-5 10.1109/JEDS.2022.3194120 10.1002/lpor.202200152 10.1038/s41598-018-32827-y 10.1063/1.2947587 10.1038/nnano.2015.186 10.1038/s41578-021-00304-0 10.1038/ncomms2285 10.1364/OPTICA.4.001368 10.1038/s41928-020-00497-2 10.1021/acs.nanolett.9b03957 10.1038/s41598-020-67793-x 10.1038/s43246-023-00369-0 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU COVID D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202400059 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library : Open Access journals [open access] url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_09ebe34542a246bc931d620e5e15d9ac 10_1002_apxr_202400059 APXR12236 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61975026; 61875030 – fundername: Science Fund for Creative Research Groups funderid: 2023NSFSC1973 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS COVID D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c3496-9413fe32af56f8a6940c9f724de1b672352141ea5c4a3dacbba1cdde1a8a2d1b3 |
IEDL.DBID | BENPR |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:26:18 EDT 2025 Wed Aug 13 04:22:21 EDT 2025 Tue Jul 01 02:33:01 EDT 2025 Thu Apr 24 22:53:17 EDT 2025 Wed Jan 22 17:15:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3496-9413fe32af56f8a6940c9f724de1b672352141ea5c4a3dacbba1cdde1a8a2d1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9974-017X |
OpenAccessLink | https://www.proquest.com/docview/3192222844?pq-origsite=%requestingapplication% |
PQID | 3192222844 |
PQPubID | 6852862 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09ebe34542a246bc931d620e5e15d9ac proquest_journals_3192222844 crossref_primary_10_1002_apxr_202400059 crossref_citationtrail_10_1002_apxr_202400059 wiley_primary_10_1002_apxr_202400059_APXR12236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 69 2019; 2019 2013; 1 2020; 20 2019; 11 2019; 10 2000; 85 2019; 14 2020; 16 2019; 19 2020; 14 2019; 18 2020; 11 2020; 10 2024 2022; 22 2018; 7 2018; 6 2018; 9 2018; 8 2018; 3 2009; 95 2019; 20 2024; 5 2024; 9 2019; 27 2007; 6 2019; 29 2018; 30 2022; 32 2012; 24 2022; 38 2019; 8 2019; 7 2019; 9 2019; 4 2019; 6 2019; 31 2020; 41 2019; 2 2016; 10 2024; 10 2024; 11 2024; 12 2020; 32 2024; 15 2004; 305 2016; 16 2018; 26 2016; 6 2018; 18 2018; 17 2020; 31 2015; 63 2021; 534 2022; 9 2022; 12 2020; 28 2022; 13 2022; 10 2008; 41 2022; 11 2018; 12 2018; 10 2022; 16 2022; 17 2018; 13 2017; 5 2012; 60 2017; 7 2021; 21 2021; 20 2023; 33 2021; 23 2017; 4 2021; 22 2023; 4 2022; 70 2016; 109 2019; 52 2018; 921 2021; 29 2018; 123 2019; 58 2017; 195 2015; 349 2020; 124 2017; 110 2011; 17 2020; 8 2020; 7 2021; 31 2020; 3 2021; 34 2023; 23 2021; 33 2019; 67 2020; 9 2019; 114 2011; 23 2017; 121 2021; 9 2021; 8 2023; 10 2011; 334 2021; 7 2015; 15 2021; 6 2023; 13 2021; 4 2015; 5 2023; 11 2021; 3 2023; 12 2023; 17 2023; 15 2023; 19 2002; 298 2015; 10 2016; 52 2019; 300 2017; 29 2008; 92 2021; 13 2015; 23 2021; 16 2021; 15 2021; 10 2012; 3 2015; 27 2021; 12 2021; 11 2021 2020; 191 2021; 854 2021; 614 2016; 64 2020; 68 2015 2014 2014; 104 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 Ali H. (e_1_2_7_51_1) 2024; 10 Ling K. (e_1_2_7_179_1) 2015; 23 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_166_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 Qin J. (e_1_2_7_137_1) 2024; 9 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_107_1 e_1_2_7_80_1 He Q. (e_1_2_7_90_1) 2019; 2019 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_168_1 Liang J. J. (e_1_2_7_130_1) 2019; 7 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 Rodrigo D. (e_1_2_7_191_1) 2018; 921 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 Wang H. (e_1_2_7_101_1) 2020; 28 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 Zhou H. (e_1_2_7_24_1) 2019; 11 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 e_1_2_7_113_1 e_1_2_7_74_1 e_1_2_7_97_1 Ribot C. (e_1_2_7_28_1) 2013; 1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 Lee Y. (e_1_2_7_95_1) 2018; 26 Hoffman J. (e_1_2_7_14_1) 2024 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_138_1 |
References_xml | – volume: 14 start-page: 1418 year: 2019 publication-title: ACS Nano – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 888 year: 2018 publication-title: NPG Asia Mater – volume: 13 start-page: 6780 year: 2023 publication-title: Sci. Rep. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 67 start-page: 5997 year: 2019 publication-title: IEEE Trans Antennas Propag – volume: 28 start-page: 5306 year: 2020 publication-title: Opt. Express – volume: 10 start-page: 3654 year: 2019 publication-title: Nat. Commun. – year: 2014 – volume: 16 start-page: 7229 year: 2016 publication-title: Nano Lett. – volume: 191 start-page: 566 year: 2020 publication-title: Int. J. Solids Struct. – volume: 24 start-page: op98 year: 2012 publication-title: Adv. Mater. – volume: 1 start-page: 489 year: 2013 publication-title: Nat. Commun. – volume: 7 start-page: 95 year: 2018 publication-title: Light Sci Appl – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 7 year: 2019 publication-title: IEEE Access – volume: 70 start-page: 2801 year: 2022 publication-title: IEEE Trans Antennas Propag – volume: 13 year: 2023 publication-title: Appl. Sci. – volume: 23 start-page: 8891 year: 2023 publication-title: Nano Lett. – volume: 27 start-page: 4739 year: 2015 publication-title: Adv. Mater. – volume: 9 year: 2021 publication-title: IEEE Access – volume: 11 start-page: 118 year: 2022 publication-title: Light Sci Appl – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 265 year: 2019 publication-title: ACS Photonics – volume: 41 year: 2020 publication-title: Extreme Mech Lett – volume: 2 start-page: 129 year: 2019 publication-title: Commun. Phys. – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 11 start-page: 380 year: 2019 publication-title: Adv. Opt. Photonics – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 18 start-page: 4460 year: 2018 publication-title: Nano Lett. – volume: 12 start-page: 2151 year: 2018 publication-title: ACS Nano – volume: 8 start-page: 67 year: 2019 publication-title: Light Sci Appl – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 41 year: 2008 publication-title: J Phys D Appl Phys – volume: 13 start-page: 227 year: 2018 publication-title: Nat. Nanotechnol. – volume: 7 year: 2019 publication-title: Adv Opt Mater – volume: 17 start-page: 2255 year: 2018 publication-title: IEEE Antennas Wirel Propag Lett – volume: 10 start-page: 308 year: 2015 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 6951 year: 2022 publication-title: Nano Lett. – volume: 12 start-page: 1395 year: 2022 publication-title: Nanomaterials – volume: 9 year: 2024 publication-title: Adv. Mater. Technol. – volume: 23 start-page: 16 year: 2015 publication-title: Opt. Express – volume: 18 start-page: 1562 year: 2019 publication-title: IEEE Antennas Wirel Propag Lett – volume: 17 start-page: 85 year: 2011 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 8 start-page: 1206 year: 2021 publication-title: ACS Photonics – volume: 4 start-page: 1368 year: 2017 publication-title: Optica – volume: 38 year: 2022 publication-title: Results Phys – volume: 121 year: 2017 publication-title: J. Appl. Phys. – volume: 60 start-page: 2151 year: 2012 publication-title: IEEE Trans Antennas Propag – volume: 334 start-page: 333 year: 2011 publication-title: Science – volume: 12 start-page: 169 year: 2023 publication-title: Light Sci Appl – volume: 64 start-page: 2022 year: 2016 publication-title: IEEE Trans Antennas Propag – volume: 16 year: 2022 publication-title: Laser Photon. Rev. – volume: 10 start-page: 500 year: 2016 publication-title: Laser Photon. Rev. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. – year: 2021 – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 8 start-page: 3218 year: 2021 publication-title: ACS Photonics – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 6 start-page: 946 year: 2007 publication-title: Nat. Mater. – volume: 12 start-page: 3246 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 962 year: 2016 publication-title: Laser Photon. Rev. – volume: 16 year: 2021 publication-title: Laser Photon. Rev. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 69 start-page: 5181 year: 2021 publication-title: IEEE Trans Antennas Propag – volume: 10 start-page: 355 year: 2019 publication-title: Nat. Commun. – volume: 12 year: 2024 publication-title: Adv. Opt. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 625 year: 2017 publication-title: Optica – volume: 28 year: 2020 publication-title: Opt. Express – volume: 3 start-page: 1274 year: 2012 publication-title: Nat. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 29 start-page: 8786 year: 2021 publication-title: Opt. Express – volume: 921 start-page: 60 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 599 year: 2024 publication-title: IEEE Open J. Commun. Soc. – volume: 19 year: 2023 publication-title: Small – volume: 22 start-page: 8860 year: 2022 publication-title: Nano Lett. – year: 2015 – volume: 13 start-page: 2071 year: 2022 publication-title: Nat. Commun. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 85 start-page: 3966 year: 2000 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 8964 year: 2019 publication-title: Nano Lett. – volume: 9 start-page: 93 year: 2020 publication-title: Light Sci Appl – volume: 16 start-page: 5319 year: 2016 publication-title: Nano Lett. – volume: 10 start-page: 102 year: 2024 publication-title: ACS Appl Opt Mater – volume: 16 start-page: 3546 year: 2022 publication-title: ACS Nano – volume: 8 start-page: 567 year: 2021 publication-title: ACS Photonics – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 63 start-page: 5443 year: 2015 publication-title: IEEE Trans Antennas Propag – volume: 13 year: 2023 publication-title: Sci. Rep. – volume: 23 start-page: 9825 year: 2023 publication-title: Nano Lett. – volume: 9 start-page: 8673 year: 2019 publication-title: Sci. Rep. – volume: 10 start-page: 1341 year: 2023 publication-title: ACS Photonics – volume: 13 start-page: 220 year: 2018 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1259 year: 2021 publication-title: Nanophoton. – volume: 15 year: 2015 publication-title: Sensors – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 23 year: 2021 publication-title: J Opt – volume: 23 start-page: 1792 year: 2011 publication-title: Adv. Mater. – volume: 300 year: 2019 publication-title: Sens. Actuator A Phys. – volume: 8 year: 2019 publication-title: Adv. Opt. Mater. – volume: 16 start-page: 521 year: 2016 publication-title: Sensors – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 5 start-page: 1711 year: 2017 publication-title: ACS Photonics – volume: 534 year: 2021 publication-title: Ann. Phys. – volume: 9 start-page: 3438 year: 2019 publication-title: Sci. Rep. – volume: 20 start-page: 714 year: 2021 publication-title: Nat. Mater. – volume: 10 start-page: 937 year: 2015 publication-title: Nat. Nanotechnol. – volume: 16 year: 2020 publication-title: Results Phys. – volume: 305 start-page: 788 year: 2004 publication-title: Science – volume: 14 start-page: 1166 year: 2020 publication-title: ACS Nano – volume: 5 year: 2017 publication-title: APL Mater. – volume: 12 start-page: 243 year: 2021 publication-title: Micromachines – volume: 6 start-page: 2712 year: 2019 publication-title: ACS Photonics – volume: 195 start-page: 55 year: 2017 publication-title: Mater. Lett. – volume: 21 start-page: 4981 year: 2021 publication-title: Nano Lett. – volume: 12 start-page: 2609 year: 2022 publication-title: Sci. Rep. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 16 year: 2022 publication-title: Laser Photonics. Rev. – volume: 16 start-page: 5235 year: 2016 publication-title: Nano Lett. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4562 year: 2018 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 349 start-page: 1310 year: 2015 publication-title: Science – volume: 11 start-page: 276 year: 2022 publication-title: Light Sci Appl – volume: 11 start-page: 3205 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 898 year: 2022 publication-title: IEEE J. Electron. Devices Soc. – year: 2024 publication-title: Laser Photonics. Rev. – volume: 28 start-page: 24 year: 2020 publication-title: Opt. Express – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 17 year: 2023 publication-title: Laser Photonics. Rev. – volume: 9 start-page: 2204 year: 2022 publication-title: ACS Photonics – volume: 68 start-page: 4627 year: 2020 publication-title: IEEE Trans Antennas Propag – volume: 12 start-page: 4414 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 986 year: 2016 publication-title: Laser Photon. Rev. – volume: 18 start-page: 7801 year: 2018 publication-title: Nano Lett. – volume: 52 year: 2019 publication-title: J Phys D Appl Phys – volume: 31 year: 2020 publication-title: J Mater Sci Mater Electron – volume: 11 start-page: 714 year: 2024 publication-title: ACS Photonics – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 17 start-page: 1097 year: 2022 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 2581 year: 2021 publication-title: ACS Photonics – volume: 7 start-page: 50 year: 2018 publication-title: Light Sci Appl – volume: 15 start-page: 3376 year: 2024 publication-title: Nat. Commun. – volume: 9 start-page: 812 year: 2018 publication-title: Nat. Commun. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 134 year: 2019 publication-title: Nat. Electron. – volume: 12 start-page: 152 year: 2023 publication-title: Light Sci Appl – volume: 614 year: 2021 publication-title: Phys. B Condens. Matter. – volume: 4 start-page: 40 year: 2023 publication-title: Commun. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 58 start-page: 1460 year: 2019 publication-title: Appl. Opt. – volume: 20 start-page: 994 year: 2019 publication-title: Nano Lett. – volume: 2019 year: 2019 publication-title: Res. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 3 year: 2021 publication-title: Adv Photonics Res – volume: 22 start-page: 2011 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 58 start-page: 9033 year: 2019 publication-title: Appl. Opt. – volume: 3 year: 2018 publication-title: Adv Phys X – volume: 3 start-page: 785 year: 2020 publication-title: Nat. Electron. – volume: 10 start-page: 2876 year: 2022 publication-title: Photonics Res – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 13 start-page: 7792 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 2 year: 2024 publication-title: PhotoniX – volume: 27 year: 2019 publication-title: Opt. Express – volume: 298 start-page: 580 year: 2002 publication-title: Science – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 26 start-page: 24 year: 2018 publication-title: Opt. Express – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 854 year: 2021 publication-title: J. Alloys Compd. – volume: 22 start-page: 1630 year: 2022 publication-title: Lab Chip – volume: 11 start-page: 585 year: 2021 publication-title: Sci. Rep. – volume: 16 start-page: 2818 year: 2016 publication-title: Nano Lett. – year: 2024 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 3244 year: 2016 publication-title: Lab Chip – volume: 15 start-page: 287 year: 2021 publication-title: Nat. Photonics – volume: 7 year: 2018 publication-title: Light Sci Appl – volume: 52 start-page: 1 year: 2016 publication-title: IEEE J. Quantum Electron. – volume: 4 start-page: 218 year: 2021 publication-title: Nat. Electron. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 6 start-page: 829 year: 2021 publication-title: Nat. Rev. Mater. – volume: 20 start-page: 1024 year: 2021 publication-title: Nat. Mater. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 10 year: 2020 publication-title: Sci. Rep. – volume: 20 start-page: 1830 year: 2020 publication-title: Nano Lett. – volume: 14 year: 2020 publication-title: Laser Photon. Rev. – ident: e_1_2_7_192_1 doi: 10.1038/s41467-021-23257-y – ident: e_1_2_7_212_1 doi: 10.1364/OE.420660 – ident: e_1_2_7_110_1 doi: 10.1038/s41467-018-03155-6 – ident: e_1_2_7_44_1 doi: 10.1038/s41598-022-06687-6 – ident: e_1_2_7_97_1 doi: 10.1002/advs.202101212 – ident: e_1_2_7_22_1 doi: 10.1038/s41377-019-0178-2 – ident: e_1_2_7_196_1 doi: 10.1002/adfm.201808489 – ident: e_1_2_7_103_1 doi: 10.1038/s41928-021-00554-4 – ident: e_1_2_7_87_1 doi: 10.1002/adom.202201478 – ident: e_1_2_7_176_1 doi: 10.1038/srep14018 – ident: e_1_2_7_46_1 doi: 10.1021/acsphotonics.3c01592 – ident: e_1_2_7_47_1 doi: 10.3390/app131910590 – ident: e_1_2_7_204_1 doi: 10.1002/adom.202100297 – ident: e_1_2_7_107_1 doi: 10.1038/s41467-022-29798-0 – ident: e_1_2_7_215_1 doi: 10.1088/1361-6463/ab3129 – ident: e_1_2_7_64_1 doi: 10.1021/acs.nanolett.8b01570 – ident: e_1_2_7_16_1 doi: 10.1109/TAP.2021.3060022 – ident: e_1_2_7_80_1 doi: 10.1002/smll.202206319 – ident: e_1_2_7_52_1 doi: 10.1038/s41563-021-00991-8 – ident: e_1_2_7_58_1 doi: 10.1021/acs.nanolett.9b05053 – ident: e_1_2_7_81_1 doi: 10.1021/acsnano.1c10100 – ident: e_1_2_7_104_1 doi: 10.1021/acsphotonics.1c00124 – ident: e_1_2_7_122_1 doi: 10.1109/JSTQE.2010.2049096 – ident: e_1_2_7_156_1 doi: 10.3390/mi12030243 – ident: e_1_2_7_161_1 doi: 10.1002/adom.201601103 – volume: 11 year: 2019 ident: e_1_2_7_24_1 publication-title: Phys. Rev. Appl. – ident: e_1_2_7_152_1 doi: 10.1186/s43074-023-00116-1 – ident: e_1_2_7_198_1 doi: 10.1364/CLEO_QELS.2015.FTu1C.3 – ident: e_1_2_7_36_1 doi: 10.1002/lpor.202400184 – ident: e_1_2_7_20_1 doi: 10.1038/s41377-020-0335-7 – ident: e_1_2_7_145_1 doi: 10.3390/ijms22042011 – ident: e_1_2_7_38_1 doi: 10.1002/adom.202301268 – ident: e_1_2_7_74_1 doi: 10.1038/s41467-024-47229-0 – ident: e_1_2_7_153_1 doi: 10.1002/adma.201501943 – ident: e_1_2_7_3_1 doi: 10.1364/AOP.11.000380 – ident: e_1_2_7_157_1 doi: 10.1021/acs.nanolett.6b00618 – ident: e_1_2_7_151_1 doi: 10.1002/adom.201902182 – ident: e_1_2_7_93_1 doi: 10.1021/acsnano.9b09277 – ident: e_1_2_7_136_1 doi: 10.1109/TAP.2012.2189698 – ident: e_1_2_7_188_1 doi: 10.1039/C6RA11777E – ident: e_1_2_7_19_1 doi: 10.1038/srep19885 – ident: e_1_2_7_73_1 doi: 10.1109/TAP.2019.2916761 – ident: e_1_2_7_26_1 doi: 10.1021/acs.nanolett.8b03567 – ident: e_1_2_7_21_1 doi: 10.1038/s41377-018-0078-x – ident: e_1_2_7_119_1 doi: 10.1038/s41598-023-33693-z – ident: e_1_2_7_48_1 doi: 10.1021/acsnano.0c07295 – ident: e_1_2_7_75_1 doi: 10.1038/s41467-021-24749-7 – volume: 2019 year: 2019 ident: e_1_2_7_90_1 publication-title: Res. – ident: e_1_2_7_1_1 doi: 10.1126/science.1210713 – ident: e_1_2_7_125_1 doi: 10.1063/1.4862272 – ident: e_1_2_7_199_1 doi: 10.1002/admt.201900334 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-019-08305-y – ident: e_1_2_7_55_1 doi: 10.1021/acs.nanolett.3c02168 – ident: e_1_2_7_78_1 doi: 10.1038/s41377-018-0091-0 – ident: e_1_2_7_193_1 doi: 10.1021/acsami.2c20191 – year: 2024 ident: e_1_2_7_14_1 publication-title: Adv. Funct. Mater. – volume: 921 start-page: 60 year: 2018 ident: e_1_2_7_191_1 publication-title: Nat. Commun. – ident: e_1_2_7_4_1 doi: 10.1080/23746149.2017.1417055 – ident: e_1_2_7_62_1 doi: 10.1515/nanoph-2020-0550 – ident: e_1_2_7_59_1 doi: 10.1038/s41467-020-17015-9 – ident: e_1_2_7_17_1 doi: 10.1002/adom.202202130 – ident: e_1_2_7_133_1 doi: 10.1109/ACCESS.2021.3100144 – ident: e_1_2_7_208_1 doi: 10.1109/LAWP.2018.2872108 – ident: e_1_2_7_120_1 doi: 10.1038/s41598-019-45091-5 – ident: e_1_2_7_126_1 doi: 10.1109/JQE.2015.2509242 – ident: e_1_2_7_203_1 doi: 10.1364/OE.27.023282 – ident: e_1_2_7_32_1 doi: 10.1002/advs.201903382 – ident: e_1_2_7_132_1 doi: 10.1364/OPTICA.4.000625 – ident: e_1_2_7_159_1 doi: 10.1002/adma.201700412 – ident: e_1_2_7_160_1 doi: 10.1038/s41427-018-0082-x – ident: e_1_2_7_162_1 doi: 10.3390/s16040521 – ident: e_1_2_7_60_1 doi: 10.1021/acs.nanolett.6b03626 – ident: e_1_2_7_49_1 doi: 10.1002/lpor.202200597 – ident: e_1_2_7_114_1 doi: 10.1016/j.eml.2020.100998 – ident: e_1_2_7_167_1 doi: 10.1002/adma.202006054 – ident: e_1_2_7_139_1 doi: 10.1016/j.rinp.2020.102937 – ident: e_1_2_7_106_1 doi: 10.1038/s41928-019-0236-z – ident: e_1_2_7_91_1 doi: 10.1088/2040-8986/abcc52 – ident: e_1_2_7_6_1 doi: 10.1063/5.0091280 – ident: e_1_2_7_23_1 doi: 10.1038/s41565-017-0034-6 – ident: e_1_2_7_177_1 doi: 10.1016/j.rinp.2022.105587 – ident: e_1_2_7_34_1 doi: 10.1038/s41598-023-45351-5 – ident: e_1_2_7_184_1 doi: 10.1063/1.3268448 – volume: 1 start-page: 489 year: 2013 ident: e_1_2_7_28_1 publication-title: Nat. Commun. – ident: e_1_2_7_134_1 doi: 10.1021/acsami.3c11252 – ident: e_1_2_7_40_1 doi: 10.1021/acsphotonics.1c01005 – ident: e_1_2_7_148_1 doi: 10.1016/j.sna.2019.111592 – ident: e_1_2_7_112_1 doi: 10.1016/j.ijsolstr.2019.12.015 – ident: e_1_2_7_102_1 doi: 10.1038/s41598-020-72874-y – ident: e_1_2_7_135_1 doi: 10.1038/s41563-021-00939-y – ident: e_1_2_7_66_1 doi: 10.1021/acs.nanolett.6b02326 – ident: e_1_2_7_61_1 doi: 10.1364/AO.58.001460 – ident: e_1_2_7_165_1 doi: 10.1002/andp.202100402 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevLett.85.3966 – ident: e_1_2_7_9_1 doi: 10.1038/s41377-022-00972-9 – ident: e_1_2_7_116_1 doi: 10.1038/s41377-022-00806-8 – ident: e_1_2_7_201_1 doi: 10.1063/1.4983782 – ident: e_1_2_7_54_1 doi: 10.1002/adom.202300644 – ident: e_1_2_7_174_1 doi: 10.1364/OE.382719 – ident: e_1_2_7_170_1 doi: 10.1039/D2LC00141A – ident: e_1_2_7_168_1 doi: 10.1038/s41565-022-01197-y – ident: e_1_2_7_71_1 doi: 10.1109/TAP.2020.2972650 – ident: e_1_2_7_155_1 doi: 10.1063/1.4985288 – ident: e_1_2_7_37_1 doi: 10.1038/s41598-017-11953-z – ident: e_1_2_7_143_1 doi: 10.1109/IRMMW-THz50926.2021.9566971 – ident: e_1_2_7_10_1 doi: 10.1038/srep38314 – ident: e_1_2_7_100_1 doi: 10.1002/adfm.202103379 – ident: e_1_2_7_150_1 doi: 10.1002/adma.201907160 – ident: e_1_2_7_13_1 doi: 10.1038/nmat2033 – ident: e_1_2_7_111_1 doi: 10.1002/smll.202002484 – ident: e_1_2_7_200_1 doi: 10.1109/OJCOMS.2023.3349155 – ident: e_1_2_7_205_1 doi: 10.1021/acsphotonics.1c00836 – ident: e_1_2_7_183_1 doi: 10.1002/lpor.201600064 – ident: e_1_2_7_77_1 doi: 10.1002/adma.202106080 – ident: e_1_2_7_39_1 doi: 10.1002/adfm.202213818 – ident: e_1_2_7_171_1 doi: 10.3390/s151128154 – volume: 23 start-page: 16 year: 2015 ident: e_1_2_7_179_1 publication-title: Opt. Express – ident: e_1_2_7_109_1 doi: 10.1021/acs.nanolett.2c01692 – ident: e_1_2_7_113_1 doi: 10.1021/acsnano.9b08228 – ident: e_1_2_7_98_1 doi: 10.1364/AO.58.002687 – ident: e_1_2_7_164_1 doi: 10.1126/sciadv.abe3778 – ident: e_1_2_7_79_1 doi: 10.1002/lpor.202100591 – ident: e_1_2_7_96_1 doi: 10.1021/acs.nanolett.6b00555 – ident: e_1_2_7_141_1 doi: 10.1016/j.matlet.2017.02.087 – ident: e_1_2_7_181_1 doi: 10.1021/acsnano.2c03310 – ident: e_1_2_7_206_1 doi: 10.1002/adma.202101258 – ident: e_1_2_7_68_1 doi: 10.1109/LAWP.2019.2922695 – ident: e_1_2_7_69_1 doi: 10.1109/TAP.2015.2484419 – ident: e_1_2_7_76_1 doi: 10.1002/advs.202300542 – volume: 28 start-page: 24 year: 2020 ident: e_1_2_7_101_1 publication-title: Opt. Express – ident: e_1_2_7_144_1 doi: 10.1063/1.4978012 – ident: e_1_2_7_86_1 doi: 10.1021/acs.nanolett.9b04107 – ident: e_1_2_7_127_1 doi: 10.1002/lpor.201600106 – ident: e_1_2_7_187_1 doi: 10.1002/adom.202100024 – ident: e_1_2_7_207_1 doi: 10.1021/acsnano.7b07121 – ident: e_1_2_7_89_1 doi: 10.1002/lpor.202000116 – ident: e_1_2_7_42_1 doi: 10.1038/s41598-019-40226-0 – ident: e_1_2_7_163_1 doi: 10.1039/C6LC00579A – ident: e_1_2_7_185_1 doi: 10.1002/adom.202300685 – ident: e_1_2_7_83_1 doi: 10.1002/adom.201901169 – ident: e_1_2_7_214_1 doi: 10.1063/1.5084329 – ident: e_1_2_7_99_1 doi: 10.1021/acsphotonics.7b01073 – ident: e_1_2_7_70_1 doi: 10.1109/TAP.2016.2536160 – ident: e_1_2_7_154_1 doi: 10.1007/s10854-020-04459-4 – ident: e_1_2_7_169_1 doi: 10.1002/adma.201200674 – ident: e_1_2_7_175_1 doi: 10.1063/1.5023778 – ident: e_1_2_7_173_1 doi: 10.1088/0022-3727/41/23/232004 – ident: e_1_2_7_166_1 doi: 10.1021/acsphotonics.2c01986 – ident: e_1_2_7_53_1 doi: 10.1002/adom.202202658 – ident: e_1_2_7_140_1 doi: 10.1063/1.4978205 – ident: e_1_2_7_63_1 doi: 10.1364/OE.405375 – ident: e_1_2_7_25_1 doi: 10.1038/s41565-017-0052-4 – ident: e_1_2_7_94_1 doi: 10.1021/acsphotonics.9b01532 – volume: 9 year: 2024 ident: e_1_2_7_137_1 publication-title: Adv. Mater. Technol. – ident: e_1_2_7_138_1 doi: 10.1063/1.4955272 – ident: e_1_2_7_146_1 doi: 10.1002/adma.201805033 – ident: e_1_2_7_57_1 doi: 10.1038/nnano.2015.2 – ident: e_1_2_7_117_1 doi: 10.1002/lpor.202100396 – ident: e_1_2_7_50_1 doi: 10.1021/acs.nanolett.2c02283 – ident: e_1_2_7_33_1 doi: 10.1038/s41377-023-01218-y – ident: e_1_2_7_35_1 doi: 10.1038/s41598-020-79945-0 – ident: e_1_2_7_182_1 doi: 10.1021/acs.jpcc.0c03023 – ident: e_1_2_7_18_1 doi: 10.1126/science.aac9411 – ident: e_1_2_7_149_1 doi: 10.1126/science.1076996 – volume: 26 start-page: 24 year: 2018 ident: e_1_2_7_95_1 publication-title: Opt. Express – ident: e_1_2_7_147_1 doi: 10.1364/PRJ.476100 – ident: e_1_2_7_195_1 doi: 10.1109/TRANSDUCERS.2015.7181344 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.0c21984 – ident: e_1_2_7_15_1 doi: 10.1038/s41377-018-0052-7 – ident: e_1_2_7_65_1 doi: 10.1002/adma.201907308 – ident: e_1_2_7_115_1 doi: 10.1021/acsphotonics.0c01599 – ident: e_1_2_7_209_1 doi: 10.1109/TAP.2021.3137217 – ident: e_1_2_7_211_1 doi: 10.1002/adom.201600938 – ident: e_1_2_7_189_1 doi: 10.3390/nano12091395 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201004341 – ident: e_1_2_7_180_1 doi: 10.1038/srep31823 – ident: e_1_2_7_92_1 doi: 10.1038/s42005-019-0232-7 – ident: e_1_2_7_12_1 doi: 10.1126/science.1096796 – ident: e_1_2_7_84_1 doi: 10.1002/lpor.201500314 – ident: e_1_2_7_67_1 doi: 10.1021/acs.nanolett.1c00720 – ident: e_1_2_7_121_1 doi: 10.1063/1.4983364 – ident: e_1_2_7_45_1 doi: 10.1002/adfm.202109544 – ident: e_1_2_7_158_1 doi: 10.1002/adom.201900379 – ident: e_1_2_7_30_1 doi: 10.1002/adpr.202100199 – ident: e_1_2_7_118_1 doi: 10.1021/acs.nanolett.3c02595 – ident: e_1_2_7_128_1 doi: 10.1002/adom.201701346 – ident: e_1_2_7_202_1 doi: 10.1002/adma.201802721 – ident: e_1_2_7_172_1 doi: 10.1016/j.physb.2021.413030 – ident: e_1_2_7_210_1 doi: 10.1002/adom.201800728 – ident: e_1_2_7_142_1 doi: 10.1109/PIERS53385.2021.9695015 – ident: e_1_2_7_72_1 doi: 10.1038/s41467-019-11598-8 – ident: e_1_2_7_88_1 doi: 10.1021/acsphotonics.9b00678 – ident: e_1_2_7_197_1 doi: 10.1021/acsphotonics.2c00439 – ident: e_1_2_7_131_1 doi: 10.1016/j.jallcom.2020.157168 – ident: e_1_2_7_190_1 doi: 10.1021/acsnano.2c02500 – ident: e_1_2_7_194_1 doi: 10.1002/adom.202300130 – ident: e_1_2_7_105_1 doi: 10.1038/s41377-023-01169-4 – ident: e_1_2_7_213_1 doi: 10.1109/MEMSYS.2014.6765580 – volume: 7 year: 2019 ident: e_1_2_7_130_1 publication-title: IEEE Access – ident: e_1_2_7_124_1 doi: 10.1038/srep23731 – ident: e_1_2_7_31_1 doi: 10.1038/s41566-020-00750-2 – ident: e_1_2_7_56_1 doi: 10.1038/s41467-018-07011-5 – ident: e_1_2_7_178_1 doi: 10.1109/JEDS.2022.3194120 – volume: 10 start-page: 102 year: 2024 ident: e_1_2_7_51_1 publication-title: ACS Appl Opt Mater – ident: e_1_2_7_5_1 doi: 10.1002/lpor.202200152 – ident: e_1_2_7_186_1 doi: 10.1038/s41598-018-32827-y – ident: e_1_2_7_123_1 doi: 10.1063/1.2947587 – ident: e_1_2_7_29_1 doi: 10.1038/nnano.2015.186 – ident: e_1_2_7_129_1 doi: 10.1038/s41578-021-00304-0 – ident: e_1_2_7_2_1 doi: 10.1038/ncomms2285 – ident: e_1_2_7_82_1 doi: 10.1364/OPTICA.4.001368 – ident: e_1_2_7_108_1 doi: 10.1038/s41928-020-00497-2 – ident: e_1_2_7_85_1 doi: 10.1021/acs.nanolett.9b03957 – ident: e_1_2_7_11_1 doi: 10.1038/s41598-020-67793-x – ident: e_1_2_7_41_1 doi: 10.1038/s43246-023-00369-0 |
SSID | ssj0002891341 |
Score | 2.3119278 |
Snippet | Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and... Abstract Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude,... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Design Electromagnetic absorption Electromagnetic radiation Flexibility Geometry Indium integration metasurface Metasurfaces microfluidic microfluidic metasurface Microfluidics Optical properties Phase transitions reconfiguration Refractivity Semiconductors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykxdRVJxOyUHwVNekSbp6m-IQYSLicLfwkqYy0Tp0ij_f99pu1IN48VpCG97Xvu9L-vI9xo5TjcDmcRI5HeeRcjqLQBQh0jogXadeCEOnkcc35mqirqd62mr1RTVhtT1wHbh-nOFjEqWVBKmM8xne2sg46CB0noGn7Iuc11pMPdW_z8ipbOnSGMs-zL_I_pNKJitj0hYLVWb9PxRmW6dWRDPaZBuNQuTDemZbbC2U22w8psK54vljls88H4cF7ewVVE51xoccMxUfkRMBchyflfyy7m3zAo8lnVHkD_AZeMt5cIdNRpf3F1dR0wkh8mToHmVINUVIJBTaFAMwmYp9VqRS5UE4k0pUUUKJANorSHLwzoHwmLgEDEDmwiW7rFO-lmGPcZkCYQAq5F5pF5ChHK56JCoFI8BnXRYtI2N9YxNO3SqebW1wLC1F0q4i2WUnq_Hz2iDj15HnFOjVKDK2ri4g3LaB2_4Fd5f1ljDZ5mt7t5hGJO1kKdVlpxV0f0zFDm-ndwKVkdn_j0kdsHW6dX1Escc6i7ePcIhaZeGOqtfyG1xN5Cs priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll5EUXF9kYPgKdikSWq9reIiwoqI4t7CJE1lQavoKv58Z9pu3T2IeC1pKfP8Op35hrHDzKBiiyQV3iSF0N7kAmQZhTER03UWpLQ0jTy8tpf3-mpkRjNT_A0_RFdwI8-o4zU5OPj34x_SUHj9Ij5P6oFEiLDIlmm-lpr6lL7pqiyK_sLV6ytVZqSQaBNT5sZEHc8_Yi4z1QT-c6hzFrvWyWewxlZb1Mj7jZrX2UKsNthwSM105dPHuBgHPowTqvaV1GJ1yvscoxcfEDsB5j0-rvhFs-_mGR4rmlvkD_AZ-Qwb4Sa7H1zcnV-KdjuCCETyLnJMP2VMFZTGlidgc52EvMyULqL0NlOIrKSWEUzQkBYQvAcZMJhJOAFVSJ9usaXqpYrbjKsMSC-gYxG08RGzlscvIYXowUoIeY-JqWRcaKnDaYPFk2tIj5UjSbpOkj121J1_bUgzfj15RoLuThHZdX3h5e3Rtb7jkhwtLdVGK1Da-pCjdVmVRBOlKXIIPbY3VZNrPfDdYWhRVN3SuscaO_rjVVz_ZnQrES3Znf_esMtW6GozorjHliZvH3EfscrEH9Tm-A3tu-Bj priority: 102 providerName: Wiley-Blackwell |
Title | Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400059 https://www.proquest.com/docview/3192222844 https://doaj.org/article/09ebe34542a246bc931d620e5e15d9ac |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NbxMxELVoeuGCqAARKJEPSJxM117bu9tLlVYJFdJWUUVFbpa_torUbkKbop7625nZdUI4ABcfVt7VamY88zwevyHkY6FAsSHLmVNZYNKpilneRKZUhHBdeM413kauL_T5lfw6V_OUcLtPZZUbn9g56rD0mCM_AlMRmK2Q8mT1g2HXKDxdTS009sg-uOCyHJD908nF7HKbZRF4Cte1rxSF4oyDTWyYGzNxZFePSAmKZZQdWelOZOoI_P9AnbvYtQs-05fkRUKNdNyr-YA8i-0rUtdYTNfcPCzCwtM6rjHb12CJ1TEdU_BedIrsBBD36KKlk77fza29bvHeIv1uf0a6w0b4mlxNJ9_OzlnqjsA8kryzCsJPE3NhG6Wb0upKZr5qCiFD5E4XApAVlzxa5aXNg_XOWe7BmXFbWhG4y9-QQbts41tCRWFRL1bG4KVyEaKWg52QAPSgufXVkLCNZIxP1OHYweLG9KTHwqAkzVaSQ_JpO3_Vk2b8deYpCno7C8muuwfLu2uT1o7JKrC0XCoprJDa-QqsS4ssqshVqKwfksONmkxagffmt70MyedOdf_5FTOezS85oCX97t_fe0-e40v9hcRDMljfPcQPgEzWbkT2hJzBWE6_jJIpjrpdPoz10-QXy4_itA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOcAFgQCxpYUcQJxCJ5lkplMJoQW6bGmnQqgVewt5TbVSmV3aLY8_xW_EnseyHIBTr6MoGtlfbMexPwM8yTUqNiQpdzoJXDldcCuqyLWO6K5zL0RG3cjlUTY-Ue8merIGP_teGCqr7G1iY6jDzFOOfBuhIilbodTL-RdOU6PodbUfodHC4iD--IZXtosX-29Qv0-lHO0dvx7zbqoA90SOzgs021VMpa10Vu3YrFCJL6pcqhCFy3KJEYlQIlrtlU2D9c5Z4dEICLtjZRAuxX2vwXWVoienzvTR22VOR9KbXzMsU-ZacIEI7HkiE7lt59-JgJSKNhtq1BU_2IwL-CPGXY2UG1c3ug23uhiVDVtQ3YG1WN-FsqTSverschqmnpVxQbnFigq6dtmQoa1kI-JCQC_LpjXba6frfLanNXVJso_2a2Qr3If34ORKpHYf1utZHR8Ak7klFFgVg1faRfSRDu9dEmOVTFhfDID3kjG-IyqneRlnpqVYloYkaZaSHMCz5fp5S9Hx15WvSNDLVUSt3XyYnZ-a7qSapEBcp0oraaXKnC8Qy5lMoo5Ch8L6AWz2ajLdeb8wv9E5gOeN6v7zK2b4fvJBYGyWbfx7v8dwY3xcHprD_aODh3CTNmhbITdhfXF-GbcwJlq4Rw0QGXy6auT_AroeG1Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKiEuFaggQkvZQyVOq3rXu-u6twCNyiNVhQhEXFb7chWpuFGbVv35zNiOmxwQ4mqNLWuen8c73wAcFBoNG7Oce51FrrwuuRNV4lonLNdFEMLQNPLkzJxO1eeZnq1N8bf8EH3DjSKjydcU4ItYHT6QhrrFPfF50hlIhAiPYUtjacoGsDX6Mf017fsskv7DNQssZaEFF-gVK-7GTB5uPmSjNjUU_hu4cx29NuVn_Ay2O9zIRq2hn8OjVO_AZELH6arL23mcBzZJS-r3VXTI6piNGOYvNiZ-Aqx8bF6zk3bjzW93UdPkIvvp7hJb4yN8AdPxyfcPp7zbj8AD0bzzEgtQlXLpKm2qI2dKlYWyKqSKSXhTSMRWQonkdFAujy5470TAdCbckZNR-PwlDOqrOr0CJgtHlnEqxaC0T1i3PH4LScQPRrhQDoGvNGNDRx5OOywubUt7LC1p0vaaHMK7Xn7R0mb8VfI9KbqXIrrr5sLV9YXtosdmJfparrSSTirjQ4n-ZWSWdBI6li4MYW9lJtvF4I3F5CKpv6XUEFpP-ser2NH57JtAvGRe_-8Nb-HJ-cex_frp7MsuPCWBdl5xDwbL69v0BoHL0u93vvkHFT7kvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Metasurfaces%3A+A+New+Frontier+in+Electromagnetic+Wave+Engineering&rft.jtitle=Advanced+Physics+Research&rft.au=Qin%2C+Jin&rft.au=Jiang%2C+Shibin&rft.au=Li%2C+Shibin&rft.au=He%2C+Shaowei&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fapxr.202400059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |