Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering

Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the conte...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 11
Main Authors Qin, Jin, Jiang, Shibin, Li, Shibin, He, Shaowei, Zhu, Weiming
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.11.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. Additionally, the integration of metasurfaces within microfluidic systems leads to novel functionalities. Microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as EM absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers.
AbstractList Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.
Abstract Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations.
Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and polarization. Achieving this control involves designing subwavelength meta‐molecules with specific geometries and periodicities. In the context of microfluidic metasurfaces, optical properties can be dynamically modulated by altering either the geometric structure of liquid meta‐molecules or the refractive index of the liquid medium. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. These properties not only establish a cutting‐edge research area but also broaden the scope of applications for active metasurface devices. Additionally, the integration of metasurfaces within microfluidic systems has led to novel functionalities, including enhanced particle manipulation and sensor technologies. Compared to conventional solid‐material‐based metasurfaces, microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as electromagnetic absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers. This review provides insights into the characteristics, modulation techniques, and potential applications of microfluidic metasurfaces, illuminating both the current research landscape and promising avenues for further explorations. Leveraging the fluidity of liquid materials, microfluidic metasurfaces exhibit remarkable performance in terms of reconfigurability and flexibility. Additionally, the integration of metasurfaces within microfluidic systems leads to novel functionalities. Microfluidic metasurfaces offer greater design freedom, making them advantageous for diverse fields such as EM absorption, optical sensing, holographic displays, and tunable optical meta‐devices like flat lenses and polarizers.
Author Jiang, Shibin
Li, Shibin
Qin, Jin
He, Shaowei
Zhu, Weiming
Author_xml – sequence: 1
  givenname: Jin
  surname: Qin
  fullname: Qin, Jin
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Shibin
  surname: Jiang
  fullname: Jiang, Shibin
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Shibin
  surname: Li
  fullname: Li, Shibin
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Shaowei
  surname: He
  fullname: He, Shaowei
  email: heshaowei@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 5
  givenname: Weiming
  orcidid: 0000-0001-9974-017X
  surname: Zhu
  fullname: Zhu, Weiming
  email: zhuweiming@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BookMark eNqFUVFrGzEMNqOFdl1f-3yw52SWbF_ivYWSboVmG6WlfTM6ny44XO3Md2nXfz93GWUMxvQiIX3fJ6HvrTiIKbIQZyCnICV-oO2PPEWJWkpp7BtxjDMDE0ApD_6oj8TpMGwKBOcWlIZjsVoFn1PX70IbfLXikYZd7sjz8LFaVF_4qbrIKY6BcxVitezZjzk90DryWPB39MjVMq5DZM4hrt-Jw476gU9_5xNxe7G8Of88ufr66fJ8cTXxStt6YjWojhVSZ-puTrXV0ttuhrplaOoZKoOggcl4Taol3zQEvi1DmhO20KgTcbnXbRNt3DaHB8rPLlFwvxoprx3lcmDPTlpuWGmjkVDXjbcK2holGwbTWvJF6_1ea5vT9x0Po9ukXY7lfKfAYom51gU13aPKt4Yhc_e6FaR7ccC9OOBeHSgE_RfBh5HGUJ6ZKfT_ppk97Sn0_PyfJW7x7f4aEFWtfgLO9Jw2
CitedBy_id crossref_primary_10_1016_j_saa_2025_125996
crossref_primary_10_1002_admt_202401857
crossref_primary_10_1021_acsami_4c21081
Cites_doi 10.1038/s41467-021-23257-y
10.1364/OE.420660
10.1038/s41467-018-03155-6
10.1038/s41598-022-06687-6
10.1002/advs.202101212
10.1038/s41377-019-0178-2
10.1002/adfm.201808489
10.1038/s41928-021-00554-4
10.1002/adom.202201478
10.1038/srep14018
10.1021/acsphotonics.3c01592
10.3390/app131910590
10.1002/adom.202100297
10.1038/s41467-022-29798-0
10.1088/1361-6463/ab3129
10.1021/acs.nanolett.8b01570
10.1109/TAP.2021.3060022
10.1002/smll.202206319
10.1038/s41563-021-00991-8
10.1021/acs.nanolett.9b05053
10.1021/acsnano.1c10100
10.1021/acsphotonics.1c00124
10.1109/JSTQE.2010.2049096
10.3390/mi12030243
10.1002/adom.201601103
10.1186/s43074-023-00116-1
10.1364/CLEO_QELS.2015.FTu1C.3
10.1002/lpor.202400184
10.1038/s41377-020-0335-7
10.3390/ijms22042011
10.1002/adom.202301268
10.1038/s41467-024-47229-0
10.1002/adma.201501943
10.1364/AOP.11.000380
10.1021/acs.nanolett.6b00618
10.1002/adom.201902182
10.1021/acsnano.9b09277
10.1109/TAP.2012.2189698
10.1039/C6RA11777E
10.1038/srep19885
10.1109/TAP.2019.2916761
10.1021/acs.nanolett.8b03567
10.1038/s41377-018-0078-x
10.1038/s41598-023-33693-z
10.1021/acsnano.0c07295
10.1038/s41467-021-24749-7
10.1126/science.1210713
10.1063/1.4862272
10.1002/admt.201900334
10.1038/s41467-019-08305-y
10.1021/acs.nanolett.3c02168
10.1038/s41377-018-0091-0
10.1021/acsami.2c20191
10.1080/23746149.2017.1417055
10.1515/nanoph-2020-0550
10.1038/s41467-020-17015-9
10.1002/adom.202202130
10.1109/ACCESS.2021.3100144
10.1109/LAWP.2018.2872108
10.1038/s41598-019-45091-5
10.1109/JQE.2015.2509242
10.1364/OE.27.023282
10.1002/advs.201903382
10.1364/OPTICA.4.000625
10.1002/adma.201700412
10.1038/s41427-018-0082-x
10.3390/s16040521
10.1021/acs.nanolett.6b03626
10.1002/lpor.202200597
10.1016/j.eml.2020.100998
10.1002/adma.202006054
10.1016/j.rinp.2020.102937
10.1038/s41928-019-0236-z
10.1088/2040-8986/abcc52
10.1063/5.0091280
10.1038/s41565-017-0034-6
10.1016/j.rinp.2022.105587
10.1038/s41598-023-45351-5
10.1063/1.3268448
10.1021/acsami.3c11252
10.1021/acsphotonics.1c01005
10.1016/j.sna.2019.111592
10.1016/j.ijsolstr.2019.12.015
10.1038/s41598-020-72874-y
10.1038/s41563-021-00939-y
10.1021/acs.nanolett.6b02326
10.1364/AO.58.001460
10.1002/andp.202100402
10.1103/PhysRevLett.85.3966
10.1038/s41377-022-00972-9
10.1038/s41377-022-00806-8
10.1063/1.4983782
10.1002/adom.202300644
10.1364/OE.382719
10.1039/D2LC00141A
10.1038/s41565-022-01197-y
10.1109/TAP.2020.2972650
10.1063/1.4985288
10.1038/s41598-017-11953-z
10.1109/IRMMW-THz50926.2021.9566971
10.1038/srep38314
10.1002/adfm.202103379
10.1002/adma.201907160
10.1038/nmat2033
10.1002/smll.202002484
10.1109/OJCOMS.2023.3349155
10.1021/acsphotonics.1c00836
10.1002/lpor.201600064
10.1002/adma.202106080
10.1002/adfm.202213818
10.3390/s151128154
10.1021/acs.nanolett.2c01692
10.1021/acsnano.9b08228
10.1364/AO.58.002687
10.1126/sciadv.abe3778
10.1002/lpor.202100591
10.1021/acs.nanolett.6b00555
10.1016/j.matlet.2017.02.087
10.1021/acsnano.2c03310
10.1002/adma.202101258
10.1109/LAWP.2019.2922695
10.1109/TAP.2015.2484419
10.1002/advs.202300542
10.1063/1.4978012
10.1021/acs.nanolett.9b04107
10.1002/lpor.201600106
10.1002/adom.202100024
10.1021/acsnano.7b07121
10.1002/lpor.202000116
10.1038/s41598-019-40226-0
10.1039/C6LC00579A
10.1002/adom.202300685
10.1002/adom.201901169
10.1063/1.5084329
10.1021/acsphotonics.7b01073
10.1109/TAP.2016.2536160
10.1007/s10854-020-04459-4
10.1002/adma.201200674
10.1063/1.5023778
10.1088/0022-3727/41/23/232004
10.1021/acsphotonics.2c01986
10.1002/adom.202202658
10.1063/1.4978205
10.1364/OE.405375
10.1038/s41565-017-0052-4
10.1021/acsphotonics.9b01532
10.1063/1.4955272
10.1002/adma.201805033
10.1038/nnano.2015.2
10.1002/lpor.202100396
10.1021/acs.nanolett.2c02283
10.1038/s41377-023-01218-y
10.1038/s41598-020-79945-0
10.1021/acs.jpcc.0c03023
10.1126/science.aac9411
10.1126/science.1076996
10.1364/PRJ.476100
10.1109/TRANSDUCERS.2015.7181344
10.1021/acsami.0c21984
10.1038/s41377-018-0052-7
10.1002/adma.201907308
10.1021/acsphotonics.0c01599
10.1109/TAP.2021.3137217
10.1002/adom.201600938
10.3390/nano12091395
10.1002/adma.201004341
10.1038/srep31823
10.1038/s42005-019-0232-7
10.1126/science.1096796
10.1002/lpor.201500314
10.1021/acs.nanolett.1c00720
10.1063/1.4983364
10.1002/adfm.202109544
10.1002/adom.201900379
10.1002/adpr.202100199
10.1021/acs.nanolett.3c02595
10.1002/adom.201701346
10.1002/adma.201802721
10.1016/j.physb.2021.413030
10.1002/adom.201800728
10.1109/PIERS53385.2021.9695015
10.1038/s41467-019-11598-8
10.1021/acsphotonics.9b00678
10.1021/acsphotonics.2c00439
10.1016/j.jallcom.2020.157168
10.1021/acsnano.2c02500
10.1002/adom.202300130
10.1038/s41377-023-01169-4
10.1109/MEMSYS.2014.6765580
10.1038/srep23731
10.1038/s41566-020-00750-2
10.1038/s41467-018-07011-5
10.1109/JEDS.2022.3194120
10.1002/lpor.202200152
10.1038/s41598-018-32827-y
10.1063/1.2947587
10.1038/nnano.2015.186
10.1038/s41578-021-00304-0
10.1038/ncomms2285
10.1364/OPTICA.4.001368
10.1038/s41928-020-00497-2
10.1021/acs.nanolett.9b03957
10.1038/s41598-020-67793-x
10.1038/s43246-023-00369-0
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
COVID
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202400059
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library : Open Access journals [open access]
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_09ebe34542a246bc931d620e5e15d9ac
10_1002_apxr_202400059
APXR12236
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61975026; 61875030
– fundername: Science Fund for Creative Research Groups
  funderid: 2023NSFSC1973
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
COVID
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c3496-9413fe32af56f8a6940c9f724de1b672352141ea5c4a3dacbba1cdde1a8a2d1b3
IEDL.DBID BENPR
ISSN 2751-1200
IngestDate Wed Aug 27 01:26:18 EDT 2025
Wed Aug 13 04:22:21 EDT 2025
Tue Jul 01 02:33:01 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Wed Jan 22 17:15:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3496-9413fe32af56f8a6940c9f724de1b672352141ea5c4a3dacbba1cdde1a8a2d1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9974-017X
OpenAccessLink https://www.proquest.com/docview/3192222844?pq-origsite=%requestingapplication%
PQID 3192222844
PQPubID 6852862
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_09ebe34542a246bc931d620e5e15d9ac
proquest_journals_3192222844
crossref_primary_10_1002_apxr_202400059
crossref_citationtrail_10_1002_apxr_202400059
wiley_primary_10_1002_apxr_202400059_APXR12236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 69
2019; 2019
2013; 1
2020; 20
2019; 11
2019; 10
2000; 85
2019; 14
2020; 16
2019; 19
2020; 14
2019; 18
2020; 11
2020; 10
2024
2022; 22
2018; 7
2018; 6
2018; 9
2018; 8
2018; 3
2009; 95
2019; 20
2024; 5
2024; 9
2019; 27
2007; 6
2019; 29
2018; 30
2022; 32
2012; 24
2022; 38
2019; 8
2019; 7
2019; 9
2019; 4
2019; 6
2019; 31
2020; 41
2019; 2
2016; 10
2024; 10
2024; 11
2024; 12
2020; 32
2024; 15
2004; 305
2016; 16
2018; 26
2016; 6
2018; 18
2018; 17
2020; 31
2015; 63
2021; 534
2022; 9
2022; 12
2020; 28
2022; 13
2022; 10
2008; 41
2022; 11
2018; 12
2018; 10
2022; 16
2022; 17
2018; 13
2017; 5
2012; 60
2017; 7
2021; 21
2021; 20
2023; 33
2021; 23
2017; 4
2021; 22
2023; 4
2022; 70
2016; 109
2019; 52
2018; 921
2021; 29
2018; 123
2019; 58
2017; 195
2015; 349
2020; 124
2017; 110
2011; 17
2020; 8
2020; 7
2021; 31
2020; 3
2021; 34
2023; 23
2021; 33
2019; 67
2020; 9
2019; 114
2011; 23
2017; 121
2021; 9
2021; 8
2023; 10
2011; 334
2021; 7
2015; 15
2021; 6
2023; 13
2021; 4
2015; 5
2023; 11
2021; 3
2023; 12
2023; 17
2023; 15
2023; 19
2002; 298
2015; 10
2016; 52
2019; 300
2017; 29
2008; 92
2021; 13
2015; 23
2021; 16
2021; 15
2021; 10
2012; 3
2015; 27
2021; 12
2021; 11
2021
2020; 191
2021; 854
2021; 614
2016; 64
2020; 68
2015
2014
2014; 104
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
Ali H. (e_1_2_7_51_1) 2024; 10
Ling K. (e_1_2_7_179_1) 2015; 23
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_166_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
Qin J. (e_1_2_7_137_1) 2024; 9
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_107_1
e_1_2_7_80_1
He Q. (e_1_2_7_90_1) 2019; 2019
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_168_1
Liang J. J. (e_1_2_7_130_1) 2019; 7
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
Rodrigo D. (e_1_2_7_191_1) 2018; 921
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
Wang H. (e_1_2_7_101_1) 2020; 28
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
Zhou H. (e_1_2_7_24_1) 2019; 11
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_147_1
e_1_2_7_113_1
e_1_2_7_74_1
e_1_2_7_97_1
Ribot C. (e_1_2_7_28_1) 2013; 1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
Lee Y. (e_1_2_7_95_1) 2018; 26
Hoffman J. (e_1_2_7_14_1) 2024
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_138_1
References_xml – volume: 14
  start-page: 1418
  year: 2019
  publication-title: ACS Nano
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 888
  year: 2018
  publication-title: NPG Asia Mater
– volume: 13
  start-page: 6780
  year: 2023
  publication-title: Sci. Rep.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 67
  start-page: 5997
  year: 2019
  publication-title: IEEE Trans Antennas Propag
– volume: 28
  start-page: 5306
  year: 2020
  publication-title: Opt. Express
– volume: 10
  start-page: 3654
  year: 2019
  publication-title: Nat. Commun.
– year: 2014
– volume: 16
  start-page: 7229
  year: 2016
  publication-title: Nano Lett.
– volume: 191
  start-page: 566
  year: 2020
  publication-title: Int. J. Solids Struct.
– volume: 24
  start-page: op98
  year: 2012
  publication-title: Adv. Mater.
– volume: 1
  start-page: 489
  year: 2013
  publication-title: Nat. Commun.
– volume: 7
  start-page: 95
  year: 2018
  publication-title: Light Sci Appl
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2019
  publication-title: IEEE Access
– volume: 70
  start-page: 2801
  year: 2022
  publication-title: IEEE Trans Antennas Propag
– volume: 13
  year: 2023
  publication-title: Appl. Sci.
– volume: 23
  start-page: 8891
  year: 2023
  publication-title: Nano Lett.
– volume: 27
  start-page: 4739
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  year: 2021
  publication-title: IEEE Access
– volume: 11
  start-page: 118
  year: 2022
  publication-title: Light Sci Appl
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 265
  year: 2019
  publication-title: ACS Photonics
– volume: 41
  year: 2020
  publication-title: Extreme Mech Lett
– volume: 2
  start-page: 129
  year: 2019
  publication-title: Commun. Phys.
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 11
  start-page: 380
  year: 2019
  publication-title: Adv. Opt. Photonics
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 18
  start-page: 4460
  year: 2018
  publication-title: Nano Lett.
– volume: 12
  start-page: 2151
  year: 2018
  publication-title: ACS Nano
– volume: 8
  start-page: 67
  year: 2019
  publication-title: Light Sci Appl
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 41
  year: 2008
  publication-title: J Phys D Appl Phys
– volume: 13
  start-page: 227
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2019
  publication-title: Adv Opt Mater
– volume: 17
  start-page: 2255
  year: 2018
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 10
  start-page: 308
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 6951
  year: 2022
  publication-title: Nano Lett.
– volume: 12
  start-page: 1395
  year: 2022
  publication-title: Nanomaterials
– volume: 9
  year: 2024
  publication-title: Adv. Mater. Technol.
– volume: 23
  start-page: 16
  year: 2015
  publication-title: Opt. Express
– volume: 18
  start-page: 1562
  year: 2019
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 17
  start-page: 85
  year: 2011
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 8
  start-page: 1206
  year: 2021
  publication-title: ACS Photonics
– volume: 4
  start-page: 1368
  year: 2017
  publication-title: Optica
– volume: 38
  year: 2022
  publication-title: Results Phys
– volume: 121
  year: 2017
  publication-title: J. Appl. Phys.
– volume: 60
  start-page: 2151
  year: 2012
  publication-title: IEEE Trans Antennas Propag
– volume: 334
  start-page: 333
  year: 2011
  publication-title: Science
– volume: 12
  start-page: 169
  year: 2023
  publication-title: Light Sci Appl
– volume: 64
  start-page: 2022
  year: 2016
  publication-title: IEEE Trans Antennas Propag
– volume: 16
  year: 2022
  publication-title: Laser Photon. Rev.
– volume: 10
  start-page: 500
  year: 2016
  publication-title: Laser Photon. Rev.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater.
– year: 2021
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 3218
  year: 2021
  publication-title: ACS Photonics
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 6
  start-page: 946
  year: 2007
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3246
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 962
  year: 2016
  publication-title: Laser Photon. Rev.
– volume: 16
  year: 2021
  publication-title: Laser Photon. Rev.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 69
  start-page: 5181
  year: 2021
  publication-title: IEEE Trans Antennas Propag
– volume: 10
  start-page: 355
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  year: 2024
  publication-title: Adv. Opt. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 625
  year: 2017
  publication-title: Optica
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 3
  start-page: 1274
  year: 2012
  publication-title: Nat. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 29
  start-page: 8786
  year: 2021
  publication-title: Opt. Express
– volume: 921
  start-page: 60
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 599
  year: 2024
  publication-title: IEEE Open J. Commun. Soc.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 22
  start-page: 8860
  year: 2022
  publication-title: Nano Lett.
– year: 2015
– volume: 13
  start-page: 2071
  year: 2022
  publication-title: Nat. Commun.
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 85
  start-page: 3966
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 8964
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 93
  year: 2020
  publication-title: Light Sci Appl
– volume: 16
  start-page: 5319
  year: 2016
  publication-title: Nano Lett.
– volume: 10
  start-page: 102
  year: 2024
  publication-title: ACS Appl Opt Mater
– volume: 16
  start-page: 3546
  year: 2022
  publication-title: ACS Nano
– volume: 8
  start-page: 567
  year: 2021
  publication-title: ACS Photonics
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 63
  start-page: 5443
  year: 2015
  publication-title: IEEE Trans Antennas Propag
– volume: 13
  year: 2023
  publication-title: Sci. Rep.
– volume: 23
  start-page: 9825
  year: 2023
  publication-title: Nano Lett.
– volume: 9
  start-page: 8673
  year: 2019
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1341
  year: 2023
  publication-title: ACS Photonics
– volume: 13
  start-page: 220
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1259
  year: 2021
  publication-title: Nanophoton.
– volume: 15
  year: 2015
  publication-title: Sensors
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 23
  year: 2021
  publication-title: J Opt
– volume: 23
  start-page: 1792
  year: 2011
  publication-title: Adv. Mater.
– volume: 300
  year: 2019
  publication-title: Sens. Actuator A Phys.
– volume: 8
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 16
  start-page: 521
  year: 2016
  publication-title: Sensors
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 5
  start-page: 1711
  year: 2017
  publication-title: ACS Photonics
– volume: 534
  year: 2021
  publication-title: Ann. Phys.
– volume: 9
  start-page: 3438
  year: 2019
  publication-title: Sci. Rep.
– volume: 20
  start-page: 714
  year: 2021
  publication-title: Nat. Mater.
– volume: 10
  start-page: 937
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 16
  year: 2020
  publication-title: Results Phys.
– volume: 305
  start-page: 788
  year: 2004
  publication-title: Science
– volume: 14
  start-page: 1166
  year: 2020
  publication-title: ACS Nano
– volume: 5
  year: 2017
  publication-title: APL Mater.
– volume: 12
  start-page: 243
  year: 2021
  publication-title: Micromachines
– volume: 6
  start-page: 2712
  year: 2019
  publication-title: ACS Photonics
– volume: 195
  start-page: 55
  year: 2017
  publication-title: Mater. Lett.
– volume: 21
  start-page: 4981
  year: 2021
  publication-title: Nano Lett.
– volume: 12
  start-page: 2609
  year: 2022
  publication-title: Sci. Rep.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 16
  year: 2022
  publication-title: Laser Photonics. Rev.
– volume: 16
  start-page: 5235
  year: 2016
  publication-title: Nano Lett.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4562
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 349
  start-page: 1310
  year: 2015
  publication-title: Science
– volume: 11
  start-page: 276
  year: 2022
  publication-title: Light Sci Appl
– volume: 11
  start-page: 3205
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 898
  year: 2022
  publication-title: IEEE J. Electron. Devices Soc.
– year: 2024
  publication-title: Laser Photonics. Rev.
– volume: 28
  start-page: 24
  year: 2020
  publication-title: Opt. Express
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 17
  year: 2023
  publication-title: Laser Photonics. Rev.
– volume: 9
  start-page: 2204
  year: 2022
  publication-title: ACS Photonics
– volume: 68
  start-page: 4627
  year: 2020
  publication-title: IEEE Trans Antennas Propag
– volume: 12
  start-page: 4414
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 986
  year: 2016
  publication-title: Laser Photon. Rev.
– volume: 18
  start-page: 7801
  year: 2018
  publication-title: Nano Lett.
– volume: 52
  year: 2019
  publication-title: J Phys D Appl Phys
– volume: 31
  year: 2020
  publication-title: J Mater Sci Mater Electron
– volume: 11
  start-page: 714
  year: 2024
  publication-title: ACS Photonics
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1097
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 2581
  year: 2021
  publication-title: ACS Photonics
– volume: 7
  start-page: 50
  year: 2018
  publication-title: Light Sci Appl
– volume: 15
  start-page: 3376
  year: 2024
  publication-title: Nat. Commun.
– volume: 9
  start-page: 812
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 134
  year: 2019
  publication-title: Nat. Electron.
– volume: 12
  start-page: 152
  year: 2023
  publication-title: Light Sci Appl
– volume: 614
  year: 2021
  publication-title: Phys. B Condens. Matter.
– volume: 4
  start-page: 40
  year: 2023
  publication-title: Commun. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 58
  start-page: 1460
  year: 2019
  publication-title: Appl. Opt.
– volume: 20
  start-page: 994
  year: 2019
  publication-title: Nano Lett.
– volume: 2019
  year: 2019
  publication-title: Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 3
  year: 2021
  publication-title: Adv Photonics Res
– volume: 22
  start-page: 2011
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 58
  start-page: 9033
  year: 2019
  publication-title: Appl. Opt.
– volume: 3
  year: 2018
  publication-title: Adv Phys X
– volume: 3
  start-page: 785
  year: 2020
  publication-title: Nat. Electron.
– volume: 10
  start-page: 2876
  year: 2022
  publication-title: Photonics Res
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 13
  start-page: 7792
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 2
  year: 2024
  publication-title: PhotoniX
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 298
  start-page: 580
  year: 2002
  publication-title: Science
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 26
  start-page: 24
  year: 2018
  publication-title: Opt. Express
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 854
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 22
  start-page: 1630
  year: 2022
  publication-title: Lab Chip
– volume: 11
  start-page: 585
  year: 2021
  publication-title: Sci. Rep.
– volume: 16
  start-page: 2818
  year: 2016
  publication-title: Nano Lett.
– year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 3244
  year: 2016
  publication-title: Lab Chip
– volume: 15
  start-page: 287
  year: 2021
  publication-title: Nat. Photonics
– volume: 7
  year: 2018
  publication-title: Light Sci Appl
– volume: 52
  start-page: 1
  year: 2016
  publication-title: IEEE J. Quantum Electron.
– volume: 4
  start-page: 218
  year: 2021
  publication-title: Nat. Electron.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 6
  start-page: 829
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 20
  start-page: 1024
  year: 2021
  publication-title: Nat. Mater.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 10
  year: 2020
  publication-title: Sci. Rep.
– volume: 20
  start-page: 1830
  year: 2020
  publication-title: Nano Lett.
– volume: 14
  year: 2020
  publication-title: Laser Photon. Rev.
– ident: e_1_2_7_192_1
  doi: 10.1038/s41467-021-23257-y
– ident: e_1_2_7_212_1
  doi: 10.1364/OE.420660
– ident: e_1_2_7_110_1
  doi: 10.1038/s41467-018-03155-6
– ident: e_1_2_7_44_1
  doi: 10.1038/s41598-022-06687-6
– ident: e_1_2_7_97_1
  doi: 10.1002/advs.202101212
– ident: e_1_2_7_22_1
  doi: 10.1038/s41377-019-0178-2
– ident: e_1_2_7_196_1
  doi: 10.1002/adfm.201808489
– ident: e_1_2_7_103_1
  doi: 10.1038/s41928-021-00554-4
– ident: e_1_2_7_87_1
  doi: 10.1002/adom.202201478
– ident: e_1_2_7_176_1
  doi: 10.1038/srep14018
– ident: e_1_2_7_46_1
  doi: 10.1021/acsphotonics.3c01592
– ident: e_1_2_7_47_1
  doi: 10.3390/app131910590
– ident: e_1_2_7_204_1
  doi: 10.1002/adom.202100297
– ident: e_1_2_7_107_1
  doi: 10.1038/s41467-022-29798-0
– ident: e_1_2_7_215_1
  doi: 10.1088/1361-6463/ab3129
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.nanolett.8b01570
– ident: e_1_2_7_16_1
  doi: 10.1109/TAP.2021.3060022
– ident: e_1_2_7_80_1
  doi: 10.1002/smll.202206319
– ident: e_1_2_7_52_1
  doi: 10.1038/s41563-021-00991-8
– ident: e_1_2_7_58_1
  doi: 10.1021/acs.nanolett.9b05053
– ident: e_1_2_7_81_1
  doi: 10.1021/acsnano.1c10100
– ident: e_1_2_7_104_1
  doi: 10.1021/acsphotonics.1c00124
– ident: e_1_2_7_122_1
  doi: 10.1109/JSTQE.2010.2049096
– ident: e_1_2_7_156_1
  doi: 10.3390/mi12030243
– ident: e_1_2_7_161_1
  doi: 10.1002/adom.201601103
– volume: 11
  year: 2019
  ident: e_1_2_7_24_1
  publication-title: Phys. Rev. Appl.
– ident: e_1_2_7_152_1
  doi: 10.1186/s43074-023-00116-1
– ident: e_1_2_7_198_1
  doi: 10.1364/CLEO_QELS.2015.FTu1C.3
– ident: e_1_2_7_36_1
  doi: 10.1002/lpor.202400184
– ident: e_1_2_7_20_1
  doi: 10.1038/s41377-020-0335-7
– ident: e_1_2_7_145_1
  doi: 10.3390/ijms22042011
– ident: e_1_2_7_38_1
  doi: 10.1002/adom.202301268
– ident: e_1_2_7_74_1
  doi: 10.1038/s41467-024-47229-0
– ident: e_1_2_7_153_1
  doi: 10.1002/adma.201501943
– ident: e_1_2_7_3_1
  doi: 10.1364/AOP.11.000380
– ident: e_1_2_7_157_1
  doi: 10.1021/acs.nanolett.6b00618
– ident: e_1_2_7_151_1
  doi: 10.1002/adom.201902182
– ident: e_1_2_7_93_1
  doi: 10.1021/acsnano.9b09277
– ident: e_1_2_7_136_1
  doi: 10.1109/TAP.2012.2189698
– ident: e_1_2_7_188_1
  doi: 10.1039/C6RA11777E
– ident: e_1_2_7_19_1
  doi: 10.1038/srep19885
– ident: e_1_2_7_73_1
  doi: 10.1109/TAP.2019.2916761
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.nanolett.8b03567
– ident: e_1_2_7_21_1
  doi: 10.1038/s41377-018-0078-x
– ident: e_1_2_7_119_1
  doi: 10.1038/s41598-023-33693-z
– ident: e_1_2_7_48_1
  doi: 10.1021/acsnano.0c07295
– ident: e_1_2_7_75_1
  doi: 10.1038/s41467-021-24749-7
– volume: 2019
  year: 2019
  ident: e_1_2_7_90_1
  publication-title: Res.
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1210713
– ident: e_1_2_7_125_1
  doi: 10.1063/1.4862272
– ident: e_1_2_7_199_1
  doi: 10.1002/admt.201900334
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-019-08305-y
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.nanolett.3c02168
– ident: e_1_2_7_78_1
  doi: 10.1038/s41377-018-0091-0
– ident: e_1_2_7_193_1
  doi: 10.1021/acsami.2c20191
– year: 2024
  ident: e_1_2_7_14_1
  publication-title: Adv. Funct. Mater.
– volume: 921
  start-page: 60
  year: 2018
  ident: e_1_2_7_191_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_4_1
  doi: 10.1080/23746149.2017.1417055
– ident: e_1_2_7_62_1
  doi: 10.1515/nanoph-2020-0550
– ident: e_1_2_7_59_1
  doi: 10.1038/s41467-020-17015-9
– ident: e_1_2_7_17_1
  doi: 10.1002/adom.202202130
– ident: e_1_2_7_133_1
  doi: 10.1109/ACCESS.2021.3100144
– ident: e_1_2_7_208_1
  doi: 10.1109/LAWP.2018.2872108
– ident: e_1_2_7_120_1
  doi: 10.1038/s41598-019-45091-5
– ident: e_1_2_7_126_1
  doi: 10.1109/JQE.2015.2509242
– ident: e_1_2_7_203_1
  doi: 10.1364/OE.27.023282
– ident: e_1_2_7_32_1
  doi: 10.1002/advs.201903382
– ident: e_1_2_7_132_1
  doi: 10.1364/OPTICA.4.000625
– ident: e_1_2_7_159_1
  doi: 10.1002/adma.201700412
– ident: e_1_2_7_160_1
  doi: 10.1038/s41427-018-0082-x
– ident: e_1_2_7_162_1
  doi: 10.3390/s16040521
– ident: e_1_2_7_60_1
  doi: 10.1021/acs.nanolett.6b03626
– ident: e_1_2_7_49_1
  doi: 10.1002/lpor.202200597
– ident: e_1_2_7_114_1
  doi: 10.1016/j.eml.2020.100998
– ident: e_1_2_7_167_1
  doi: 10.1002/adma.202006054
– ident: e_1_2_7_139_1
  doi: 10.1016/j.rinp.2020.102937
– ident: e_1_2_7_106_1
  doi: 10.1038/s41928-019-0236-z
– ident: e_1_2_7_91_1
  doi: 10.1088/2040-8986/abcc52
– ident: e_1_2_7_6_1
  doi: 10.1063/5.0091280
– ident: e_1_2_7_23_1
  doi: 10.1038/s41565-017-0034-6
– ident: e_1_2_7_177_1
  doi: 10.1016/j.rinp.2022.105587
– ident: e_1_2_7_34_1
  doi: 10.1038/s41598-023-45351-5
– ident: e_1_2_7_184_1
  doi: 10.1063/1.3268448
– volume: 1
  start-page: 489
  year: 2013
  ident: e_1_2_7_28_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_134_1
  doi: 10.1021/acsami.3c11252
– ident: e_1_2_7_40_1
  doi: 10.1021/acsphotonics.1c01005
– ident: e_1_2_7_148_1
  doi: 10.1016/j.sna.2019.111592
– ident: e_1_2_7_112_1
  doi: 10.1016/j.ijsolstr.2019.12.015
– ident: e_1_2_7_102_1
  doi: 10.1038/s41598-020-72874-y
– ident: e_1_2_7_135_1
  doi: 10.1038/s41563-021-00939-y
– ident: e_1_2_7_66_1
  doi: 10.1021/acs.nanolett.6b02326
– ident: e_1_2_7_61_1
  doi: 10.1364/AO.58.001460
– ident: e_1_2_7_165_1
  doi: 10.1002/andp.202100402
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevLett.85.3966
– ident: e_1_2_7_9_1
  doi: 10.1038/s41377-022-00972-9
– ident: e_1_2_7_116_1
  doi: 10.1038/s41377-022-00806-8
– ident: e_1_2_7_201_1
  doi: 10.1063/1.4983782
– ident: e_1_2_7_54_1
  doi: 10.1002/adom.202300644
– ident: e_1_2_7_174_1
  doi: 10.1364/OE.382719
– ident: e_1_2_7_170_1
  doi: 10.1039/D2LC00141A
– ident: e_1_2_7_168_1
  doi: 10.1038/s41565-022-01197-y
– ident: e_1_2_7_71_1
  doi: 10.1109/TAP.2020.2972650
– ident: e_1_2_7_155_1
  doi: 10.1063/1.4985288
– ident: e_1_2_7_37_1
  doi: 10.1038/s41598-017-11953-z
– ident: e_1_2_7_143_1
  doi: 10.1109/IRMMW-THz50926.2021.9566971
– ident: e_1_2_7_10_1
  doi: 10.1038/srep38314
– ident: e_1_2_7_100_1
  doi: 10.1002/adfm.202103379
– ident: e_1_2_7_150_1
  doi: 10.1002/adma.201907160
– ident: e_1_2_7_13_1
  doi: 10.1038/nmat2033
– ident: e_1_2_7_111_1
  doi: 10.1002/smll.202002484
– ident: e_1_2_7_200_1
  doi: 10.1109/OJCOMS.2023.3349155
– ident: e_1_2_7_205_1
  doi: 10.1021/acsphotonics.1c00836
– ident: e_1_2_7_183_1
  doi: 10.1002/lpor.201600064
– ident: e_1_2_7_77_1
  doi: 10.1002/adma.202106080
– ident: e_1_2_7_39_1
  doi: 10.1002/adfm.202213818
– ident: e_1_2_7_171_1
  doi: 10.3390/s151128154
– volume: 23
  start-page: 16
  year: 2015
  ident: e_1_2_7_179_1
  publication-title: Opt. Express
– ident: e_1_2_7_109_1
  doi: 10.1021/acs.nanolett.2c01692
– ident: e_1_2_7_113_1
  doi: 10.1021/acsnano.9b08228
– ident: e_1_2_7_98_1
  doi: 10.1364/AO.58.002687
– ident: e_1_2_7_164_1
  doi: 10.1126/sciadv.abe3778
– ident: e_1_2_7_79_1
  doi: 10.1002/lpor.202100591
– ident: e_1_2_7_96_1
  doi: 10.1021/acs.nanolett.6b00555
– ident: e_1_2_7_141_1
  doi: 10.1016/j.matlet.2017.02.087
– ident: e_1_2_7_181_1
  doi: 10.1021/acsnano.2c03310
– ident: e_1_2_7_206_1
  doi: 10.1002/adma.202101258
– ident: e_1_2_7_68_1
  doi: 10.1109/LAWP.2019.2922695
– ident: e_1_2_7_69_1
  doi: 10.1109/TAP.2015.2484419
– ident: e_1_2_7_76_1
  doi: 10.1002/advs.202300542
– volume: 28
  start-page: 24
  year: 2020
  ident: e_1_2_7_101_1
  publication-title: Opt. Express
– ident: e_1_2_7_144_1
  doi: 10.1063/1.4978012
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.nanolett.9b04107
– ident: e_1_2_7_127_1
  doi: 10.1002/lpor.201600106
– ident: e_1_2_7_187_1
  doi: 10.1002/adom.202100024
– ident: e_1_2_7_207_1
  doi: 10.1021/acsnano.7b07121
– ident: e_1_2_7_89_1
  doi: 10.1002/lpor.202000116
– ident: e_1_2_7_42_1
  doi: 10.1038/s41598-019-40226-0
– ident: e_1_2_7_163_1
  doi: 10.1039/C6LC00579A
– ident: e_1_2_7_185_1
  doi: 10.1002/adom.202300685
– ident: e_1_2_7_83_1
  doi: 10.1002/adom.201901169
– ident: e_1_2_7_214_1
  doi: 10.1063/1.5084329
– ident: e_1_2_7_99_1
  doi: 10.1021/acsphotonics.7b01073
– ident: e_1_2_7_70_1
  doi: 10.1109/TAP.2016.2536160
– ident: e_1_2_7_154_1
  doi: 10.1007/s10854-020-04459-4
– ident: e_1_2_7_169_1
  doi: 10.1002/adma.201200674
– ident: e_1_2_7_175_1
  doi: 10.1063/1.5023778
– ident: e_1_2_7_173_1
  doi: 10.1088/0022-3727/41/23/232004
– ident: e_1_2_7_166_1
  doi: 10.1021/acsphotonics.2c01986
– ident: e_1_2_7_53_1
  doi: 10.1002/adom.202202658
– ident: e_1_2_7_140_1
  doi: 10.1063/1.4978205
– ident: e_1_2_7_63_1
  doi: 10.1364/OE.405375
– ident: e_1_2_7_25_1
  doi: 10.1038/s41565-017-0052-4
– ident: e_1_2_7_94_1
  doi: 10.1021/acsphotonics.9b01532
– volume: 9
  year: 2024
  ident: e_1_2_7_137_1
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_7_138_1
  doi: 10.1063/1.4955272
– ident: e_1_2_7_146_1
  doi: 10.1002/adma.201805033
– ident: e_1_2_7_57_1
  doi: 10.1038/nnano.2015.2
– ident: e_1_2_7_117_1
  doi: 10.1002/lpor.202100396
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.nanolett.2c02283
– ident: e_1_2_7_33_1
  doi: 10.1038/s41377-023-01218-y
– ident: e_1_2_7_35_1
  doi: 10.1038/s41598-020-79945-0
– ident: e_1_2_7_182_1
  doi: 10.1021/acs.jpcc.0c03023
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aac9411
– ident: e_1_2_7_149_1
  doi: 10.1126/science.1076996
– volume: 26
  start-page: 24
  year: 2018
  ident: e_1_2_7_95_1
  publication-title: Opt. Express
– ident: e_1_2_7_147_1
  doi: 10.1364/PRJ.476100
– ident: e_1_2_7_195_1
  doi: 10.1109/TRANSDUCERS.2015.7181344
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.0c21984
– ident: e_1_2_7_15_1
  doi: 10.1038/s41377-018-0052-7
– ident: e_1_2_7_65_1
  doi: 10.1002/adma.201907308
– ident: e_1_2_7_115_1
  doi: 10.1021/acsphotonics.0c01599
– ident: e_1_2_7_209_1
  doi: 10.1109/TAP.2021.3137217
– ident: e_1_2_7_211_1
  doi: 10.1002/adom.201600938
– ident: e_1_2_7_189_1
  doi: 10.3390/nano12091395
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201004341
– ident: e_1_2_7_180_1
  doi: 10.1038/srep31823
– ident: e_1_2_7_92_1
  doi: 10.1038/s42005-019-0232-7
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1096796
– ident: e_1_2_7_84_1
  doi: 10.1002/lpor.201500314
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.nanolett.1c00720
– ident: e_1_2_7_121_1
  doi: 10.1063/1.4983364
– ident: e_1_2_7_45_1
  doi: 10.1002/adfm.202109544
– ident: e_1_2_7_158_1
  doi: 10.1002/adom.201900379
– ident: e_1_2_7_30_1
  doi: 10.1002/adpr.202100199
– ident: e_1_2_7_118_1
  doi: 10.1021/acs.nanolett.3c02595
– ident: e_1_2_7_128_1
  doi: 10.1002/adom.201701346
– ident: e_1_2_7_202_1
  doi: 10.1002/adma.201802721
– ident: e_1_2_7_172_1
  doi: 10.1016/j.physb.2021.413030
– ident: e_1_2_7_210_1
  doi: 10.1002/adom.201800728
– ident: e_1_2_7_142_1
  doi: 10.1109/PIERS53385.2021.9695015
– ident: e_1_2_7_72_1
  doi: 10.1038/s41467-019-11598-8
– ident: e_1_2_7_88_1
  doi: 10.1021/acsphotonics.9b00678
– ident: e_1_2_7_197_1
  doi: 10.1021/acsphotonics.2c00439
– ident: e_1_2_7_131_1
  doi: 10.1016/j.jallcom.2020.157168
– ident: e_1_2_7_190_1
  doi: 10.1021/acsnano.2c02500
– ident: e_1_2_7_194_1
  doi: 10.1002/adom.202300130
– ident: e_1_2_7_105_1
  doi: 10.1038/s41377-023-01169-4
– ident: e_1_2_7_213_1
  doi: 10.1109/MEMSYS.2014.6765580
– volume: 7
  year: 2019
  ident: e_1_2_7_130_1
  publication-title: IEEE Access
– ident: e_1_2_7_124_1
  doi: 10.1038/srep23731
– ident: e_1_2_7_31_1
  doi: 10.1038/s41566-020-00750-2
– ident: e_1_2_7_56_1
  doi: 10.1038/s41467-018-07011-5
– ident: e_1_2_7_178_1
  doi: 10.1109/JEDS.2022.3194120
– volume: 10
  start-page: 102
  year: 2024
  ident: e_1_2_7_51_1
  publication-title: ACS Appl Opt Mater
– ident: e_1_2_7_5_1
  doi: 10.1002/lpor.202200152
– ident: e_1_2_7_186_1
  doi: 10.1038/s41598-018-32827-y
– ident: e_1_2_7_123_1
  doi: 10.1063/1.2947587
– ident: e_1_2_7_29_1
  doi: 10.1038/nnano.2015.186
– ident: e_1_2_7_129_1
  doi: 10.1038/s41578-021-00304-0
– ident: e_1_2_7_2_1
  doi: 10.1038/ncomms2285
– ident: e_1_2_7_82_1
  doi: 10.1364/OPTICA.4.001368
– ident: e_1_2_7_108_1
  doi: 10.1038/s41928-020-00497-2
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.nanolett.9b03957
– ident: e_1_2_7_11_1
  doi: 10.1038/s41598-020-67793-x
– ident: e_1_2_7_41_1
  doi: 10.1038/s43246-023-00369-0
SSID ssj0002891341
Score 2.3119278
Snippet Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude, phase, and...
Abstract Metasurfaces, as 2D artificial electromagnetic materials, play a pivotal role in manipulating electromagnetic waves by controlling their amplitude,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Design
Electromagnetic absorption
Electromagnetic radiation
Flexibility
Geometry
Indium
integration
metasurface
Metasurfaces
microfluidic
microfluidic metasurface
Microfluidics
Optical properties
Phase transitions
reconfiguration
Refractivity
Semiconductors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS8MwFA6ykxdRVJxOyUHwVNekSbp6m-IQYSLicLfwkqYy0Tp0ij_f99pu1IN48VpCG97Xvu9L-vI9xo5TjcDmcRI5HeeRcjqLQBQh0jogXadeCEOnkcc35mqirqd62mr1RTVhtT1wHbh-nOFjEqWVBKmM8xne2sg46CB0noGn7Iuc11pMPdW_z8ipbOnSGMs-zL_I_pNKJitj0hYLVWb9PxRmW6dWRDPaZBuNQuTDemZbbC2U22w8psK54vljls88H4cF7ewVVE51xoccMxUfkRMBchyflfyy7m3zAo8lnVHkD_AZeMt5cIdNRpf3F1dR0wkh8mToHmVINUVIJBTaFAMwmYp9VqRS5UE4k0pUUUKJANorSHLwzoHwmLgEDEDmwiW7rFO-lmGPcZkCYQAq5F5pF5ChHK56JCoFI8BnXRYtI2N9YxNO3SqebW1wLC1F0q4i2WUnq_Hz2iDj15HnFOjVKDK2ri4g3LaB2_4Fd5f1ljDZ5mt7t5hGJO1kKdVlpxV0f0zFDm-ndwKVkdn_j0kdsHW6dX1Escc6i7ePcIhaZeGOqtfyG1xN5Cs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll5EUXF9kYPgKdikSWq9reIiwoqI4t7CJE1lQavoKv58Z9pu3T2IeC1pKfP8Op35hrHDzKBiiyQV3iSF0N7kAmQZhTER03UWpLQ0jTy8tpf3-mpkRjNT_A0_RFdwI8-o4zU5OPj34x_SUHj9Ij5P6oFEiLDIlmm-lpr6lL7pqiyK_sLV6ytVZqSQaBNT5sZEHc8_Yi4z1QT-c6hzFrvWyWewxlZb1Mj7jZrX2UKsNthwSM105dPHuBgHPowTqvaV1GJ1yvscoxcfEDsB5j0-rvhFs-_mGR4rmlvkD_AZ-Qwb4Sa7H1zcnV-KdjuCCETyLnJMP2VMFZTGlidgc52EvMyULqL0NlOIrKSWEUzQkBYQvAcZMJhJOAFVSJ9usaXqpYrbjKsMSC-gYxG08RGzlscvIYXowUoIeY-JqWRcaKnDaYPFk2tIj5UjSbpOkj121J1_bUgzfj15RoLuThHZdX3h5e3Rtb7jkhwtLdVGK1Da-pCjdVmVRBOlKXIIPbY3VZNrPfDdYWhRVN3SuscaO_rjVVz_ZnQrES3Znf_esMtW6GozorjHliZvH3EfscrEH9Tm-A3tu-Bj
  priority: 102
  providerName: Wiley-Blackwell
Title Microfluidic Metasurfaces: A New Frontier in Electromagnetic Wave Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400059
https://www.proquest.com/docview/3192222844
https://doaj.org/article/09ebe34542a246bc931d620e5e15d9ac
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NbxMxELVoeuGCqAARKJEPSJxM117bu9tLlVYJFdJWUUVFbpa_torUbkKbop7625nZdUI4ABcfVt7VamY88zwevyHkY6FAsSHLmVNZYNKpilneRKZUhHBdeM413kauL_T5lfw6V_OUcLtPZZUbn9g56rD0mCM_AlMRmK2Q8mT1g2HXKDxdTS009sg-uOCyHJD908nF7HKbZRF4Cte1rxSF4oyDTWyYGzNxZFePSAmKZZQdWelOZOoI_P9AnbvYtQs-05fkRUKNdNyr-YA8i-0rUtdYTNfcPCzCwtM6rjHb12CJ1TEdU_BedIrsBBD36KKlk77fza29bvHeIv1uf0a6w0b4mlxNJ9_OzlnqjsA8kryzCsJPE3NhG6Wb0upKZr5qCiFD5E4XApAVlzxa5aXNg_XOWe7BmXFbWhG4y9-QQbts41tCRWFRL1bG4KVyEaKWg52QAPSgufXVkLCNZIxP1OHYweLG9KTHwqAkzVaSQ_JpO3_Vk2b8deYpCno7C8muuwfLu2uT1o7JKrC0XCoprJDa-QqsS4ssqshVqKwfksONmkxagffmt70MyedOdf_5FTOezS85oCX97t_fe0-e40v9hcRDMljfPcQPgEzWbkT2hJzBWE6_jJIpjrpdPoz10-QXy4_itA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOcAFgQCxpYUcQJxCJ5lkplMJoQW6bGmnQqgVewt5TbVSmV3aLY8_xW_EnseyHIBTr6MoGtlfbMexPwM8yTUqNiQpdzoJXDldcCuqyLWO6K5zL0RG3cjlUTY-Ue8merIGP_teGCqr7G1iY6jDzFOOfBuhIilbodTL-RdOU6PodbUfodHC4iD--IZXtosX-29Qv0-lHO0dvx7zbqoA90SOzgs021VMpa10Vu3YrFCJL6pcqhCFy3KJEYlQIlrtlU2D9c5Z4dEICLtjZRAuxX2vwXWVoienzvTR22VOR9KbXzMsU-ZacIEI7HkiE7lt59-JgJSKNhtq1BU_2IwL-CPGXY2UG1c3ug23uhiVDVtQ3YG1WN-FsqTSverschqmnpVxQbnFigq6dtmQoa1kI-JCQC_LpjXba6frfLanNXVJso_2a2Qr3If34ORKpHYf1utZHR8Ak7klFFgVg1faRfSRDu9dEmOVTFhfDID3kjG-IyqneRlnpqVYloYkaZaSHMCz5fp5S9Hx15WvSNDLVUSt3XyYnZ-a7qSapEBcp0oraaXKnC8Qy5lMoo5Ch8L6AWz2ajLdeb8wv9E5gOeN6v7zK2b4fvJBYGyWbfx7v8dwY3xcHprD_aODh3CTNmhbITdhfXF-GbcwJlq4Rw0QGXy6auT_AroeG1Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKiEuFaggQkvZQyVOq3rXu-u6twCNyiNVhQhEXFb7chWpuFGbVv35zNiOmxwQ4mqNLWuen8c73wAcFBoNG7Oce51FrrwuuRNV4lonLNdFEMLQNPLkzJxO1eeZnq1N8bf8EH3DjSKjydcU4ItYHT6QhrrFPfF50hlIhAiPYUtjacoGsDX6Mf017fsskv7DNQssZaEFF-gVK-7GTB5uPmSjNjUU_hu4cx29NuVn_Ay2O9zIRq2hn8OjVO_AZELH6arL23mcBzZJS-r3VXTI6piNGOYvNiZ-Aqx8bF6zk3bjzW93UdPkIvvp7hJb4yN8AdPxyfcPp7zbj8AD0bzzEgtQlXLpKm2qI2dKlYWyKqSKSXhTSMRWQonkdFAujy5470TAdCbckZNR-PwlDOqrOr0CJgtHlnEqxaC0T1i3PH4LScQPRrhQDoGvNGNDRx5OOywubUt7LC1p0vaaHMK7Xn7R0mb8VfI9KbqXIrrr5sLV9YXtosdmJfparrSSTirjQ4n-ZWSWdBI6li4MYW9lJtvF4I3F5CKpv6XUEFpP-ser2NH57JtAvGRe_-8Nb-HJ-cex_frp7MsuPCWBdl5xDwbL69v0BoHL0u93vvkHFT7kvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Metasurfaces%3A+A+New+Frontier+in+Electromagnetic+Wave+Engineering&rft.jtitle=Advanced+Physics+Research&rft.au=Qin%2C+Jin&rft.au=Jiang%2C+Shibin&rft.au=Li%2C+Shibin&rft.au=He%2C+Shaowei&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=11&rft_id=info:doi/10.1002%2Fapxr.202400059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon